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Chapter 1 

Mathematical Preliminaries: Set Functions and Relations etc. 

Sets 

 A set is a collection of well defined objects. Usually the element of a set has common 

properties. e.g. all the student who enroll for a course ―theory of computation‖ make up a set. 

Examples 

The set of even positive integer less than 20 can be expressed by 

 E =    {2,4,6,8,10,12,14,16,18} 

Or  E = {x|x is even and 0<x<20} 

 

Finite and Infinite Sets 

A set is finite if it contains  finite number of elements. And infinite otherwise.The empty set has 

no element and is denoted by ɸ. 

Cardinality of set:   

It is a number of element in a set. The cardinality of set E is  

|E|=9. 

Subset : 

A set A is subset of a set B  if each element of A is also element of B and is denoted by     . 

Set operations 

Union: 

The union of two set has elements, the elements of one of the two sets and possibly both. Union is 

denoted by .  

Intersection: 

 The intersection of two sets os the collection of all elements of the two sets which are common and is 

denoted by. 

Differences: 
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 The difference of two sets A and B, denoted by A-B, is the set of all elements that are in the set  A but 

not in the set B. 

Sequences and Tuples 

A sequence of objects is a list of objects in some order. For example, the sequence 7,4,17 would be 

written as (7,4,17).In set the order does not matter but in sequence it does. Also, repetition is not 

permitted in a set but is allowed in a sequence. Like set , sequence may be finite or infinite. 

Relations A nd Functions 

A binary relation on two sets A and B is a subset of A×B. for example, if A={1,3,9}, B={x,y}, then 

{(1,x),(3,y),(9,x)} is a binary relation on 2- sets. Binary relations on K-sets A1,A2,……..Ak can be 

similarly defined. 

A function is an object that setup an input- output relationship i.e. a function takes an input and produces 

the required output. For a function f , with input x, the output y, we write f(x)=y. We also say that f maps 

x to y.  

A binary relation r is an equivalence relation if R satisfies : 

R is reflexive.i.e. for every x,(x,x)єR. 

R is symmetric i.e. for every  x and y , (x,y)єR imlies (y,x) єR. 

R is transitive i..e. for every x,y, and z, (x,y) єR and (y,z) єR imples (x,z) єR. 

Closures 

Closures is an important relationship among sets  and is a general tool for dealing with sets and 

relationship of many kinds. Let R be a binary relation on a set A. Then the reflexive closure of R is  

arelation R‘ such that : 

1. R‘ is reflexive (symmetric, transitive) 

2. R‘     R.  

3. If R‘‘ is a reflexive  relation containing R then R‘‘    R 

 

Method of proofs: 

Mathematical Induction 

Let A be a set of natural numbers such that : 

i. 0єA 
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ii. For each natural number n, if {0,1,2,3,…….n}єA. Then A=N. In particular, induction is used 

to prove assertions of the form ― for all nєN, the property is valid‖. i.e. 

In the basis step, one has to show that P(0) us true. i.e. the property is true for 0. 

P holds for n will be the assumption. 

Then one has to prove the validity of P for n+1. 

Strong mathematical Inductions 

Another form of proof by induction over natural numbers is called strong induction. Suppose we want to 

prove that P(n) is true for all n≥t. Then in the induction step, we assume that P(j) us true for all j, t≤j≤k. 

Then using this, we prove P(k). in ordinary induction in the induction step, we assume P(k-1) to prove 

P(k). There are some instances, where the result can be proved easily using strong induction. In some 

cases, it will not be possible to use weak induction and one use strong induction. 

Computation: 

 
If it involves a computer, a program running on a computer and numbers going in and out then 

computation is likely happening. 
 

Theory of computation: 

 
‐ It is a Study of power and limits of computing. It has three interacting components: 

- Automata Theory 

- Computability Theory 

 -Complexity Theory 

Computability Theory: - 

‐ What can be computed? 

-Are there problems that no program can solve? 

 

 Complexity Theory: - 

 

‐ What can be computed efficiently? 

‐ Are there problems that no program can solve in a limited amount of time or space? 

 

Automata Theory: - 

 

‐ Study of abstract machine and their properties, providing a mathematical notion of ―computer‖ 

‐ Automata are abstract mathematical models of machines that perform computations on an input by 

moving through a series of states or configurations. If the computation of an automaton reaches an 

accepting configuration it accepts that input. 
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Study of Automata 
‐ For software designing and checking behavior of digital circuits. 

‐ For designing software for checking large body of text as a collection of web pages, to find 

occurrence of words, phrases, patters (i.e. pattern recognition, string matching, …) 

‐ Designing ―lexical analyzer‖ of a compiler, that breaks input text into logical units called ―tokens 

 

Abstract Model 

 
An abstract model is a model of computer system (considered either as hardware or software) 

constructed to allow a detailed and precise analysis of how the computer system works. Such a model 

usually consists of input, output and operations  that can be performed and so can be thought of as a 

processor. E.g. an abstract machine that models a banking system can have operations like ―deposit‖, 

―withdraw‖, ―transfer‖, etc. 

 

Brief History: 

 
 Before 1930‘s, no any computer were there and Alen Turing introduced an abstract machine that 

had all the capabilities of today‘s computers. This conclusion applies to today‘s real  machines. 

 

Later in 1940‘s and 1950‘s, simple kinds of machines called finite automata were introduced by 

a number of researchers. 

 

In late 1950‘s the linguist N. Chomsky begun the study of formal grammar which are closely 

related to abstract automata. 

 

In 1969 S. Cook extended Turing‘s study of what could and what couldn‘t be computed and 

classified the problem as: 

-Decidable 

-Tractable/intractable 

 
 

The basic concepts of Languages 

The basic terms that pervade the theory of automata include ―alphabets‖, ―strings‖, ―languages‖, 

etc. 
 

Alphabets: - (Represented by „Σ‟) 

 

Alphabet is a finite non-empty set of symbols. The symbols can be the letters such as {a, b, c}, 

bits {0, 1}, digits {0, 1, 2, 3… 9}. Common characters like $, #, etc. 

 

{0,1} – Binary alphabets 

{+, −, *} – Special symbols 
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Strings: - (Strings are denoted by lower case letters) 

 

String is a finite sequence of symbols taken from some alphabet. E.g. 0110 is a string from 

binary alphabet, ―automata‖ is a string over alphabet {a, b, c … z}. 

Empty String: - 

It is a string with zero occurrences of symbols. It is denoted by ‗ε‘ (epsilon). 

Length of String 

 

The length of a string w, denoted by | w |, is the number of positions for symbols in w. we 

have for every string s, length (s) ≥ 0. 

 | ε | = 0 as empty string have no symbols. 

| 0110 | = 4 

Power of alphabet 

 

The set of all strings of certain length k from an alphabet is the kth power of that alphabet. 

i.e. Σk = {w / |w| = k} 

If Σ = {0, 1} then, 

 

Σ
0

 = {ε} 

Σ
1

 = {0, 1} 

Σ
2

 = {00, 01, 10, 11} 

Σ
3

 = {000, 001, 010, 011, 100, 101, 110, 111} 

Kleen Closure 

 

The set of all the strings over an alphabet Σ is called kleen closure of Σ & is denoted by 

Σ*. Thus, kleen closure is set of all the strings over alphabet Σ with length 0 or more. 

 

∴ Σ* = Σ
0 ∪  Σ

1
 ∪  Σ

2
 ∪  Σ

3
 ∪  …………… 

E.g. A = {0} 

A* = {0
n
/ n = 0, 1, 2, …}. 

 

Positive Closure: - 

The set of all the strings over an alphabet Σ, except the empty string is called positive closure and 

is denoted by Σ+. 

 

∴ Σ
+

 = Σ
1

 ∪  Σ
2

 ∪  Σ
3

 ∪…………… 

Language: 
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A language L over an alphabet Σ is subset of all the strings that can be formed out of Σ; i.e. a 

language is subset of kleen closure over an alphabet Σ; L   Σ
*
. (Set of strings chosen from Σ

*
 

defines language). For example; 

 

� Set of all strings over Σ = {0, 1} with equal number of 0‘s & 1‘s. 

L = {ε, 01, 0011, 000111, ………} 

� φ is an empty language & is a language over any alphabet. 

� {ε} is a language consisting of only empty string. 

� Set of binary numbers whose value is a prime: 

L = {10, 11, 101, 111, 1011, ……} 

Concatenation of Strings 

 

Let x & y be strings then xy denotes concatenation of x & y, i.e. the string formed by 

making a copy of x & following it by a copy of y. 

 

More precisely, if x is the string of i symbols as x = a1a2a3…ai & y is the string of j symbols as y = 

b1b2b3…bj  then  xy is the string of i + j symbols as xy = a1a2a3…aib1b2b3…bj. 

 

For example; 

x = 000 

y = 111 

xy = 000111 & 

yx = 111000 

 

Note: ‗ε‘ is identity for concatenation; i.e. for any w, εw = wε = w. 

 

Suffix of a string 

 

A string s is called a suffix of a string w if it is obtained by removing 0 or more leading 

symbols in w. For example; 

w = abcd 

s = bcd is suffix of w. 

here s is proper suffix if s ≠ w. 

 

Prefix of a string 

 

A string s is called a prefix of a string w if it is obtained by removing 0 or more trailing 

symbols of w. For example; 

w = abcd 

s = abc is prefix of w, 

Here, s is proper suffix i.e. s is proper suffix if s ≠ w. 

 

For more notes visit https://collegenote.pythonanywhere.com



Compiled by Tej Shahi  Page 8 

 

Substring 

 

A string s is called substring of a string w if it is obtained by removing 0 or more leading 

or trailing symbols in w. It is proper substring of w if s ≠ w. 

If s is a string then Substr (s, i, j) is substring of s beginning at ith position & ending at jth 

position both inclusive. 

 

 

Problem 

 

A problem is the question of deciding whether a given string is a member of some 

particular language. 

In other words, if Σ is an alphabet & L is a language over Σ, then problem is; 

‐  Given a string w in Σ*, decide whether or not w is in L. 

 

 

Exercises: 
 

1. Let A be a set with  n distinct elements. How many different binary relations on A are 

there? 

 

2. If  ∑= {a,b,c} then find the followings 

 

a. ∑
1
, ∑ 

2
, ∑

3
. 

 

3. If ∑={0,1}. Then find the following languages 

a. The language of string of length zero. 

b. The language  of strings of 0‘s and 1‘s with equal number of each. 

c. The language {0
n
1

n   
| n≥1} 

d. The language {0
i
0

j   
| 0≤i≤j}. 

e. The language of strings with odd number of 0‘s and even number of 1‘s. 

 

 

4. Define the Kleen closure and power of alphabets. 

 

Readings:  Plz, read the chapter 1 sections 1.1, 1.1.3, 1.5 of Text book. And solve some 

numerical example given in Text book. 
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