
Chapter 6

INTERMEDIATE CODE GENERATOR

Intermediate Code Generation

The front end translates the source program into an intermediate representation from

which the backend generates target code. Intermediate codes are machine independent

codes, but they are close to machine instructions.

Advantages of using Intermediate code representation:

 If a compiler translates the source language to its target machine language

without having the option for generating intermediate code, then for each new

machine, a full native compiler is required.

 Intermediate code eliminates the need of a new full compiler for every unique

machine by keeping the analysis portion same for all the compilers.

 The second part of compiler, synthesis, is changed according to the target

machine.

 It becomes easier to apply the source code modifications to improve code

performance by applying code optimization techniques on the intermediate code.

Intermediate Representations

There are three kinds of intermediate representations:

1. Graphical representations (e.g. Syntax tree or Dag)

2. Postfix notation: operations on values stored on operand stack (similar to JVM byte code)

3. Three-address code: (e.g. triples and quads) Sequence of statement of the form x = y op z

Syntax tree:

Syntax tree is a graphic representation of given source program and it is also called

variant of parse tree. A tree in which each leaf represents an operand and each interior

node represents an operator is called syntax tree.

Example: Syntax tree for the expression a*(b + c)/d

 /

 * d

 a +

 b c

Directed acyclic graph (DAG)

A DAG for an expression identifies the common sub expressions in the expression. It is

similar to syntax tree, only difference is that a node in a DAG representing a common

sub expression has more than one parent, but in syntax tree the common sub expression

would be represented as a duplicate sub tree.

Example: DAG for the expression a + a * (b - c) + (b - c) * d

 +

 + *

 * d

 a -

 b c

Postfix notation

The representation of an expression in operators followed by operands is called postfix

notation of that expression. In general if x and y be any two postfix expressions and OP

is a binary operator then the result of applying OP to the x and y in postfix notation by

―x y OP‖.

Examples:

1. (a+ b) * c in postfix notation is: a b + c *

2. a * (b + c) in postfix notation is: a b c + *

 Postfix notation is the useful form of intermediate code if the given language is

expressions.

 Postfix notation is also called as 'suffix notation' and 'reverse polish'.

 Postfix notation is a linear representation of a syntax tree.

 In the postfix notation, any expression can be written unambiguously without

parentheses.

 The ordinary (infix) way of writing the sum of x and y is with operator in the middle:

x * y. But in the postfix notation, we place the operator at the right end as xy *.

 In postfix notation, the operator follows the operand.

3. Three Address Code

The address code that uses at most three addresses, two for operands and one for result

is called three code. Each instruction in three address code can be described as a 4-tuple:

(operator, operand1, operand2, result).

A quadruple (Three address code) is of the form:

x = y op z where x, y and z are names, constants or compiler-generated temporaries and

op is any operator.

We use the term ―three-address code‖ because each statement usually contains three

addresses (two for operands, one for the result). Thus the source language like x + y * z

might be translated into a sequence

t1 = y * z

t2 = x + t1 where t1 and t2 are the compiler generated temporary name.

* Assignment statements: x = y op z, op is binary

* Assignment statements: x = op y, op is unary

* Indexed assignments: x = y[i], x[i] = y

* Pointer assignments: x = &y, x = *y, *x = y

* Copy statements: x = y

* Unconditional jumps: goto label

* Conditional jumps: if x relop y goto label

* Function calls: param x… call p, n return y

Example: Three address code for expression: (B+A)*(Y-(B+A))

 t1 = B + A

 t2 = Y - t1

 t3 = t1 * t2

Example 2: Three address code for expression: [TU]

i = 2 * n + k

While i do

i = i – k

Solution:
 t1 = 2

t2 = t1 * n
t3 = t2 + k
i = t3

L1: if i = 0 goto L2
t4 = i - k
i = t4
goto L1

L2: ………………..

Implementation of Three-Address Statements

A three-address statement is an abstract form of intermediate code. In a compiler, these

statements can be implemented as records with fields for the operator and the operands.

Three such address statements representations are Quadruples and Triples.

Quadruples

A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result. The

op field contains an internal code for the operator. The three-address statement x = y op z is

represented by placing y in arg1, z in arg2 and x in result. The contents of fields i.e. arg1,

arg2 and result are normally pointers to the symbol-table entries for the names represented

by these fields. If so, temporary names must be entered into the symbol table as they are

created.

 op arg1 arg2 result

(0) - c t1

(1) * b t1 t2

(2) - c t3

(3) * b t3 t4

(4) + t2 t4 t5

(5) = t5 a

Figure: Quadruple representation of three-address statement a = b * - c + b * - c

Triples

To avoid entering temporary names into the symbol table, we might refer to a temporary

value by the position of the statement that computes it. If we do so, three-address

statements can be represented by records with only three fields: op, arg1 and arg2. The

fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table or

pointers into the triple structure (for temporary values). Since three fields are used, this

intermediate code format is known as triples.

 op arg1 arg2

(0) uminus c

(1) * b (0)

(2) uminus c

(3) * b (2)

(4) + (1) (3)

(5) assign a (4)

Figure: Triple representation of three-address statement a = b * - c + b * - c

(0) -c

(1) b* (0)

(2) -c

(3) b*(2)

(4) (1)+(3)

(5) a=(4)

A ternary operation like x[i] = y requires two entries in the triple structure as shown as

below while x = y[i] is naturally represented as two operations.

 op arg1 arg2 Op arg1 arg2

(0) [] x i (0) [] y i

(1) assign (0) y (1) assign x (0)

(a) (b)

Figure: Triple representation of three-address statement (a) x[i]= y and (b) x= y[i]

Example: Translate the expression x = (a + b) * (c + d) – (a + b + c)

a. Quadraples

b. Triples

Solution: Three address code is:

 t1 = a + b
 t2 = c + d
 t3 = t1 * t2
 t4 = t1 + c
 t5 = t3 – t4
 x = t5

Quadruples:

 op arg1 arg2 result

(0) + a b t1

(1) + c d t2

(2) * t1 t2 t3

(3) + t1 c t4

(4) - t3 t4 t5

(5) = t5 x

Triple:

 op arg1 arg2

(0) + a b

(1) + c d

(2) * (0) (1)

(3) + (0) c

(4) - (2) (3)

(5) = x (4)

Naming conventions for three address code

* S.code →three-address code for evaluating S

* S.begin → label to start of S or nil

* S.after →label to end of S or nil

* E.code → three-address code for evaluating E

* E.place → a name that holds the value of E

 3 = t1 + t2

Syntax-Directed Translation into Three-Address Code

1. Assignment statements

Productions Semantic rules

S → id = E S.place = newtemp();

 S.code = E.code || gen (id.place ‗=‘ E.place); S.begin = S.after = nil

E → E1 + E2 E.place = newtemp();

 E.code = E1.code || E2.code || gen (E.place ‗=‘ E1.place ‗+‘ E2.place)

Gen (E. place ‘=’ E1.place ‘+’ E2.place)

 Code generation

To represent three address statement

t3=t1+t2

E → E1 * E2 E.place = newtemp();

 E.code = E1.code || E2.code || gen (E.place ‗=‘ E1.place ‗*‘ E2.place)

E → - E1 E.place = newtemp();

 E.code = E1.code || gen (E.place ‗=‘ ‗minus‘ E1.place)

E → (E1) E.place = newtemp();

 E.code = E1.code

E → id E .place = id.name

 E.code = null

2. Boolean Expressions

Boolean expressions are used to compute logical values. They are logically used as

conditional expressions in statements that alter the flow of control, such as if—then, if—

the—else or while---do statements.

Control-Flow Translation of Boolean Expressions

Production Semantic Rules

B → B1 || B2

B1.true = B.true

B1.false = newlabel()

B2.true = B.true

B2.false = B.false

B.code = B1.code || label(B1.false) || B2.code

B → B1 && B2

B1.true = newlabel()

B1.false = B.false

B2.true = B.true

B2.false = B.false

B.code = B1.code || label(B1.true) || B2.code

B →! B1

B1.true = B.false

B1.false = B.true

B.code = B1.code

E → id1 relop id2
E.code = gen(‘if’ id1.place relop.op id2.place

 ‘goto’ E.true) || gen(‘goto’ E.false)

B → true B.code = gen(goto B.true)

B → false B.code = gen(goto B.false)

3. Flow of control statements

Control statements are ‗if—then‘, ‗if—then—else‘, and ‗while---do‘. Control statements are

generated by the following grammars:

S → If exp then S1

S → If exp then S1 else S2

S → while exp do S1

Production Semantic Rules

 S → if (B) S1

B.true = newlabel()

B.false = S.next

S1.next = S.next

S.code = B.code || label(B.true) || S1.code

 S → if (B) S1 else S2

B.true = newlabel()

B.false = newlabel()

S1.next = S.next

S2.next = S.next

S.code = B.code || label(B.true) || S1.code

 || gen(goto S.next) || label(B.false) || S2.code

 S → while (B) S1

begin = newlabel()

B.true = newlabel()

B.false = S.next

S1.next = begin

 S.code = label(begin) || B.code || label(B.true) || S1.code || gen(goto begin)

 Fig: If--then

 Fig: If—then—else Fig: while---do

Example 1: Generate three address code for the expression

 if (x < 5 || (x > 10 && x == y)) x = 3 ;

Solution:

 L1: if x < 5 goto L2

 goto L3

 L3: if x > 10 goto L4

 goto L1

 L4: if x == y goto L2

 goto L1

 L2: x = 3

Example 2: Generate three address code for the expression

if (x < 5 || (x > 10 && x == y))

{

x = 3
}

Solution:

L1: if X<5 goto L2

 else

 goto L3

L2: x=3 goto L5

L3: if x>10

 goto L4

 else

 goto L5

L4: if x==y

 goto L2

 else

 goto L5

L5: …………………..

Switch/ case statements

A switch statement is composed of two components: an expression E, which is used to

select a particular case from the list of cases; and a case list, which is a list of n number

of cases, each of which corresponds to one of the possible values of the expression E,

perhaps including a default value.

Fig: A switch / case three address translation

Syntax:

Switch (E)

{

 Case V1: S1

 Case V2: S2

 ………………

 ……………….

 Case Vn : Sn

}

Example 1: Convert the following switch statement into three address code:

Switch (i + j)

{

Case 1: x=y + z

Case 2: u=v + w

Case 3: p=q * w

Default: s=u / v

}

Solution:

t=i+j

L1: if t==1 goto L2

 else goto L3

L2: x=y+z goto L8

L3: if t==2 goto L4

 else goto L5

L4: u=v + w goto L8

L5: if t==3 goto L6

 else goto L7

L6: p=q * w goto L8

L7: s=u / v goto L8

L8: …………………..

Addressing array elements:

Elements of an array can be accessed quickly if the elements are stored in a block of

consecutive locations. If the width of each array element is w, then the ith element of

array ‗A‘ begins in location,

Where low is the lower bound on the subscript and base is the relative address of the

storage allocated for the array. That is base is the relative address of A[low].

The given expression can be partially evaluated at compile time if it is rewritten as,

 i * w + (base - low* w)

 = i * w + C

Where C=base – low*w can be evaluated when the declaration of the array is seen.

We assume that C is saved in the symbol table entry for A, so the relative address of

A[i] is obtained by simply adding i * w to C.

i.e A[i]= i* w + C

A[i] = base A + (i - low) * w

 = i * w + c where c = base A - low * w with low = 10; w = 4

base + (i – low)* w

Example: address of 15th element of array is calculated as below,

Suppose base address of array is 100 and type of array is integer of size 4 bytes and

lower bound of array is 10 then,

A[15]=15 * 4 + (100 – 10 * 4)

 = 60 + 60

 = 120

Similarly for two dimensional array, we assume that array implements by using row

major form, the relative address of A[i1, i2] can be calculated by the formula,

A[i1,i2]=baseA + ((i1 - low1) * n2 + i2 - low2) * w

Where low1, low2 are the lower bounds on the values i1 and i2, n2 is the number of

values that i2 can take. Also given expression can be rewrite as,

 = ((i1 * n2) + i2) * w + baseA - ((low1 * n2) + low2) * w

 = ((i1 * n2) + i2) * w + C where C= baseA - ((low1 * n2) + low2) * w

Example: Let A be a 10 X 20 array, there are 4 bytes per word, assume low1=low2=1.

Solution: Let X=A[Y, Z]

Now using formula for two dimensional array as,

((i1 * n2) + i2) * w + baseA - ((low1 * n2) + low2) * w

= ((Y * 20) + Z) * 4 + baseA - ((1 * 20) + 1) * 4

= ((Y * 20) + Z) * 4 + baseA - ((1 * 20) + 1) * 4

 = ((Y * 20) + Z) * 4 + baseA – 84

We can convert the above expression in three address codes as below:

T1= Y * 20

T1= T1+Z

T2=T1*4

T3=baseA -84

T4=T2+ T3

X= T4

4. Procedure Calls

The procedure is such an important and frequently used programming construct that it is

imperative for a compiler to generate good code for procedure calls and returns. The run-time

routines that handle procedure argument passing, calls and returns are part of the run-time support

package.

param x call p return y

 Here, p is a function which takes x as a parameter and returns y.

Procedure calls: They have the form

param x1

param x2

………………..

param xn

call p, n

corresponding to the procdure call p(x1, x2, ..., xn)

Return statement

They have the form return y where y representing a returned value is optional.

Calling Sequences:

The translation for a call includes a calling sequence, a sequence of actions taken on entry to

and exit from each procedure. The falling are the actions that take place in a calling

sequence:

 When a procedure call occurs, space must be allocated for the activation record of

the called procedure.

 The arguments of the called procedure must be evaluated and made available to the

called procedure in a known place.

 Environment pointers must be established to enable the called procedure to access

data in enclosing blocks.

 The state of the calling procedure must be saved so it can resume execution after the

call.

 Also saved in a known place is the return address, the location to which the called

routine must transfer after it is finished.

 Finally a jump to the beginning of the code for the called procedure must be

generated.

5. Back patching

The easiest way to implement the syntax-directed definitions for boolean expressions is to

use two passes. First, construct a syntax tree for the input, and then walk the tree in depth-

first order, computing the translations. The main problem with generating code for Boolean

expressions and flow-of-control statements in a single pass is that during one single pass

we may not know the labels that control must go to at the time the jump statements are

generated. Hence, a series of branching statements with the targets of the jumps left

unspecified is generated. Each statement will be put on a list of goto statements whose

labels will be filled in when the proper label can be determined. We call this subsequent

filling in of labels backpatching.

To manipulate lists of labels, we use three functions:

1. makelist(i) creates a new list containing only i, an index into the array of

quadruples; makelist returns a pointer to the list it has made.

2. merge(p1,p2) concatenates the lists pointed to by p1 and p2, and returns a pointer to

the concatenated list.

3. backpatch(p,i) inserts i as the target label for each of the statements on the list

pointed to by p.

If we decide to generate the three address code for given syntax directed definition

using single pass only, then the main problem that occurs is the decision of addresses of

the labels. ‗goto‘ statements refer these label statements and in one pass it becomes

difficult to know the location of these label statements. The idea to back-patching is to

leave the label unspecified and fill it later, when we know what it will be.

 If we use two passes instead of one pass then in one pass we can leave these

addresses unspecified and in second pass this incomplete information can be filled up.

