
Chapter 6 

INTERMEDIATE CODE GENERATOR 

Intermediate Code Generation 

The front end translates the source program into an intermediate representation from 

which the backend generates target code. Intermediate codes are machine independent 

codes, but they are close to machine instructions. 

 

Advantages of using Intermediate code representation: 

 If a compiler translates the source language to its target machine language 

without having the option for generating intermediate code, then for each new 

machine, a full native compiler is required. 

 Intermediate code eliminates the need of a new full compiler for every unique 

machine by keeping the analysis portion same for all the compilers. 

 The second part of compiler, synthesis, is changed according to the target 

machine. 

 It becomes easier to apply the source code modifications to improve code 

performance by applying code optimization techniques on the intermediate code. 

 

Intermediate Representations 

There are three kinds of intermediate representations: 

1. Graphical representations (e.g. Syntax tree or Dag) 

2. Postfix notation: operations on values stored on operand stack (similar to JVM byte code) 

3. Three-address code: (e.g. triples and quads) Sequence of statement of the form x = y op z 

 

Syntax tree: 

Syntax tree is a graphic representation of given source program and it is also called 

variant of parse tree. A tree in which each leaf represents an operand and each interior 

node represents an operator is called syntax tree. 

Example: Syntax tree for the expression a*(b + c)/d 
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Directed acyclic graph (DAG) 

A DAG for an expression identifies the common sub expressions in the expression. It is 

similar to syntax tree, only difference is that a node in a DAG representing a common 

sub expression has more than one parent, but in syntax tree the common sub expression 

would be represented as a duplicate sub tree. 

Example: DAG for the expression a + a * (b - c) + (b - c) * d 
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Postfix notation 

The representation of an expression in operators followed by operands is called postfix 

notation of that expression. In general if x and y  be any two postfix expressions and OP 

is a binary operator then the result of applying OP to the x and y in postfix notation by 

―x y OP‖. 

Examples:  



1. (a+ b) * c in postfix notation is:  a b + c * 

2. a * (b + c) in postfix notation is: a b c + * 

 Postfix notation is the useful form of intermediate code if the given language is 

expressions. 

 Postfix notation is also called as 'suffix notation' and 'reverse polish'. 

 Postfix notation is a linear representation of a syntax tree. 

 In the postfix notation, any expression can be written unambiguously without 

parentheses. 

 The ordinary (infix) way of writing the sum of x and y is with operator in the middle: 

x * y. But in the postfix notation, we place the operator at the right end as xy *. 

 In postfix notation, the operator follows the operand. 

 

3. Three Address Code 

The address code that uses at most three addresses, two for operands and one for result 

is called three code. Each instruction in three address code can be described as a 4-tuple: 

(operator, operand1, operand2, result). 

A quadruple (Three address code) is of the form:  

x = y op z where x, y and z are names, constants or compiler-generated temporaries and 

op is any operator. 

We use the term ―three-address code‖ because each statement usually contains three 

addresses (two for operands, one for the result). Thus the source language like x + y * z 

might be translated into a sequence  

t1 = y * z  

t2 = x + t1 where t1 and t2 are the compiler generated temporary name. 

* Assignment statements: x = y op z, op is binary 

* Assignment statements: x = op y, op is unary 

* Indexed assignments: x = y[i], x[i] = y 

* Pointer assignments: x = &y, x = *y, *x = y 

* Copy statements: x = y 

* Unconditional jumps: goto label 

* Conditional jumps: if x relop y goto label 

* Function calls: param x… call p, n return y 

 



Example: Three address code for expression: (B+A)*(Y-(B+A))  

     t1 = B + A 

     t2 = Y - t1 

     t3 = t1 * t2 

 

Example 2: Three address code for expression:  [TU] 

i = 2 * n + k 

While i do 

i = i – k 

 

Solution:        
                        t1 = 2 

t2 = t1 * n 
t3 = t2 + k 
i = t3 

L1: if i = 0 goto L2 
t4 = i - k 
i = t4 
goto L1 

L2: ……………….. 

 

Implementation of Three-Address Statements 

A three-address statement is an abstract form of intermediate code. In a compiler, these 

statements can be implemented as records with fields for the operator and the operands. 

Three such address statements representations are Quadruples and Triples. 

Quadruples 

A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result. The 

op field contains an internal code for the operator. The three-address statement x = y op z is 

represented by placing y in arg1, z in arg2 and x in result. The contents of fields i.e. arg1, 

arg2 and result are normally pointers to the symbol-table entries for the names represented 

by these fields. If so, temporary names must be entered into the symbol table as they are 

created. 

 op arg1 arg2 result 

(0) - c  t1 

(1) * b t1 t2 

(2) - c  t3 

(3) * b t3 t4 

(4) + t2 t4 t5 

(5) = t5  a 



Figure: Quadruple representation of three-address statement a = b * - c + b * - c  

Triples  

To avoid entering temporary names into the symbol table, we might refer to a temporary 

value by the position of the statement that computes it. If we do so, three-address 

statements can be represented by records with only three fields: op, arg1 and arg2. The 

fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table or 

pointers into the triple structure (for temporary values). Since three fields are used, this 

intermediate code format is known as triples. 

 op arg1 arg2 

(0) uminus c  

(1) * b (0) 

(2) uminus c  

(3) * b (2) 

(4) + (1) (3) 

(5) assign a (4) 

Figure: Triple representation of three-address statement a = b * - c + b * - c 

(0) -c 

(1) b* (0) 

(2) -c 

(3) b*(2) 

(4) (1)+(3) 

(5) a=(4) 

A ternary operation like x[i] = y requires two entries in the triple structure as shown as 

below while x = y[i] is naturally represented as two operations. 

 op arg1 arg2   Op arg1 arg2 

(0) [ ] x i  (0) [ ] y i 

(1) assign (0) y  (1) assign x (0) 

(a)  (b) 

Figure: Triple representation of three-address statement (a) x[i]= y and (b) x= y[i] 

Example: Translate the expression x = (a + b) * (c + d) – (a + b + c) 

a. Quadraples 

b. Triples 

Solution: Three address code is: 

 t1 = a + b 
 t2 = c + d 
 t3 = t1 * t2 
 t4 = t1 + c 
 t5 = t3 – t4 
 x = t5 



Quadruples: 

 op arg1 arg2 result 

(0) + a b t1 

(1) + c d t2 

(2) * t1 t2 t3 

(3) + t1 c t4 

(4) - t3 t4 t5 

(5) = t5  x  

Triple: 

 op arg1 arg2 

(0) + a b 

(1) + c d 

(2) * (0) (1) 

(3) + (0) c 

(4) - (2) (3) 

(5) = x (4) 

 

Naming conventions for three address code 

* S.code →three-address code for evaluating S 

* S.begin → label to start of S or nil 

* S.after  →label to end of S or nil 

* E.code → three-address code for evaluating E 

* E.place → a name that holds the value of E 

 

 

 

 

                                  3 = t1 + t2  

Syntax-Directed Translation into Three-Address Code 

1. Assignment statements 

Productions Semantic rules 

S → id = E                            S.place = newtemp(); 

 S.code = E.code || gen (id.place ‗=‘ E.place); S.begin = S.after = nil 

E → E1 + E2                         E.place = newtemp(); 

                                               E.code = E1.code || E2.code || gen (E.place ‗=‘ E1.place ‗+‘ E2.place) 

Gen (E. place ‘=’ E1.place ‘+’ E2.place) 

     Code generation 

To represent three address statement 

t3=t1+t2 



E → E1 * E2                          E.place = newtemp(); 

                                               E.code = E1.code || E2.code || gen (E.place ‗=‘ E1.place ‗*‘ E2.place) 

E → - E1                                E.place = newtemp(); 

                                               E.code = E1.code || gen (E.place ‗=‘ ‗minus‘ E1.place) 

E → (E1 )                             E.place = newtemp(); 

                                               E.code = E1.code 

E → id                                   E .place = id.name 

                                               E.code = null 

2. Boolean Expressions 

Boolean expressions are used to compute logical values. They are logically used as 

conditional expressions in statements that alter the flow of control, such as if—then, if—

the—else or while---do statements. 

Control-Flow Translation of Boolean Expressions 

Production Semantic Rules 
 

 
 

 

B → B1 || B2 

B1.true = B.true 
 

B1.false = newlabel() 
 

B2.true = B.true 
 

B2.false = B.false 
 

B.code = B1.code || label(B1.false) || B2.code 
 

 
 

 

B → B1 && B2 

B1.true = newlabel() 
 

B1.false = B.false 
 

B2.true = B.true 
 

B2.false = B.false 
 

B.code = B1.code || label(B1.true) || B2.code 
 

 
 

 

B →! B1 

B1.true = B.false 
 

B1.false = B.true 
 

B.code = B1.code 

  

 
 

 

E → id1 relop id2 
E.code = gen(‘if’ id1.place relop.op id2.place 

          ‘goto’ E.true) || gen(‘goto’ E.false)  

 
 

 
B → true B.code = gen(goto B.true) 

 
 

 

 
B → false B.code = gen(goto B.false) 

 



3. Flow of control statements 

Control statements are ‗if—then‘, ‗if—then—else‘, and ‗while---do‘.  Control statements are 

generated by the following grammars: 

S → If exp then S1 

S → If exp then S1 else S2 

S → while exp do S1 

Production Semantic Rules 
 

  
 

 

         S → if ( B ) S1 

B.true = newlabel() 
 

B.false = S.next 
 

S1.next = S.next 
 

S.code = B.code || label(B.true) || S1.code 
 

 
 

 

         S → if ( B ) S1 else S2 

B.true = newlabel() 
 

B.false = newlabel() 
 

S1.next = S.next 
 

S2.next = S.next 
 

S.code = B.code || label(B.true) || S1.code  

      || gen(goto S.next) || label(B.false) || S2.code  

 
 

 

       S → while ( B ) S1 

begin = newlabel() 
 

B.true = newlabel() 
 

B.false = S.next 
 

S1.next = begin 
 

 
         S.code = label(begin) || B.code || label(B.true) || S1.code || gen(goto begin) 

 

 
 

 

 

 

           Fig: If--then 

 

 Fig: If—then—else                 Fig: while---do 

 

 

 



Example 1: Generate three address code for the expression 

    if ( x < 5 || (x > 10 && x == y) ) x = 3 ; 

Solution: 

   L1: if x < 5 goto L2 

          goto L3 

    L3: if x > 10 goto L4 

              goto L1 

      L4: if x == y goto L2 

             goto L1 

      L2: x = 3 

Example 2: Generate three address code for the expression 

if ( x < 5 || (x > 10 && x == y) )  

{ 

x = 3  
} 

Solution: 

L1: if X<5 goto L2 

 else 

  goto L3 

L2: x=3 goto L5 

L3: if x>10  

 goto L4 

    else 

 goto L5 

L4: if x==y 

 goto L2 

    else 

 goto L5 

L5: ………………….. 

 

Switch/ case statements 

A switch statement is composed of two components: an expression E, which is used to 

select a particular case from the list of cases; and a case list, which is a list of n number 

of cases, each of which corresponds to one of the possible values of the expression E, 

perhaps including a default value.  



 

Fig: A switch / case three address translation 

Syntax: 

Switch (E) 

{ 

        Case V1: S1 

        Case V2: S2 

        ……………… 

        ………………. 

        Case Vn : Sn 

} 

 

Example 1: Convert the following switch statement into three address code: 

Switch (i + j) 

{ 

Case 1: x=y + z 

Case 2: u=v + w 

Case 3: p=q * w 

Default: s=u / v 



} 

Solution: 

t=i+j 

L1:  if t==1 goto L2 

 else  goto L3 

L2:  x=y+z goto L8 

L3: if t==2 goto L4 

 else    goto L5 

L4: u=v + w goto L8 

L5: if t==3 goto L6 

 else     goto L7 

L6: p=q * w goto L8 

L7:  s=u / v goto L8 

L8: ………………….. 

 

Addressing array elements: 

Elements of an array can be accessed quickly if the elements are stored in a block of 

consecutive locations. If the width of each array element is w, then the ith element of 

array ‗A‘ begins in location, 

                       

Where low is the lower bound on the subscript and base is the relative address of the 

storage allocated for the array. That is base is the relative address of A[low]. 

The given expression can be partially evaluated at compile time if it is rewritten as, 

                 i * w + (base - low* w) 

               = i * w + C 

Where C=base – low*w can be evaluated when the declaration of the array is seen. 

We assume that C is saved in the symbol table entry for A, so the relative address of 

A[i] is obtained by simply adding i * w to C. 

i.e A[i]= i* w + C 

 

A[i] = base A + (i - low) * w 

        = i * w + c                    where c = base A - low * w with low = 10; w = 4 

 

base + (i – low)* w 

 



Example: address of 15th element of array is calculated as below, 

Suppose base address of array is 100 and type of array is integer of size 4 bytes and 

lower bound of array is 10 then, 

A[15]=15 * 4 + (100 – 10 * 4) 

          = 60 + 60 

          = 120 

Similarly for two dimensional array, we assume that array implements by using row 

major form, the relative address of A[i1, i2] can be calculated by the formula, 

A[i1,i2]=baseA + ((i1 - low1) * n2 + i2 - low2) * w 

Where low1, low2 are the lower bounds on the values i1 and i2, n2 is the number of 

values that i2 can take. Also given expression can be rewrite as, 

             = ((i1 * n2) + i2) * w + baseA - ((low1 * n2) + low2) * w 

             = ((i1 * n2) + i2) * w + C        where C= baseA - ((low1 * n2) + low2) * w 

 

Example: Let A be a 10 X 20 array, there are 4 bytes per word, assume low1=low2=1. 

Solution: Let X=A[Y, Z] 

Now using formula for two dimensional array as, 

((i1 * n2) + i2) * w + baseA - ((low1 * n2) + low2) * w 

= ((Y * 20) + Z) * 4 + baseA - ((1 * 20) + 1) * 4 

= ((Y * 20) + Z) * 4 + baseA - ((1 * 20) + 1) * 4 

             = ((Y * 20) + Z) * 4 + baseA – 84 

We can convert the above expression in three address codes as below: 

T1= Y * 20 

T1= T1+Z 

T2=T1*4 

T3=baseA -84 

T4=T2+ T3 

X= T4 

4. Procedure Calls 

The procedure is such an important and frequently used programming construct that it is 

imperative for a compiler to generate good code for procedure calls and returns. The run-time 

routines that handle procedure argument passing, calls and returns are part of the run-time support 

package.  

param x call p return y 



 Here, p is a function which takes x as a parameter and returns y. 

Procedure calls: They have the form 

param x1  

param x2 

……………….. 

param xn  

call p, n 

corresponding to the procdure call p(x1, x2, ..., xn) 

Return statement 

They have the form return y where y representing a returned value is optional. 

Calling Sequences: 

The translation for a call includes a calling sequence, a sequence of actions taken on entry to 

and exit from each procedure. The falling are the actions that take place in a calling 

sequence: 

 When a procedure call occurs, space must be allocated for the activation record of 

the called procedure. 

 The arguments of the called procedure must be evaluated and made available to the 

called procedure in a known place. 

 Environment pointers must be established to enable the called procedure to access 

data in enclosing blocks. 

 The state of the calling procedure must be saved so it can resume execution after the 

call. 

 Also saved in a known place is the return address, the location to which the called 

routine must transfer after it is finished. 

 Finally a jump to the beginning of the code for the called procedure must be 

generated. 

 

5. Back patching                               

The easiest way to implement the syntax-directed definitions for boolean expressions is to 

use two passes. First, construct a syntax tree for the input, and then walk the tree in depth-

first order, computing the translations. The main problem with generating code for Boolean 

expressions and flow-of-control statements in a single pass is that during one single pass 

we may not know the labels that control must go to at the time the jump statements are 

generated. Hence, a series of branching statements with the targets of the jumps left 

unspecified is generated. Each statement will be put on a list of goto statements whose 

labels will be filled in when the proper label can be determined. We call this subsequent 

filling in of labels backpatching. 



To manipulate lists of labels, we use three functions: 

1. makelist(i) creates a new list containing only i, an index into the array of 

quadruples; makelist returns a pointer to the list it has made. 

2. merge(p1,p2) concatenates the lists pointed to by p1 and p2, and returns a pointer to 

the concatenated list. 

3. backpatch(p,i) inserts i as the target label for each of the statements on the list 

pointed to by p. 

If we decide to generate the three address code for given syntax directed definition 

using single pass only, then the main problem that occurs is the decision of addresses of 

the labels. ‗goto‘ statements refer these label statements and in one pass it becomes 

difficult to know the location of these label statements. The idea to back-patching is to 

leave the label unspecified and fill it later, when we know what it will be. 

          If we use two passes instead of one pass then in one pass we can leave these 

addresses unspecified and in second pass this incomplete information can be filled up. 


