Statistics I - Syllabus

Embark on a profound academic exploration as you delve into the Statistics I course () within the distinguished Tribhuvan university's CSIT department. Aligned with the 2065 Syllabus, this course (STA-108) seamlessly merges theoretical frameworks with practical sessions, ensuring a comprehensive understanding of the subject. Rigorous assessment based on a 60+20+20 marks system, coupled with a challenging passing threshold of , propels students to strive for excellence, fostering a deeper grasp of the course content.

This 3 credit-hour journey unfolds as a holistic learning experience, bridging theory and application. Beyond theoretical comprehension, students actively engage in practical sessions, acquiring valuable skills for real-world scenarios. Immerse yourself in this well-structured course, where each element, from the course description to interactive sessions, is meticulously crafted to shape a well-rounded and insightful academic experience.


Course Synopsis: Concept of Applied Statistical Techniques and its Applications
Goal:This course makes students able to understand Applied Statistical Techniques and their applications in the allied areas.

Units

Sampling Techniques

Types of Sampling; Simple Random Sampling with and without Replacement; Stratified Random Sampling; Ratio and Regression Method of Estimation under Simple and Stratified Random Sampling; Systematic Sampling; Multistage Sampling; Estimation of population total and its Variance.


Non Parametric Test

Chi-square test: Test of goodness of fit; Test for independence (Categorical Data). Definition of Order Statistics; Run Test; Sign Test; Wilcoxon Matched Pairs Signed Ranks Test; Mann-Whitney U Test; Median Test; Kolmogorov Smirnov Test (One Sample Case); Cochran Q Test; Kruskl Wallis One way ANOVA Test; Friedman Two way ANOVA Test.


Correlation and Regression Analysis

Partial and Multiple Correlations; Multiple Linear Regressions: Assumptions; Coefficient Estimation, and Significance Test; Coefficient of Determination; Cobb-Dauglas Production Function; Growth Model; Logistic Regression; Autoregressive Model of order One, and Appraisal of Linear Models (Heteroscedasticity, Multicolinearity, Autocorrelation).