

Unit 3

Syntax Analyzer

………………………………………………………………………………………………………

Topics

Syntax Analysis: Its role, Basic parsing techniques: Problem of Left Recursion, Left Factoring,

Ambiguous Grammar, Top-down parsing, Bottom-up parsing, LR parsing.

………………………………………………………………………………………………………

Syntax Analysis
Syntax Analysis or Parsing is the second phase, i.e. after lexical analysis. It checks the syntactical

structure of the given input, i.e. whether the given input is in the correct syntax or not. It does

so by building a data structure, called a Parse tree or Syntax tree. The parse tree is constructed

by using the pre-defined Grammar of the language and the input string. If the given input

string can be produced with the help of the syntax tree, the input string is found to be in the

correct syntax. If not, error is reported by syntax analyzer.

In this chapter, we shall learn the basic concepts used in the construction of a parser. We have

seen that a lexical analyzer can identify tokens with the help of regular expressions and pattern

rules. But a lexical analyzer cannot check the syntax of a given sentence due to the limitations of

the regular expressions. Regular expressions cannot check balancing tokens, such as

parenthesis. Therefore, this phase uses context-free grammar (CFG), which is recognized by

push-down automata.

A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the given source

program. Syntax analyzer is also called the parser. Its job is to analyze the source program

based on the definition of its syntax. It is responsible for creating a parse-tree of the source code.

Ex: newval:= oldval + 12

Symbol Table

Source
Program

Error Error

Token

Get next
token

Parser
Lexical

Analyzer
Semantic
Analyzer

Role of syntax analyzer

A syntax analyzer or parser takes the input from a lexical analyzer in the form of token streams.

The parser analyzes the source code (token stream) against the production rules to detect any

errors in the code. The output of this phase is a parse tree.

The parser obtains a string of tokens from the lexical analyzer and verifies that the string can be

generated by the grammar for the source language. It has to report any syntax errors if occurs.

The tasks of parser can be expressed as

 Analyzes the context free syntax

 Generates the parse tree

 Provides the mechanism for context sensitive analysis

 Determine the errors and tries to handle them

Context Free Grammar

Generally most of the programming languages have recursive structures that can be defined by

Context free grammar (CFG). Context-free grammars can generate context-free languages. They

do this by taking a set of variables which are defined recursively, in terms of one another, by a

set of production rules. Context-free grammars are named as such because any of the

production rules in the grammar can be applied regardless of context—it does not depend on

any other symbols that may or may not be around a given symbol that is having a rule applied

to it. Context-free grammars have the following components:

 A set of terminal symbols which are the characters that appear in the language/strings

generated by the grammar. Terminal symbols never appear on the left-hand side of the

production rule and are always on the right-hand side.

 A set of non-terminal symbols (or variables) which are placeholders for patterns of

terminal symbols that can be generated by the non-terminal symbols. These are the

Assignment Statement

Identifier Expressio
n
Expression

Expression Expression

Identifier

Newval

Number

Oldval 12

=

+

 In a parse tree all terminals are at
leaves.

 All inner nodes are non-terminals
in a context free grammar (CFG).

symbols that will always appear on the left-hand side of the production rules, though

they can be included on the right-hand side. The strings that a CFG produces will

contain only symbols from the set of non-terminal symbols.

 A set of production rules which are the rules for replacing non-terminal symbols.

Production rules have the following form: variable → string of variables and terminals.

 A start symbol which is a special non-terminal symbol that appears in the initial string

generated by the grammar.

Mathematically, CFG can be defined as 4 – tuple (V, T, P, S), where,

 V: finite set of Variables or Non-terminals that are used to define the grammar denoting

the combination of terminal or no-terminals or both

 T: Terminals, the basic symbols of the sentences. Terminals are indivisible units

 P: Production rule that defines the combination of terminals or non-terminals or both

for particular non-terminal

 S: It is the special non-terminal symbol called start symbol

Example 1: Construct a CFG for the regular expression (0+1)*

Solution: The CFG can be given by,

Production rule (P)

S → 0S |1S

S → ε

The rules are in the combination of 0's and 1's with the start symbol. Since (0+1)* indicates {ε, 0,

1, 01, 10, 00, 11 ...}. In this set, ε is a string, so in the rule, we can set the rule S → ε.

Example 4: Construct a CFG for the language L = anb2n where n>=1.

Solution: The string that can be generated for a given language is,

{abb, aabbbb, aaabbbbbb....}.

The grammar could be:

S → aSbb | abb

CFG: Notational Conventions

 Terminals are denoted by lower-case letters and symbols (single atoms) and bold strings

(tokens)

a, b, c,… ∈T

Specific terminals: 0, 1, id, +

 Non-terminals are denoted by lower-case italicized letters or upper-case letters symbols

A, B, C… ∈N

Specific non-terminals: expr, term, stmt

 Production rules are of the form

A→α, that is read as ―A can produce α‖

 Strings comprising of both terminals and non-terminals are denoted by Greek letters: α,

β , etc

Derivations
A derivation is basically a sequence of production rules, in order to get the input string. During

parsing, we take two decisions for some sentential form of input:

 Deciding the non-terminal which is to be replaced.

 Deciding the production rule, by which, the non-terminal will be replaced.

To decide which non-terminal to be replaced with production rule, we can have two options.

Left-most derivation

If the sentential form of an input is scanned and replaced from left to right, it is called left-most

derivation.

Right-most derivation

If we scan and replace the input with production rules, from right to left, it is known as right-

most derivation.

Example: Production rules:

E → E + E

E → E * E

E → id

Input string: id + id * id

The left-most derivation is:

E → E * E

E → E + E * E

E → id + E * E

E → id + id * E

E → id + id * id

Notice that the left-most side non-terminal is always processed first.

The right-most derivation is:

E → E + E

E → E + E * E

E → E + E * id

E → E + id * id

E → id + id * id

Parse Trees

A parse tree is a graphical depiction of a derivation. It is convenient to see how strings are

derived from the start symbol. In parse tree internal nodes represent non-terminals and the

leaves represent terminals. The start symbol of the derivation becomes the root of the parse

tree.

Example: Let’s take a CFG with production rules,

Production rules:

E → E + E

E → E * E

E → id

Input string: id + id * id

The left-most derivation is:
E → E * E
E → E + E * E
E → id + E * E
E → id + id * E
E → id + id * id

Step 1: Step 2:

 E → E + E * E

E → E * E

Step 3:

E → id + E * E

Step 4:

E → id + id * E

Step 5:

E → id + id * id

A parse tree depicts associativity and precedence of operators. The deepest sub-tree is traversed

first; therefore the operator in that sub-tree gets precedence over the operator which is in the

parent nodes.

Ambiguity of a grammar
A grammar G is said to be ambiguous if it has more than one parse tree (left or right derivation)

for at least one string. Also a grammar G is said to be ambiguous if there is a string w∈L(G) for

which we can construct more than one parse tree rooted at start symbol of the production.

Example: Let’s take a grammar with production rules,
E → E + E
E → E – E
E → id

For the string id + id – id, the above grammar generates two parse trees:

The language generated by an ambiguous grammar is said to be inherently ambiguous.

Ambiguity in grammar is not good for a compiler construction. No method can detect and

remove ambiguity automatically, but it can be removed by either re-writing the whole grammar

without ambiguity, or by setting and following associativity and precedence constraints.

Parsing
Parser is a compiler that is used to break the data into smaller elements coming from lexical

analysis phase. A parser takes input in the form of sequence of tokens and produces output in

the form of parse tree. Given a stream of input tokens, parsing involves the process of reducing

them to a non-terminal. Parsing is of two types: top down parsing and bottom up parsing.

1. Top-down Parser

Top-down parser is the parser which generates parse for the given input string with the help of

grammar productions by expanding the non-terminals i.e. it starts from the start symbol and

ends on the terminals. It uses left most derivation. Further Top-down parser is classified into 2

types:

 Recursive descent parser and

 Non-recursive descent parser.

Recursive descent parser

It is also known as Brute force parser or the backtracking parser. It basically generates the parse

tree by using brute force and backtracking. It is a general inefficient parsing technique, but

not widely used.

Example: Consider the grammar,

Input string: a b c
Parsed using Recursive-Descent parsing
Solution:

Input Output Rule used

abc S
abc aBc Match symbol a

bc Bc B→bc

bc bcc Match symbol b

c cc Match symbol c

Parser

Top down Parser
Bottom-up Parser

LR Parser LL(1) Recursive
descent Parser

Operator
precedence Parser

SLR LR(1) LALR(1) CLR(1)

Φ c Dead end, backtrack

bc Bc B → b

bc bc Match symbol b

c c Match symbol c

Φ Φ Accepted

Graphically,

Step 1: The first rule to parse S

Step 2: The next non-terminal is B and is parsed using production as,

Step 3: Which is false and now backtrack and use production to parse for B

Left Recursion
A grammar becomes left-recursive if it has any non-terminal ‗A‘ whose derivation contains ‗A‘

itself as the left-most symbol. Left-recursive grammar is considered to be a problematic

situation for top-down parsers. Top-down parsers start parsing from the Start symbol, which in

itself is non-terminal. So, when the parser encounters the same non-terminal in its derivation, it

becomes hard for it to judge when to stop parsing the left non-terminal and it goes into an

infinite loop. A grammar is left recursive if it has a non-terminal A such that there is a

derivation.

 For some string α
Left recursion causes recursive descent parser to go into infinite loop. Top down parsing

techniques cannot handle left – recursive grammars. So, we have to convert our left recursive

grammar which is not left recursive. The left recursion may appear in a single derivation called

immediate left recursion, or may appear in more than one step of the derivation. So, we have to

convert our left-recursive grammar into an equivalent grammar which is non left-recursive.

Example 1: Immediate Left-Recursion

A→Aα | β

 Eliminate immediate left recursion

A→ βA‘

A‘→ αA‘ |∈

In general,

 A → Aα1| Aα2 | Aα3 |……| Aαn|β1| β2| β3|……| βn

Where, β1, β2, …. Βn do not start with A

Now eliminate immediate left recursion as,

A → β1A‘| β2A‘|….| βn A‘

A‘ → α1A‘| α2A‘| α3A‘|……| αnA‘|

Example 1: Eliminate left recursion from following grammar,

E → E+T | T

E → T*F | F

F → id | (E)

Solution: Now eliminate left recursion as,

E → TE‘

E‘ → +TE‘ |

T → FT‘

T‘ → *FT‘ |

F → id | (E)

Non-Immediate Left-Recursion

By just eliminating the immediate left-recursion, we may not get a grammar which is not left-

recursive.

Example 2: Let‘s take a grammar with non-immediate left recursion

S → Aa|b

A → Sc|d

This grammar is not immediately left-recursive but it is still left recursive,

So at first make immediate left recursive as,

S → Sca|da |b

A → Sc|d

Now, eliminate left recursion as,

S → daS‘|bS‘

S‘ → caS‘ |

A → Sc|d

Example 3: Eliminate left recursion from following grammar,

S → Aa | b

A → Ac | Sd | f

Let us order the non terminals as S, A

For S:

 Don‘t enter the inner loop

 Also there is no immediate left recursion to remove in S as outer loop says

For A:

Replace, A → Sd with A → Aad | bd

Then we have, A → Ac | Aad | bd | f

Now, remove the immediate left recursions

A → bdA‘ | fA‘

A‘ → cA‘ | adA‘ | ε

So, the resulting equivalent grammar with no left recursion is

S → Aa | b

A → bdA‘ | fA‘

A‘ → cA‘ | adA‘ | ε

Left-Factoring

If more than one production rules of a grammar have a common prefix string, then the top-

down parser cannot make a choice as to which of the production it should take to parse the

string in hand. Simply, when a no terminal has two or more productions whose right-hand

sides start with the same grammar symbols, then such a grammar is not LL(1) and cannot be

used for predictive parsing. This grammar is called left factoring grammar.

Example 1: Let‘s take a grammar with productions are in left factoring,

 A → α β1 | α β2 | α β3 |……. |α βn |γ

Now eliminate left factoring as,

 A → α (β1 | β2 |β3 |……. |βn)|γ

The resulting grammar with left factoring free is,

A → α A‘ | γ

A‘ → β1 | β2 |β3 |……. |βn

Example 2: Eliminate left factorial from following grammar:

 S iEiS iEiSiS a

 B b

Solution: Now eliminate left factoring as,

S iEiS (| iS) a

 B b

The resulting grammar with left factorial free is,

S iEiSS‘ a

S‘ → iS

B b

Non-recursive descent parser

A form of recursive-descent parsing that does not require any back-tracking is known as

predictive parsing. It is also called as LL(1) parsing table technique since we would be building

a table for string to be parsed. It has capability to predict which production is to be used to

replace input string. To accomplish its tasks, predictive parser uses a look-ahead pointer, which

points to next input symbols. To make parser back-tracking free, predictive parser puts some

constraints on grammar and accepts only a class of grammar known as LL(k) grammar. Given

an LL(1) grammar G = (N, T, P, S) construct a table M[A, a] for A ∈ N, a ∈ T and use a driver

program with a stack. A table driven predictive parser has an input buffer, a stack, a parsing

table and an output stream.

 Figure: Model of a non-recursive predictive parser

 Input buffer: It contains the string to be parsed followed by a special symbol $.

 Stack: A stack contains a sequence of grammar symbols with $ on the bottom. Initially it

contains the symbol $.

 Parsing table: It is a two dimensional array M[A, a] where ‗A‘ is non-terminal and ‗a‘ is a

terminal symbol.

 Output stream: A production rule representing a step of the derivation sequence of the

string in the input buffer.

Procedure
1. Initially the stack holds just the start symbol of the grammar.

2. At each step a symbol X is popped from the stack:

 a + b $ Input

Output

Stack
Predictive Parsing
Program (Driver)

Program table
M

X

Y

Z

$

 if X is a terminal symbol then it is matched with lookahead and lookahead is

advanced,

 if X is a non-terminal, then using lookahead and a parsing table a production is

chosen and its right hand side is pushed onto the stack.

3. This process goes on until the stack and the input string become empty. It is useful to

have an end_of_stack and an end_of_input symbols. We denote them both by $.

Algorithm

1. Set ip to the first symbol of input stream
2. Set the stack to $S where S is the start symbol of the grammar
3. Repeat

Let X be the top stack symbol and ‗a‘ be the symbol pointed by ip
If X is a terminal or $ then,

If X==a then,
Pop X from the stack and advance ip

Else
Error()

Else
If M[X, a] = X→Y1,Y2, Y3,…….,Yk then,

Pop X from stack
Push Yk, Yk-1, ………..Y2, Y1 onto stack with Y1 on top

Else
Error()

4. Until X=$

Example 1: Consider the grammar G given by:

S → aAa |BAa|

A → cA | bA |
B → b

Solution: Parsing table be (we will see how to construct parsing table later)

 a b c $

S S → aAa S → BAa S →

A A → A → bA A → cA

B B → b

Where, the empty slots correspond to error-entries. Consider the parsing of the word w = bcba

Stack Remaining input Action

$S bcba$ choose S → Baa

$aAB bcba$ choose B → b

$aAb bcba$ match b

$aA cba$ choose A → cA

$aAc cba$ match c

$aA ba$ choose A → bA

$aAb ba$ match b

$aA a$ choose A →

$a a$ match a

$ $ Accept

Example 2: Given a grammar,

S → aBa

B → bB |

Input: abba

Solution: Parsing table be (we will see how to construct parsing table later)

 a b $

S S → aBa S → BAa

B B → B → bB

Table: LL(1) Parsing table

Where, the empty slots correspond to error-entries. Consider the parsing of the word w = abba

Stack Remaining input Action

$S abba$ choose S → aBa

$aBa abba$ Mach a

$aB bba$ Choose B → bB

$aBb bba$ match b

$aB ba$ choose B → bB

$aBb ba$ Match b

$aB a$ choose B →

$a a$ Match a

$ $ Accept and successful completion

Output:
S → aBa
B → bB
B → bB
B → ε

So, the left most derivation is,
S ==> aBa ==> abBa ==> abbBa ==> abba

And the parse tree will be,

Difference between Recursive Predictive Descent Parser and Non-Recursive Predictive

Descent Parser:

The main difference between recursive descent parsing and predictive parsing is that recursive

descent parsing may or may not require backtracking while predictive parsing does not require

any backtracking. Major differentiate between them are tabulated below:

Recursive predictive descent parser Non-recursive predictive descent parser

It is a technique which may or may not

require backtracking process.

It is a technique that does not require any kind of

back tracking.

It uses procedures for every non terminal

entity to parse strings.

It finds out productions to use by replacing input

string.

It is a type of top-down parsing built from

a set of mutually recursive procedures

where each procedure implements one of

non-terminal s of grammar.

It is a type of top-down approach, which is also a

type of recursive parsing that does not uses

technique of backtracking.

It contains several small functions one for

each non- terminals in grammar.

The predictive parser uses a look ahead pointer

which points to next input symbols to make it

parser back tracking free, predictive parser puts

some constraints on grammar.

It accepts all kinds of grammars. It accepts only a class of grammar known as LL(k)

grammar.

Constructing LL(1) Parsing Table
The parse table construction requires two functions: FIRST and FOLLOW. For a string of

grammar symbols α, FIRST(α) is the set of terminals that begin all possible strings derived from

α. If α ==>* ε, then ε is also in FIRST(α). FOLLOW(A) for non terminal A is the set of terminals

that can appear immediately to the right of A in some sentential form. If A can be the last

symbol in a sentential form, then $ is also in FOLLOW(A).

A grammar G is suitable for LL(1) parsing table if the grammar is free from left recursion and

left factoring.

To compute LL (1) parsing table, at first we need to compute FIRST and FOLLW functions.

Compute FIRST

FIRST(α) is a set of the terminal symbols which occur as first symbols in strings derived from α

where α is any string of grammar symbols. To compute FIRST(A) for all grammar symbols A,

apply the following rules until no more terminals or e can be added to any FIRST set:

1. If ‗a‘ is terminal, then FIRST(a) is {a}.

2. If A→ is a production, then add to FIRST(A).

3. For any non-terminal A with production rules A→ α1|α2|α3|…..|αn then

FIRST(A) = FIRST(α1) U FIRST(α2) U FIRST(α3) U……….. U FIRST(αn)

4. If the production rule of the form, A→β1β2β3…..βn then,

 FIRST(A) = FIRST(β1β2β3…..βn)

Example 1: Find FIRST of following grammar symbols,

R → aS | (R) S

S → +RS |aRS | *S | ε

Solution:

 FIRST(R) = {FIRST(aS) U FIRST((R)S)} = {a, (}

 FIRST(S) = {FIRST(+RS) U FIRST(aRS) U FIRST(*S) U FIRST()}={+, a, *, }

 FIRST(aS) = {a} FIRST((R)S) = {(}

FIRST(+RS) = {+} FIRST(aRS) = {a}

FIRST(*S) = {*} FIRST() = {}

Example 2: Find FIRST of following grammar symbols,

E → TE‘
E‘ → +TE‘|
T → FT‘
T‘ → *FT‘|
F → (E)|id

Solution:

FIRST(F) = FIRST(() U FIRST(id) = {(, id} FIRST(id) = {id}

FIRST(T') = {*, } FIRST(T) = FIRST(F) = {(, id}

FIRST(E‘) = {+, } FIRST(E) = FIRST(T) = {(, id}

FIRST(TE‘) = FIRST(T) = {(, id} FIRST(+TE‘) = FIRST(+) = {+}

A grammar

Eliminate Left recursion

Eliminate Left factor

Grammar is suitable for

Predictive parsing (LL(1)

grammar)

FIRST() = {} FIRST(FT‘) = FIRST(F) = {(, id}

FIRST(*FT‘) = FIRST(*) = {*} FIRST((E)) = FIRST(() = { (}

Compute FOLLOW

FOLLOW (A) is the set of the terminals which occur immediately after (follow) the non-terminal

A in the strings derived from the starting symbol.

FOLLOW(A) = {the set of terminals that can immediately follow non terminal A except }

Rules:

1. If A is a starting symbol of given grammar G then FIRST(A)={$}

2. For every production B → α A β, where α and β are any string of grammar symbols and

A is non terminal, then everything in FIRST(β) except ε is placed on FOLLOW(A)

3. For every production B → α A, or a production B → α A β, FIRST(β) contains ε, then

everything in FOLLOW(B) is added to FOLLOW(A)

Example 1: Compute FOLLOW of following grammar,

R → aS | (R) S

S → +RS |aRS | *S | ε

Solution:

FOLLOW(R) = {FIRST()S) U FIRST(S) U FOLLOW(S)} = {$,), +, a, *}

FOLLOW(S) = {FOLLOW(R)} = {$,), +, a, *}

Example 2: Compute FOLLOW of following grammar,

E → TE‘

E‘ → +TE‘|

T → FT‘

T‘ → *FT‘|

F → (E)|id

Solution:

FOLLOW(E) = {FIRST()) U $} = {$,) }

FOLLOW(E‘) = {FOLLOW(E) U FOLLOW(E‘)} = {$,)}

FOLLOW(T) = {FIRST(E‘) U FOLLOW(E‘)} = {+,), $}

FOLLOW(T‘) = { FOLLOW(T)} = {+,), $}

FOLLOW(F) = FIRST(T‘) U FOLLOW(T‘)} = {+, *,), $}

Constructing LL(1) Parsing Tables

If we can always choose a production uniquely by using FIRST and FOLLOW functions then

this is called LL(1) parsing where the first L indicates the reading direction (Left-to –right) and

second L indicates the derivation order left most and 1 indicates that there is a one-symbol look-

ahead. The grammar that can be parsed using LL(1) parsing is called an LL(1) grammar.

Algorithm

For every production A → α in the grammar:

1. If α can derive a string starting with a (i.e., for all a in FIRST(α),

Table [A, a] = A → α

2. If α can derive the empty string , then, for all b that can follow a string derived

from A (i.e., for all b in FOLLOW (A),

Table [A, b] = A →

Example 1 Construct LL(1) parsing table of following grammar

 E → T E'
 E' → + T E' | ε
 T → F T'
 T' → * F T' | ε
 F → (E) | id

Solution: At first compute FIRST of above grammar as,
FIRST(F) ={(, id} FIRST(T‘) ={*, ε }

FIRST(T) ={(, id} FIRST(E‘) ={+, ε }

FIRST(E) ={(, id} FIRST(TE‘) = {(, id}

FIRST(+TE‘) = {+} FIRST(ε) = { ε }

FIRST(FT‘) = {(, id} FIRST(*FT‘) = {*}

FIRST(ε) = { ε } FIRST((E)) = {(}

FIRST(id) = {id}

Now compute FOLLOW of given function as,

FOLLOW(E) ={$,)} FOLLOW(E‘) ={$,)}

FOLLOW(T) ={+, $,)} FOLLOW(T‘) ={+, $,)}

FOLLOW(F) ={+, *, $,)}

Now do for every production

E → TE‘ FIRST(TE‘) = {(, id} E → TE‘ into M[E, (] and M[E, id]

E‘ → +TE‘ FIRST(+TE‘) = {+} E‘ → +TE‘ into M[E‘, +]

E‘ → ε FIRST(ε) = { ε } but since ε in E‘ → ε into M[E‘, $] and M[E‘,)]

FIRST(ε) and FOLLOW(E‘) = {$,)}

T → FT‘ FIRST(FT‘) = {(, id} T → FT‘ into M[T, (] and M[T, id]

T‘ → *FT‘ FIRST(*FT‘) = {*} T‘ → *FT‘ into M[T‘, *]

T‘ → ε FIRST(ε) = { ε } but since ε in T‘ → ε into M[T‘, $], M[T‘,)] and

FIRST(ε) and FOLLOW(T‘) = {$,), +}

F → (E) FIRST((E)) = {(} F → (E) into M[F, (]

F → id FIRST(id) = {id} F → id into M[F, id]

Now, the final table looks like

Non-
terminals

 Terminal Symbols

+ * () id $

E E → TE‘ E → TE‘

E‘ E‘ → +TE‘ E‘ → ε E‘ → ε

T T → FT‘ T → FT‘

T‘ T‘ → ε T‘ → *FT‘ T‘ → ε T‘ → ε

 F F → (E) F → id

As you can see that all the null productions are put under the follow set of that symbol and all

the remaining productions are lie under the first of that symbol.

Input: id + id * id

Stack Input Output

$E id + id * id $ E → TE‘ [see above M[E, id] = E → TE‘]

$E‘T id + id * id $ T → FT‘

$E‘T‘F id + id * id $ F → id

$E‘T‘id id + id * id $ Match id, pop

$E‘T‘ + id * id $ T‘ → ε

$E‘ + id * id $ E‘ → +TE‘
$E‘T+ + id * id $ Match +, pop
$E‘T id * id $ T → FT‘
$E‘T‘F id * id $ F → id
$E‘T‘id id * id $ Match id, pop
$E‘T‘ * id $ T‘ → *FT‘
$E‘T‘F* * id $ Match *, pop
$E‘T‘F id $ F → id
$E‘T‘id id $ Match id, pop
$E‘T‘ $ T‘ → ε
$E‘ $ E‘ → ε

$ $ Accept

Example 2: Constructing LL(1) Parsing Tables for following grammar

S iEtSS‘| a

S‘ eS|

E b

Solution: At first compute FIRST as,

FIRST(S) = {i, a} FIRST(S‘) = {e, ∈}

FIRST(E) = {b} FIRST(iEtSS‘) = {i}

FIRST(a) = {a} FIRST(eS) = {e}

FIRST(b) = {b} FIRST(∈) = {∈}

Now Compute FOLLOW as,

FOLLOW(S) = {FIRST(S‘)} = {e, $}

FOLLOW(S‘) = {FOLLOW(S)} = {e, $}

FOLLOW(E) = {FIRST(tSS‘)} = {t}

Now construct LL(1) parsing table as,

Non-
terminals

Terminal Symbols

i t a e b $

S S iEtSS‘ S a

S‘ S‘ eS

S‘ → ε
 S‘ → ε

E E → b

Here, we can see that there are two productions into the same cell. Hence, this grammar is not

feasible for LL(1) Parser.

Example 3: Test whether following grammar is feasible for LL(1) parsing or not??

S → A | a
A → a

Solution: At first compute FIRST as,
 FIRST(S) = {a} FIRST(A) = {a}

Now calculate FOLLOW as,

 FOLLOW(S) = {$} FOLLOW(A) = FOLLOW(S) = {$}

Now, construct LL(1) parsing table as,

Non-

terminals

Terminal Symbols

a $

S S → A, S → a

A A → a

Here, we can see that there are two productions into the same cell. Hence, this grammar is not

feasible for LL(1) Parser.

Example 4: Consider the following grammar,
 S → L = R
 S → R

L → *R
L → id
R → L

At first compute FIRST and FOLLOW then construct LL(1) parsing table.

Solution: At first compute FIRST as,

FIRST(L) = {*, id} FIRST(R) = FIRST(L) = {*, id}

FIRST(S) = {FIRST(L) U FIRST(R)} = {*, id}

Now compute FOLLOW of each of the non-terminals as,

FOLLOW(S) = {$}

FOLLOW(L) = {FIRST(=R) U FOLLOW(R)} = {= U FOLLOW(S)} = {=, $}

FOLLOW(R) = {FOLLOW(S) U FOLLOW(L)} = {$, =}

Now construct LL(1) parsing table as,

Non-
terminals

Terminal Symbols

= * id $

S
S → L = R

S → R

S → L = R

S → R

L
L → *R L → id

R
R → L R → L

Here, we can see that there are two productions into the same cell. Hence, this grammar is not

feasible for LL(1) Parser.

LL(1) Grammars

A context-free grammar G = (V, T, P, S) whose parsing table has no multiple entries is said to be

LL(1) grammar. In the name LL(1),

 the first L stands for scanning the input from left to right,

 the second L stands for producing a leftmost derivation and

 The 1 stands for using one input symbol of lookahead at each step to make parsing

action decision.

A left recursive, left factored and ambiguous grammar cannot be a LL(1) grammar (i.e. left

recursive, not left factored and ambiguous grammar may have multiply –defined entries in

parsing table)

Properties of LL(1) Grammars

A grammar G is LL(1) if and only if the following conditions hold for two distinctive

production rules A → α and A → β

 Both α and β cannot derive strings starting with same terminals.

 At most one of the α and β can drive to

 If β can drive to , then α cannot drive to any string staring with a terminal in

FOLLOW(A)

 No Ambiguity

 No Recursion

Example: let‘s take following production rules,

Grammar Not LL(1) Because

 S → S a | a Left Recursive

 S → a S | a FIRST(a S) ∩ FIRST(a) ≠ ∅

 S → a R | ε, R → S | ε For R: S ⇒* ε and ε ⇒* ε

 S → a R a, R → S|ε For R: FIRST(S) ∩ FOLLOW(R) ≠ ∅

Example 5: Show that given grammar is not LL(1)

S→aA│ bAc

A →c │

Solution: At first calculate FIRST as,

FIRST(S) = {a, b} FIRST(A) = {C, }

FIRST(aA) = {a} FIRST(bAc) = {b}

FIRST(c) = {c} FIRST() = {}

Now calculate FOLLOW as,

FOLLOW(S) = { $ } FOLLOW(A) = {$, c }

Now construct LL(1) parsing table as,

Non-
terminals

Terminal Symbols

a b c $

S S → aA S → bAc

A A → c
A →

A →

Here, we can see that there are two productions into the same cell. Hence, this grammar is not

feasible for LL(1) Parser.

2. Bottom-up Parser

Bottom-up parsing constructs a parse tree for an input string beginning at the leaves and

working up towards the root. To do so, bottom-up parsing tries to find a rightmost derivation

of a given string backwards.

Bottom-up Parser is the parser which generates the parse tree for the given input string with the

help of grammar productions by compressing the non-terminals i.e. it starts from non-terminals

and ends on the stat symbol. It uses reverse of the right most derivation. Bottom up parsing is

classified in to various parsing. These are as follows:

1. Shift-Reduce Parsing

2. Operator Precedence Parsing

3. Table Driven LR Parsing

a. LR(1)

b. SLR(0)

c. CLR (1)

d. LALR(1)

Basic terminologies used in bottom up parsing

Reduction

The process of replacing a substring by a non-terminal in bottom-up parsing is called reduction.

It is a reverse process of production. E.g. let‘s take a production rule S aA

Here, if replacing aA by S then such a grammar is called reduction.

Example: Consider the grammar

S → aABe

A → Abc | b

B → d

Now, the sentence abbcde can be reduced to S as follows

abbcde

aAbcde (replacing b by using A → b)

aAde (replacing Abc by using A → Abc)

aABe (replacing d by using B → d)

S this is the starting symbol of the grammar.

Shift-Reduce Parsing

A shift reduce parser tries to reduce the given input string into the starting symbol. At each

reduction step, a substring of the input matching to the right side of a production rule is

replaced by non – terminal at the left side of that production rule. If the substring is chosen

correctly, the rightmost derivation of that string is created in reverse order. Simply the process

of reducing the given input string into the starting symbol is called shift-reduce parsing.

 A string the starting symbol
 Reduced to

Handle

A substring that can be replaced by a non-terminal when it matches its right sentential form is

called a handle. If the grammar is unambiguous, then every right-sentential form of the

grammar has exactly one handle. If the grammar is unambiguous, then every right – sentential

form of the grammar has exactly one handle.

Example 1: A Shift-Reduce Parser with Handle

E → E + T | T

T → T * F | F

F → (E) | id

String: id + id * id

Right-Most Sentential Form Reduction Production Handle

id + id * id F → id id

F + id * id T → F F

T + id * id E → T T

E + id * id F → id id

E + F * id T → F F

E + T * id F → id id

E + T * F T → T * F T * F

E + T E → E + T E + T

E

Stack Implementation of Shift-Reduce Parser
Like a table-driven predictive parser, a bottom-up parser makes use of a stack to keep track of

the position in the parse and a parsing table to determine what to do next. Shift reduce parsing

is a process of reducing a string to the start symbol of a grammar. It uses a stack to hold the

grammar and an input tape to hold the string. There are mainly following four basic operations

are used in shift reduce parser,

 Shift: This involves moving of symbols from input buffer onto the stack.

 Reduce: If the handle appears on top of the stack then, its reduction by using

appropriate production rule is done i.e. RHS of production rule is popped out of stack

and LHS of production rule is pushed onto the stack.

 Accept: If only start symbol is present in the stack and the input buffer is empty then,

the parsing action is called accept. When accept action is obtained, it is means successful

parsing is done.

 Error: This is the situation in which the parser can neither perform shift action nor

reduce action and not even accept action.

Algorithm

1. Initially stack contains only the sentinel $, and input buffer contains the input string w$.

2. While stack not equal to $S do

a. While there is no handle at the top of the stack, do shift input buffer and push the

symbol onto the stack.

b. If there is a handle on the top of the stack, then pop the handle and reduce the

handle with its non – terminal and push it onto stack

3. Done

Example 1: Use the following grammar
S → S+S | S*S| (S) | id

Perform Shift Reduce parsing for input string: id + id + id

Stack Input Buffer Parsing Action

$ id+id+id$ Shift

$id +id+id$ Reduce by S → id

$S +id+id$ Shift

$S+ id+id$ Shift

$S+id +id$ Reduce by S → id

$S+S +id$ Shift

$S+S+ id$ Shift

$S+S+id $ Reduce by S → id

$S+S+S $ Reduce by S → S+S

$S+S $ Reduce by S → S+S

$S $ Accept

Example 2: Use the following grammar
E → E + T | T

T → T * F | F

F → (E) | id

Input string: id + id * id

Stack Input Buffer Parsing Action

$ id + id * id $ Shift id

$id + id * id $ Reduce by F → id

$F + id * id $ Reduce by T → F

$T + id * id $ Reduce by E → T

$E + id * id $ Shift +

$E + id * id $ Shift id

$E + id * id $ Reduce by F → id

$E + F * id $ Reduce by T → F

$E + T * id $ Shift * (OR Reduce by E → T) CONFLICT

$E + T * id $ Shift id

$E + T * id $ Reduce by F → id

$E + T * F $ Reduce by T → T * F

$E + T $ Reduce by E → E + T

$E $ Accept

Example 3: Consider the following grammar

S → (L) | a

L → L, S | S

Parse the input string (a, (a, a)) using a shift-reduce parser.

Stack Input Buffer Parsing Action

$ (a , (a , a)) $ Shift

$ (a , (a , a)) $ Shift

$ (a , (a , a)) $ Reduce S → a

$ (S , (a , a)) $ Reduce L → S

$ (L , (a , a)) $ Shift

$ (L , (a , a)) $ Shift

$ (L , (a , a)) $ Shift

$ (L , (a , a)) $ Reduce S → a

$ (L , (S , a)) $ Reduce L → S

$ (L , (L , a)) $ Shift

$ (L , (L , a)) $ Shift

$ (L , (L , a)) $ Reduce S → a

$ (L , (L , S))) $ Reduce L → L , S

$ (L , (L)) $ Shift

$ (L , (L)) $ Reduce S → (L)

$ (L , S) $ Reduce L → L , S

$ (L) $ Shift

$ (L) $ Reduce S → (L)

$ S $ Accept

Example 4: Consider the following grammar

S → T L

T → int | float

L → L, id | id

Parse the input string ―int id, id;‖ using a shift-reduce parser.

Stack Input Buffer Parsing Action

$ int id , id ; $ Shift

$ int id , id ; $ Reduce T → int

$ T id , id ; $ Shift

$ T id , id ; $ Reduce L → id

$ T L , id ; $ Shift

$ T L , id ; $ Shift

$ T L , id ; $ Reduce L → L , id

$ T L ; $ Shift

$ T L ; $ Reduce S → T L

$ S $ Accept

Example 5: Considering the string ―10201‖, design a shift-reduce parser for the following

grammar:

S → 0S0 | 1S1 | 2

Stack Input Buffer Parsing Action

$ 1 0 2 0 1 $ Shift

$ 1 0 2 0 1 $ Shift

$ 1 0 2 0 1 $ Shift

$ 1 0 2 0 1 $ Reduce S → 2

$ 1 0 S 0 1 $ Shift

$ 1 0 S 0 1 $ Reduce S → 0 S 0

$ 1 S 1 $ Shift

$ 1 S 1 $ Reduce S → 1 S 1

$ S $ Accept

Example 6: Consider the following grammar:

E → E – E

E → E * E

E → id

Parse the input string id – id x id using a shift-reduce parser.

Stack Input Buffer Parsing Action

$ id – id * id $ Shift

$ id – id * id $ Reduce E → id

$ E – id * id $ Shift

$ E – id * id $ Shift

$ E – id * id $ Reduce E → id

$ E – E * id $ Shift

$ E – E * id $ Shift

$ E – E * id $ Reduce E → id

$ E – E * E $ Reduce E → E * E

$ E – E $ Reduce E → E – E

$ E $ Accept

Conflicts in Shift – Reduce Parsing

Some grammars cannot be parsed using shift-reduce parsing and result in conflicts. There are

two kinds of shift-reduce conflicts:

Shift / Reduce Conflict

Here, the parser is not able to decide whether to shift or to reduce.

Example: if A → ab

A→ abcd, and the stack contains $ab, and the input buffer contains cd$, the parser

cannot decide whether to reduce $ab to $A or to shift two more symbols before reducing.

Reduce / Reduce Conflict

Here, the parser cannot decide which sentential form to use for reduction.

For example: if A → bc and B → abc and the stack contains $abc, the parser cannot decide

whether to reduce it to $aA or to $B

Operator Grammar

Operator precedence grammar is kinds of shift reduce parsing method. It is applied to a small

class of operator grammars. A grammar that is used to define mathematical operators is called

an operator grammar or operator precedence grammar. Such grammars have the restriction that

no production has either an empty right-hand side (null productions) or two adjacent non-

terminals in its right-hand side.

Example: This is an example of operator grammar:

E → E+E|E*E|id

However, the grammar given below is not an operator grammar because two non-terminals are

adjacent to each other:

S → SAS|a

A → bSb|b

We can convert it into an operator grammar, though:

S → SbSbS|SbS|a

A → bSb|b

Operator precedence parsing

Operator precedence can only established between the terminals of the grammar. It ignores the

non-terminal. An operator precedence parser is a bottom-up parser that interprets an operator

grammar. This parser is only used for operator grammars. Ambiguous grammars are not

allowed in any parser except operator precedence parser. There are two methods for

determining what precedence relations should hold between a pair of terminals:

1. Use the conventional associativity and precedence of operator.

2. The second method of selecting operator-precedence relations is first to construct an

unambiguous grammar for the language, a grammar that reflects the correct associativity

and precedence in its parse trees.

Defining Precedence Relations:

The precedence relations are defined using the following rules:

Rule 1:

 If precedence of b is higher than precedence of a, then we define a < b

 If precedence of b is same as precedence of a, then we define a = b

 If precedence of b is lower than precedence of a, then we define a > b

 Rule 2:

 An identifier is always given the higher precedence than any other symbol.

 $ symbol is always given the lowest precedence.

Rule 3: If two operators have the same precedence, then we go by checking their associativity.

Parsing a given string

The given input string is parsed using the following steps:

Step 1: Insert the following:

 $ symbol at the beginning and ending of the input string.

 Precedence operator between every two symbols of the string by referring the operator

precedence table.

Step 2:

 Start scanning the string from LHS in the forward direction until > symbol is

encountered.

 Keep a pointer on that location.

 Step 3:

 Start scanning the string from RHS in the backward direction until < symbol is

encountered.

 Keep a pointer on that location.

 Step 4:

 Everything that lies in the middle of < and > forms the handle.

 Replace the handle with the head of the respective production.

Step 5:

 Keep repeating the cycle from Step-02 to Step-04 until the start symbol is reached.

Example 1: Consider the following grammar-

E → EAE | id

A → + | *

Construct the operator precedence parser and parse the string id + id * id.

Solution:

Step 1: We convert the given grammar into operator precedence grammar.

The equivalent operator precedence grammar is-

E → E + E | E * E | id

Step 2: The terminal symbols in the grammar are {id, + , * , $ }

We construct the operator precedence table as:

 Id + * $

Id > > >

+ < > < >

* < > > >

$ < < <

Operator Precedence Table

Parsing Given String: id + id * id.

We follow the following steps to parse the given string:

Step 1: We insert $ symbol at both ends of the string as-

$ id + id * id $

 We insert precedence operators between the string symbols as-

$ < id > + < id > * < id > $

Step 2: We scan and parse the string as:

$ < id > + < id > * < id > $

$ E + < id > * < id > $

$ E + E * < id > $

$ E + E * E $

$ + * $

$ < + < * > $

$ < + > $

$ $

3. LR parser

LR parsing is one type of bottom up parsing. It is used to parse the large class of grammars. In

the LR parsing, "L" stands for left-to-right scanning of the input. "R" stands for constructing a

right most derivation in reverse. "K" is the number of input symbols of the look ahead used to

make number of parsing decision. LR parsing is divided into four parts:

 SLR (Simple LR parser)

 LR (Most general LR parser)

 LALR (Intermediate LR parser,

 CLR (Canonical Lookahead)

SLR, LR and LALR work same (they used the same algorithm), only their parsing tables are

different.

 Figure: Scope of various types of grammars

LR Parsers: General Structure

The LR algorithm requires stack, input, output and parsing table. In all type of LR parsing,

input, output and stack are same but parsing table is different.

Figure: Block diagram of LR parser

The LR algorithm requires stack, input, output and parsing table. In all type of LR parsing,

input, output and stack are same but parsing table is different. Input buffer is used to indicate

end of input and it contains the string to be parsed followed by a $ Symbol. A stack is used to

contain a sequence of grammar symbols with a $ at the bottom of the stack. Parsing table is a

two dimensional array. It contains two parts: Action part and Go To part.

Constructing SLR Parsing Table

SLR parsers are the simplest class of LR parsers. Constructing a parsing table for action

and goto involves building a state machine that can identify handles. For building a

state machine, we need to define three terms: Canonical collection of LR item, closure

and goto operations.

 a1 a2 …. …. …. an $ Input

Output

Stack

 Sm

 Xm

Sm-1

Xm-1

 S0

.. … .

LR Parsing Program

 Action Table Goto Table

Terminals and $ Non-erminal

Shift, reduce,
accept and
error actions

Each item
is a state
number

s
t
a
t
e
s

s
t
a
t
e
s

State
symbols

Grammar
symbols

(Terminals
or non-

terminals)

Basic terminologies used for LR parsing table

Augmented grammar

If G is a grammar with start symbol S, then the augmented grammar G‘ of G is a grammar with

a new start symbol S‘ and production S‘ S.

Example: the grammar,
 E → E + T | T

T → T * F | F

F → (E) | id

Its augmented grammar is;

 E‘ E

E → E + T | T

T → T * F | F

F → (E) | id

LR(0) Item

An ‗item‘ (LR(0) item) is a production rule that contains a dot (•) somewhere in the right side of

the production. For example, the production A → α A β has four items:

A → •α A β

A → α•A β

A → α A•β

A → α A β•

The production A → ε, generates only one item A → •. An item represented by a pair of

integers, the first giving the production and second the position of the dot. An item indicates

how much of a production we have seen at a given point in the parsing process.

Closure Operation

If I is a set of items for a grammar G, then closure(I) is the set of LR(0) items constructed from I

using the following rules:

1. Initially, every LR(0) item in I is added to closure(I).

2. If A → α•Bβ is in closure(I) and B →γ is a production rule of G then add B →•γ in the

closure(I) repeat until no more new LR(0) items added to closure(I).

Example: Consider a grammar:

 E → E + T | T

T → T * F | F

F → (E) | id

Its augmented grammar is;

 E‘ E

E → E + T | T

T → T * F | F

F → (E) | id

If I = {[E‘ → •E]}, then closure(I) contains the items,

 E‘ •E

E → •E + T

E •T

T → •T * F

T •F

F →• (E)

F •id

Goto Operation

If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then goto(I, X)

is defined as follows:

 If A → α•Xβ in I then every item in closure({A → αX•β}) will be in goto(I, X).

Example:

I = {E‘ → •E, E → •E+T, E → •T, T → •T*F, T → •F, F → •(E), F → •id}

goto(I, E) = closure({[E‘ → E •, E → E • + T]}) = {E‘ → E•, E → E•+T}

goto(I, T) = {E → T•, T → T•*F}

goto(I, F) = {T → F•}

goto(I, () = closure({[F →(•E)]}) = {F → (•E), E → •E+T, E → •T, T → •T*F, T → •F,

F → • (E), F → •id}

goto(I, id) = {F → id•}

Canonical LR(0) collection

An LR (0) item is a production G with dot at some position on the right side of the production.

LR(0) items is useful to indicate that how much of the input has been scanned up to a given

point in the process of parsing. In the LR (0), we place the reduce node in the entire row. A

collection of sets of LR(0) items is called canonical LR(0) collection. To construct canonical LR(0)

collection for a grammar we require augmented grammar and closure & goto functions.

Algorithm

1. Start

2. Augment the grammar by adding production S‘ → S

3. C = {closure({S‘→.S})}

4. Repeat the followings until no more set of LR(0) items can be added to C.

for each I in C and each grammar symbol X

if goto(I, X) is not empty and not in C

add goto(I,X) to C

5. Repeat step 4 until no new sets of items are added to C

6. Stop

Example 1: Find canonical collection of LR(0) items of following grammar
 C → AB
 A → a
 B → a
Solution: The augmented grammar of given grammar is,
 C‘→ C
 C → AB
 A → a
 B → a
Next, we obtain the canonical collection of sets of LR(0) items, as follows,

I0 = closure ({C‘ → •C}) = {C‘ → •C, C → •AB, A → •a}

I1 = goto(I0, C) = closure(C‘ → C•) = { C‘ → C•}

I2 = goto(I0, A) = closure(C → A•B) = { C → A•B, B → •a}

I3 = goto(I0, a) = closure(A → a•) = { A → a• }

I4 = goto(I2, B) = closure(C → AB•) = { C → AB•}

I5 = goto(I2, a) = closure(B → a•) = { B → a•}

Constructing SLR Parsing Tables

Algorithm

1. Construct the canonical collection of sets of LR(0) items for G‘.

C ← {I0, I1...... In}

2. Create the parsing action table as follows

• If A → α•aβ is in Ii and goto(Ii, a) = Ij then set action[i , a] = shift j.

• If A → α• is in Ii, then set action[i, a] to ‖reduce A → α‖ for all ‗a‘ in FOLLOW(A)

Where, A≠S‘

• If S‘→ S• is in Ii, then action[i, $] = accept.

• If any conflicting actions generated by these rules, the grammar is not SLR(1)

3. Create the parsing goto table

 for all non-terminals A, if goto(Ii, A)=Ij then goto[i, A] = j

4. All entries not defined by (2) and (3) are errors

5. Initial state of the parser contains S‘→•S

Example 1: Construct SLR parsing table of following grammar
 C → AB
 A → a
 B → a
Solution: The augmented grammar of given grammar is,
 1. C‘→ C
 2. C → AB
 3. A → a
 4. B → a
Next, we obtain the canonical collection of sets of LR(0) items, as follows,

I0 = closure ({C‘ → •C}) = {C‘ → •C, C → •AB, A → •a}

I1 = goto(I0, C) = closure(C‘ → C•) = { C‘ → C•}

I2 = goto(I0, A) = closure(C → A•B) = { C → A•B, B → •a}

I3 = goto(I0, a) = closure(A → a•) = { A → a• }

I4 = goto(I2, B) = closure(C → AB•) = { C → AB•}

I5 = goto(I2, a) = closure(B → a•) = { B → a•}

Now calculate FOLLOW function as,
FOLLOW(C‘) = {$} FOLLOW(C) = {FOLLOW(C‘)} = {$}
FOLLOW(A) = {FIRST(B) U a} = {a} FOLLOW(B) = {FOLLOW(C)} = {$}

The DFA of above grammar is,

Now construct SLR parsing table as below,

States
Action Table GOTO Table

a $ C A B

I0 Shift 3 State 1 State 2

I1 Accept

I2 Shift 5 State 4

I3 Reduce 3

I4 Reduce 2

I5 Reduce 4

 I0

 I1

 I2

 I3

 I4

 I5

C

A

a

B

a

Start

Example 2: Construct the SLR parsing table for the grammar:
S → AA
A → aA | b

Solution: The augment the given grammar is,
0. S‘ → S
1. S → AA
2. A → aA | b
3. A → b

Next, we obtain the canonical collection of sets of LR(0) items, as follows,

I0 = closure ({S‘ → •S}) = {S‘ → •S, S → •AA, A → •aA, A → •b}

I1 = goto ({I0, S}) = closure ({S‘ → S•}) = {S‘ → S•}

I2 = goto ({I0, A}) = closure ({S → A•A}) = {S → A•A, A → •aA, A → •b}

I3 = goto ({I0, a}) = closure ({A → a•A}) = {A → a•A, A → •aA, A → •b}

I4 = goto ({I0, b}) = closure ({A → b•}) = {A → b•}

I5 = goto ({I2, A}) = closure ({S → AA•}) = {S → AA•}

I6 = goto ({I2, a}) = closure ({A → a•A}) = {A → a•A, A → •aA, A → •b} Same as I3

I6 = goto ({I2, b}) = closure ({A → b•}) = {A → b•} same as I4

I6 = goto ({I3, A}) = closure ({A → aA•}) = {A → aA•}

I7 = goto ({I3, a}) = closure ({A → a•A}) = {A → a•A, A → •aA, A → •b} Same as I3

I7 = goto ({I3, b}) = closure ({A → b•}) = {A → b•} same as I4

Drawing DFA: The DFA contains the 7 states I0 to I6.

Now calculate FOLLOW function as,

FOLLOW(S‘) = {$} FOLLOW(S) = {FOLLOW(S‘)} = {$}
FOLLOW(A) = {FIRST(S)} = {$}

SLR table or LR(0) Table of above grammar as below,

States
Action Table Goto Table

a b $ A S

I0 S3 S4 2 1

I1 Accept

I2 S3 S4 5

I3 S3 S4 6

I4 r3 r3 r3

I5 r1 r1 r1

I6 r2 r2 r2

Explanation

 I0 on S is going to I1 so write it as 1.

 I0 on A is going to I2 so write it as 2.

 I2 on A is going to I5 so write it as 5.

 I3 on A is going to I6 so write it as 6.

 I0, I2 and I3 on ‗a‘ are going to I3 so write it as S3 which means that shift 3.

 I0, I2 and I3 on ‗b‘ are going to I4 so write it as S4 which means that shift 4.

 I4, I5 and I6 all states contains the final item because they contain • in the right most end.

So rate the production as production number.

 I1 contains the final item which drives(S‘ → S•), so action {I1, $} = Accept.

 I4 contains the final item which drives A → b• and that production corresponds to the

production number 3 so write it as r3 in the entire row.

 I5 contains the final item which drives S → AA• and that production corresponds to the

production number 1 so write it as r1 in the entire row.

 I6 contains the final item which drives A → aA• and that production corresponds to the

production number 2 so write it as r2 in the entire row.

Example 3: Construct the SLR parsing table for the grammar,

E → E + T

E → T

T → T * F

T → F

F → (E)

F → id

And parse the input string id * id + id

Solution: The augment the given grammar is,
0. E‘ → E

1. E → E + T

2. E → T

3. T → T * F

4. T → F

5. F → (E)

6. F → id

Next, we obtain the canonical collection of sets of LR(0) items, as follows,

I0 = closure ({E‘ → •E})

 = {E‘ → •E, E → •E + T, E → •T, T → •T * F, T → •F, F → • (E), F → •id}

I1 = goto(I0, E) = closure({E‘ → E•, E → E •+ T}) = {E‘ → E•, E → E •+ T}

I2 = goto(I0, T) = closure({E → T•, T → T •* F}) = { E → T•, T → T •* F }

I3 = goto(I0, F) = closure({T → F•}) = {T → F•}

I4 = goto(I0, () = closure({F → (•E)})

 = {F → (•E), E → •E + T, E → •T, T → •T * F, T → •F, F → • (E), F → •id}

I5 = goto(I0, id) = closure({F → id•}) = {F → id•}

I6 = goto(I1, +) = closure({E → E +• T}) = {E → E +• T, T → •T * F, T → •F, F → • (E), F → •id}

I7 = goto(I2, *) = closure({T → T * •F}) = {T → T * •F, F → • (E), F → •id}

No possible goto for I3 since there is not any member after dot (•)

I8 = goto(I4, E) = closure({F → (E•), E → E•+ T}) = {F → (E•), E → E•+ T }

I9 = goto(I4, T) = closure({E → T•, T → T• * F}) = {E → T•, T → T• * F } which is same as I2

Similarly, goto(I4, F) = I3

goto(I4, id) = I5

goto(I4, () = I4

No possible goto for I5 since there is not any member after dot (•)

I9 = goto(I6, T) = closure({E → E +T•, T → T•* F}) = {E → E +T•, T → T•* F}

Similarly, goto(I6, F) = I3

goto(I6, id) = I5

goto(I6, () = I4

I10 = goto(I7, F) = closure({T → T * F•})= {T → T * F•}

Similarly, goto(I7, () = I4

goto(I7, id) = I5

I11 = goto(I8,)) = closure({F → (E) •}) = {F → (E) •}

Similarly, goto(I8, +) = I6

goto(I9, *) = I7

Now, finished stop and total numbers of state = 12

Now calculate FOLLOW function as,
FOLLOW(E‘) = {$} FOLLOW(E) = {+,) }
FOLLOW(T) = {FOLLOW(E), * } = {+,), * }
FOLLOW(F) = { FOLLOW(T)} = {+,), * }

SLR table of above grammar as below

Parsing the input string id * id + id by using above parsing table

Stack Input buffer Action table Goto table Parsing action

$0 id*id+id$ [0, id]=S5 Shift

$0 id5 *id+id$ [5, *]=R6 [0, F]=3 Reduce by F → id

$0 F3 *id+id$ [3, *]=R4 [0, T]=2 Reduce by T → F

$0 T2 *id+id$ [2, *]=S7 Shift

$0 T2 * 7 id+id$ [7, id]=S5 Shift

$0 T2 *id5 +id$ [5, +]=R6 [7, F]=10 Reduce by F → id

$0 T2 *7F10 +id$ [10, +]=R3 [0, T]=2 Reduce by T → T*F

$0 T2 +id$ [2, +]=R2 [0, E]=2 Reduce by E → T

$0 E1 +id$ [1, +]=S6 Shift

$0 E1+6 +id$ [6, id]=S5 Shift

$0 E1+6id5 $ [5, $]=R6 [6, F]=3 Reduce by F → id

$0 E1+6F3 $ [3, $]=R4 [6, T]=9 Reduce by T → F

$0 E1+6T9 $ [9, $]=R1 [0, E]=1 Reduce by E → E+T

$0 E1 $ Accept Accept

Example 4: Construct the SLR parsing table for the grammar,

S → E

E → E + T | T

T → T * F | F

F → id

Solution: The augment the given grammar is,
0. S‘ → S

1. S → E

State Action table Goto table

id + * () $ E T F

0 s5 s4 1 2 3

1 s6 Accept

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

2. E → E + T | T

3. T → T * F | F

4. F → id

I0 = Closure (S‘ → •E)

 = {S‘ → •E, E → •E + T, E → •T, T → •T * F, T → •F, F → •id}

I1 = Goto (I0, E) = closure (S‘ → E•, E → E• + T) = {S‘ → E•, E → E• + T}

I2 = Goto (I0, T) = closure (E → T•, T → T• * F) = {E → T•, T → T• * F}

I3 = Goto (I0, F) = Closure (T → F•) = {T → F•}

I4 = Goto (I0, id) = closure (F → id•) = {F → id•}

I5 = Goto (I1, +) = Closure (E → E +•T) = {E → E +•T, T → •T * F, T → •F, F → •id}

Goto (I5, F) = Closure (T → F•) = {T → F•} same as I3

Goto (I5, id) = Closure (F → id•) = {F → id•} same as I4

I6 = Goto (I2, *) = Closure (T → T * •F) = {T → T * •F, F → •id}

Goto (I6, id) = Closure (F → id•) = {F → id•} same as I4

I7 = Goto (I5, T) = Closure (E → E + T•) = {E → E + T•}

I8 = Goto (I6, F) = Closure (T → T * F•) = {T → T * F•}

Compute FOLLOW function as,

Follow (S‘) = {$} Follow (S) = {FOLLOW(S‘)} = {$}

Follow (E) = {First (+T) ∪ FOLLOW(S)} = {+, $}

Follow (T) = {First (*F) ∪ First (F)} = {*, +, $} Follow (F) = {*, +, $}

Drawing DFA: The DFA contains the 9 states I0 to I8.

SLR parsing table is,

States
Action table Goto table

id + * $ E T F

I0 S4 1 2 3

I1 S5 Accept

I2 R2 S6 R2

I3 R4 R4 R4

I4 R5 R5 R5

I5 S4 7 3

I6 S4 8

I7 R1 S6 R1

I8 R3 R3 R3

Ambiguity in SLR Limitation of SLR

Every SLR grammar is unambiguous. But there exist certain unambiguous grammars that are

not SLR. In such grammar there exist at least one multiply defined entry action[i, a], which

contains both a shift and reduce directive. The SLR technique still leaves something to be

desired, because we are not using all the information that we have at our disposal. When we

have a completed configuration (i.e., dot at the end) such as A → α•, we know that this

corresponds to a situation in which we have α as a handle on top of the stack which we then

can reduce, i.e., replacing α by A.

Example: Consider a grammar

S → L = R

S → R

L → * R

L → id

R → L

Solution: The augment the given grammar is,
0. S‘ → S

1. S → L = R

2. S → R

3. L → * R

4. L → id

5. R → L

I0 = Closure (S‘ → •S) = {S‘ → •S, S → •L = R, S → •R, L → •* R, L → •id, R → •L}

Now compute FOLLOW as,

FOLLOW(S‘) = {$} FOLLOW(S) = {$}

FOLLOW(L) = {$, =} FOLLOW(R) = {$, =}

SLR parsing table is,

States
Action Table Goto Table

id = * $ S L R

0 S5 S4 1 2 3

1 Accept

2 S5 / R5 R5

3 R2

4 S5 S4 8 9

5 R4 R4

6 S4 S5 8 9

7 R3 R3

8 R5 R5

9 R1

In state 2, action [2, =] = S6 and action [2, =] = R5, it is seen that there is shift reduce conflict.

LR(1) Grammars

SLR is so simple and can only represent the small group of grammar. LR(1) parsing uses look-

ahead to avoid unnecessary conflicts in parsing table.

LR(1) item = LR(0) item + look-ahead

LR(0) item LR(1) item

[A→α•β] [A→α•β, a]

Computation of Closure for LR(1)Items

The closure of a set S of LR(1) items for augmented grammar G is computed as follows,

1. Start with closure(I) = I (where I is a set of LR(1) items)

2. If [A→α•Bβ, a] ∈ closure(I) then

 Add the item [B→•γ, b] to I if not already in I, where b ∈ FIRST(βa)

3. Repeat 2 until no new items can be added.

Computation of Goto Operation for LR(1) Items

If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then goto(I, X)

is computed as follows,

1. For each item [A→α•Xβ, a] ∈ I, add the set of items

 closure({[A→αX•β, a]}) to goto(I,X) if not already there

2. Repeat step 1 until no more items can be added to goto(I, X)

Construction of The Canonical LR(1) Collection

Algorithm

1. Augment the grammar with production S‘→S

2. C = {closure({S‘→•S, $})} (the start stat of DFA)

3. Repeat the followings until no more set of LR(1) items can be added to C.

For each I ∈ C and each grammar symbol X ∈ (N∪T)

Goto(I, X) ≠ Φ and goto(I, X) not ∈ C then

add goto(I, X) to C

Construction of LR(1) Parsing Table

SLR used the LR(0) items, that is the items used were productions with an embedded dot, but

contained no other (lookahead) information. The LR(1) items contain the same productions with

embedded dots, but add a second component, which is a terminal (or $). This second

component becomes important only when the dot is at the extreme right. For LR(1) we do that

reduction only if the input symbol is exactly the second component of the item.

Algorithm

1. Given the grammar G, construct an augmented grammar G‘ by introducing a

production of the form S‘ → S, where S is the star symbol of G.

2. Construct the set C = {I0, I1, …….,In} of LR(1) items.

3. Create the parsing action table as follows

a. If [A → α•aβ, b] in Ii and goto (Ii, a) = Ij then action [i, a] = shift j.

b. If [A → α•, a] is in Ii, then action [i, a] = reduce A → α where A ≠ S‘.

c. If [S‘→ S•, $] is in Ii , then action[i, $] = accept.

d. If any conflicting actions generated by these rules, the grammar is not LR(1).

4. Create the parsing goto table

a. For all non-terminals A, if goto (Ii, A) = Ij then goto [i, A] = j

5. All entries not defined by (2) and (3) are errors.

6. Initial state of the parser contains S‘→.S, $

Example 1: Construct LR(1) parsing table of following grammar,

S → AA
A → aA
A → b

Solution: The augment the given grammar is,
S‘ → S
S → AA
A → aA
A → b

I0 = Closure (S‘ → •S) = {S‘ → •S, $

 S → •AA, $

 A → •aA, a/b

 A → •b, a/b}

I1 = Goto (I0, S) = closure (S‘ → S•, $) = {S‘ → S•, $}

I2 = Goto (I0, A) = closure (S → A•A, $) = {S → A•A, $

 A → •aA, $

 A → •b, $}

I3 = Goto (I0, a) = Closure (A → a•A, a/b) = {A → a•A, a/b

 A → •aA, a/b

 A → •b, a/b}

I4= Goto (I0, b) = closure (A → b•, a/b) = {A → b•, a/b}

I5= Goto (I2, A) = Closure (S → AA•, $) = {S → AA•, $}

I6= Goto (I2, a) = Closure (A → a•A, $)

 = {A → a•A, $

 A → •aA, $

 A → •b, $}

I7= Goto (I2, b) = Closure (A → b•, $) = {A → b•, $}

I8= Goto (I3, A) = Closure (A → aA•, a/b) = {A → aA•, a/b}

Goto (I3, a) = Closure (A → a•A, a/b) = {A → a•A, a/b

A → •aA, a/b

 A → •b, a/b} same as I3

Goto (I3, b) = Closure (A → b•, a/b) same as I4

I9= Goto (I6, A) = Closure (A → aA•, $) = {A → aA•, $}

Goto (I6, a) = Closure (A → a•A, $) same as I6

Goto (I6, b) = Closure (A → b•, $) same as I7

The DFA is,

The LR(1) parsing table is,

States
Action table Goto table

a b $ S A

0 S3 S4 1 2

1 Accept

2 S6 S7 5

3 S3 S4 8

4 R3 R3

5 R1

6 S6 S7 9

7 R3

8 R2 R2

9 R2

Example 2: Construct LR(1) parsing table for the augmented grammar,

0. S‘ → S
1. S → L = R
2. S → R
3. L → * R
4. L → id

5. R → L
Step 1: At first find the canonical collection of LR(1) items of the given augmented grammar as,
 State I0: State I1: State I2:

Closure(S‘→•S, $) closure (goto(I0, S)) closure (goto(I0, L))
 {S‘→•S, $ closure(S‘→ S•, $) closure((S → L• = R, $), (R →L•, $))
 S → •L = R, $ {S‘→ S•, $ {S → L• = R, $}
 S → •R, $ R → L•, $}

L → •* R, $
 L → •Id, =

R → •L, $}

State I3: State I4:

closure (goto(I0, R)) closure(goto(I0, *))
closure(S → R•, $) closure(L → * •R, =)
{S → R•, $} {(L → * •R, =), (R → •L, =), (L → •* R, =), (L → •Id, =)}

State I5: State I6: State I7:

closure (goto(I0, id)) closure(goto((I2, =)) closure(goto((I4, R))
closure(L → Id• , =) closure(S → L =• R, $) closure(L → * R• ,=)
{L → Id•, =} {S → L =• R, $ {L → * R•, =}
 R →•L, $
 L → •* R, $
 L →•Id, $}

State I8: State I9: State I10:

closure (goto(I4, L)) closure(goto((I6, R)) closure(goto((I6, L))
closure(R → L•, =) closure(S → L=R• , $) {R → L•, $}
{R → L•, =} {S → L=R•, $}

State I11: State I12: State I13:

Closure(goto(I6, *)) closure(goto((I6, id)) closure(goto((I11, R))
Closure(L→*•R, $) closure(L → id•, $) {L → *R•, $}
{L → *•R, $ {L → id•, $}
R → •L, $
L → •*R, $
L → •id, $}

Step 2: Now construct LR(1) parsing table

States
Action Table Goto Table

id * = $ S L R

0 S5 S4 1 2 3

1 Accept

2 S6 R5

3 R2

4 S5 S4 8 7

5 R4 R4

6 S12 S11 10 9

7 R3 R3

8 R5 R5

9 R1

10 R5

11 S12 S11 10 13

12 R4

13 R3

Example 3: Construct canonical LR(1) collection of the following grammar

 S → AaAb
S → BbBa
A → ∈
B → ∈

Solution: Its augmented grammar is,
0. S‘→ S
1. S → AaAb
2. S → BbBa
3. A → ∈
4. B → ∈

I0 = closure(S‘→ •S, $)
 = {S‘→ •S, $
 S → • AaAb, $
 S → •BbBa, $
 A → •, a

B → •, b}
I1: goto(I0, S) = closure(S‘→ S•, $) = {S‘→ S•, $}
I2: goto(I0, A) = closure(S → A•aAb, $) = {S → A•aAb, $}
I3: goto(I0, B) = closure(S → B•bBa, $) = {S → B•bBa, $}
I4: goto(I2, a) = closure(S → Aa•Ab, $) = {(S → Aa•Ab, $), (A → •, b)}
I5: goto(I3, b) = closure(S → Bb•Ba, $) = {(S → Bb•Ba, $), (B → •, a)}
I6: goto(I4, A) = closure(S → AaA•b, $) = {S → AaA•b, $}
I7: goto(I5, B) = closure(S → BbB•a, $) = {S → BbB•a, $}
I8: goto(I6, b) = closure(S → AaAb•, $) = {S → AaAb•, $}
I9: goto(I7, a) = closure(S → BbBa•, $) = {S → BbBa•, $}

Compute FOLLOW as,
FOLLOW(S‘) = {$}
FOLLOW(S) = {FOLLOW(S‘)} = {$}
FOLLOW(A) = {a, b}
FOLLOW(B) = {a, b}

Now LR(1) parsing table is,

States
Action Table Goto Table

a b $ S A B

0 R3,4 R3,4 1 2 3

1 Accept

2 S4

3 S5

4 R3 R3 6

5 R4 R4 7

6 S8

7 S9

8 R1

9 R2

LALR(1) Grammars

It is an intermediate grammar between the SLR and LR(1) grammar. A typical

programming language generates thousands of states for canonical LR parsers while

they generate only hundreds of states for LALR parser. In the LALR (1) parsing, the LR

(1) items which have same productions but different look ahead are combined to form a

single set of items.

Example: Following example show the comparison between LR(1) and LALR parsing

In LR(1) In LALR(1)

I1: L → id. , = I12:
L → id. , =
L → id. , $ I2: L → id. , $

Constructing LALR Parsing Tables

1. Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar C = {I0,

I0...,In}

1. For each core present in C, find all sets having the core and replace the sets by their union.

Let C‘ = {J0, J1,…….,Jm} be the resulting set of LR(1) items.

2. Construct the action elements of parsing table using the same method as for canonical LR(1)

grammars.

3. If J is the union of k LR(1) items, J = I1 U I2 U…… U Ik, then the cores of goto[I1, X] goto[I2, X],

etc. are all same since I1, I2,…..,Ik have the same core. Let K be the union of all sets of items

having the same core as goto[Ii, X]. Then goto[J, X] = K.

Example 1: Construct LALR parsing table for following grammar,

S → L = R
S → R
L → * R
L → id

R → L
Solution: The augmented grammar of above grammar is,

0. S‘ → S
1. S → L = R
2. S → R
3. L → * R
4. L → id

5. R → L
Step 1: At first find the canonical collection of LR(1) items of the given augmented grammar as,
 State I0: State I1: State I2:

Closure(S‘→•S, $) closure (goto(I0, S)) closure (goto(I0, L))
 {S‘→•S, $ closure(S‘→ S•, $) closure((S → L• = R, $), (R →L•, $))
 S → •L = R, $ {S‘→ S•, $ {S → L• = R, $}
 S → •R, $ R → L•, $}

L → •* R, $
 L → •Id, =

R → •L, $}

State I3: State I4:

closure (goto(I0, R)) closure(goto(I0, *))
closure(S → R•, $) closure(L → * •R, =)
{S → R•, $} {(L → * •R, =), (R → •L, =), (L → •* R, =), (L → •Id, =)}

State I5: State I6: State I7:

closure (goto(I0, id)) closure(goto((I2, =)) closure(goto((I4, R))
closure(L → Id• , =) closure(S → L =• R, $) closure(L → * R• ,=)
{L → Id•, =} {S → L =• R, $ {L → * R•, =}
 R →•L, $
 L → •* R, $
 L →•Id, $}

State I8: State I9: State I10:

closure (goto(I4, L)) closure(goto((I6, R)) closure(goto((I6, L))
closure(R → L•, =) closure(S → L=R• , $) {R → L•, $}
{R → L•, =} {S → L=R•, $}

State I11: State I12: State I13:

Closure(goto(I6, *)) closure(goto((I6, id)) closure(goto((I11, R))
Closure(L→*•R, $) closure(L → id•, $) {L → *R•, $}
{L → *•R, $ {L → id•, $}
R → •L, $
L → •*R, $
L → •id, $}

State 2: Combine LR(1) sets with sets of items that share the same first part Combine LR(1) sets

with sets of items that share the same first part i.e. core part.

Combine state 4 and 11 as,

I4: {(L → * •R, =), (R → •L, =), (L → •* R, =), (L → •Id, =)}
I11: {(L → *•R, $), (R → •L, $), (L → •*R, $), (L → •id, $)}
I4, 11: {(L → * •R, =/$), (R → •L, =/$), (L → •* R, =/$), (L → •Id, =/$)}

Combine state 5 and 12 as,

I5: {L → Id•, =}

I12: {L → Id•, $}

 I5,12: {L → Id•, =/$}

Combine state 7 and 13 as,

I7: {L → * R•, =}

I13: {L → * R•, $}

I7, 13: {L → * R•, =/$}

 Combine state 8 and 10 as,

I8: {R → L•, =}

I10: {R → L•, $}

I8, 10: {R → L•, =/$}

Step 3: The DFA of LALR parsing is,

I0

I2

I3

I1

S

R

*

I5, 12

I4, 11 id

L

I6

I7, 13

I8, 10
L

R

*

id

=

I9

R

L

id

*

Step 4: The LALR parsing table is,

States
Action Table Goto Table

id * = $ S L R

0 S5 S4 1 2 3

1 Accept

2 S6 R5

3 R2

4 S5 S4 8 9

5 R4 R4

6 S12 S11 10 9

7 R3 R3

8 R5 R5

9 R1

Example 2: Construct LALR parsing table for following grammar,

S → AA
A → aA
A → b

Solution: The augmented grammar of above grammar is,

0. S‘ → S
1. S → AA
2. A → aA
3. A → b

Step 1: At first find the canonical collection of LR(1) items of the given augmented grammar as,
I0 = Closure (S‘ → •S)

= {(S‘ → •S, $), (S → •AA, $), (A → •aA, a/b), (A → •b, a/b)}
I1 = Goto (I0, S) = Closure (S‘ → S•)
 = {S‘ → S•, $}
I2= Goto (I0, A) = closure (S → A•A, $)
 = {(S → A•A, $), (A → •aA, $), (A → •b, $)}
I3= Goto (I0, a) = Closure (A → a•A, a/b)
 = {(A → a•A, a/b), (A → •aA, a/b), (A → •b, a/b)}
I4= Goto (I0, b) = closure (A → b•, a/b) = {A → b•, a/b}
I5= Goto (I2, A) = Closure (S → AA•, $) = {S → AA•, $}
I6= Goto (I2, a) = Closure (A → a•A, $) = {(A → a•A, $), (A → •aA, $), (A → •b, $)}
I7= Goto (I2, b) = Closure (A → b•, $) = {A → b•, $}
Goto (I3, a) = Closure (A → a•A, a/b) = same as I3
Goto (I3, b) = Closure (A → b•, a/b) = same as I4
I8= Goto (I3, A) = Closure (A → aA•, a/b) = {A → aA•, a/b}
Goto (I6, a) = Closure (A → a•A, $) = same as I6
Goto (I6, b) = Closure (A → b•, $) = same as I7
I9= Goto (I6, A) = Closure (A → aA•, $) = {A → aA•, $}

Step 2: Combine LR(1) sets with sets of items that share the same first part Combine LR(1) sets

with sets of items that share the same first part i.e. core part.

Combine state 3 and 6 as,

I3, 6 = {(A → a•A, a/b/$), (A → •aA, a/b/$), (A → •b, a/b/$)}
Combine state 4 and 7 as,

I4, 7 = {A → b•, a/b/$}
Combine state 8 and 9 as,

I8, 9 = {A → aA•, a/b/$}
Step 3: The DFA of LALR parsing is,

Step 4: The LALR parsing table is,

States
Action Table Goto Table

a b $ S A

I0 S3, 6 S4,7 1 2

I1 Accept

I2 S3, 6 S4,7 5

I3, 6 S3, 6 S4,7 8,9

I4, 7 R3 R3 R3

I5 R1

I8, 9 R2 R2 R2

Kernel and Non-Kernel Items
In order to devise a more efficient way of building LALR parsing tables, we define the terms

kernel items and non-kernel items. Other than the initial item [S‘ → •S, $] no other item

generated by a goto has a dot at the left end of the production. Such items (i.e. the initial item

and all other items generated by goto) are called kernel items. Items that are generated by

closure over kernel items have a dot at the beginning of the production. These items are called

non-kernel items.

In brief, kernel item includes the initial items, S‘→ .S and all items whose dot are not at the left

end. Similarly non-kernel items are those items which have their dots at the left end except

S‘→ .S

Example 1: Find the kernel and non-kernel items of following grammar,

C → AB
 A → a
 B → a
Solution: The augmented grammar of given grammar is,
 1. C‘→ C
 2. C → AB
 3. A → a
 4. B → a
Next, we obtain the canonical collection of sets of LR(0) items, as follows,

I0 = closure ({C‘ → •C}) = {C‘ → •C, C → •AB, A → •a}

I1 = goto(I0, C) = closure(C‘ → C•) = {C‘ → C•}

I2 = goto(I0, A) = closure(C → A•B) = {C → A•B, B → •a}

I3 = goto(I0, a) = closure(A → a•) = {A → a•}

I4 = goto(I2, B) = closure(C → AB•) = {C → AB•}

I5 = goto(I2, a) = closure(B → a•) = {B → a•}

List of kernel and non-kernel items are listed below;

States Kernel Items Non-kernel items

I0 C‘ → •C C → •AB
A → •a

I1 C‘ → C•

I2 C → A•B B → •a

I3 A → a•

I4 C → AB•

I5 B → a•

Difference between Top down parsing and Bottom up parsing
op-down Parsing is a parsing technique that first looks at the highest level of the parse tree and

works down the parse tree by using the rules of grammar while Bottom-up Parsing is a parsing

technique that first looks at the lowest level of the parse tree and works up the parse tree by

using the rules of grammar. There are some differences present to differentiate these two

parsing techniques, which are given below:

S. no Top down parsing Bottom up parsing

1. It is a parsing strategy that first looks at

the highest level of the parse tree and

works down the parse tree by using the

rules of grammar.

It is a parsing strategy that first looks at the

lowest level of the parse tree and works up

the parse tree by using the rules of

grammar.

2. Top-down parsing attempts to find the

left most derivations for an input string.

Bottom-up parsing can be defined as an

attempt to reduce the input string to start

symbol of a grammar.

3. In this parsing technique we start

parsing from top (start symbol of parse

tree) to down (the leaf node of parse

tree) in top-down manner.

In this parsing technique we start parsing

from bottom (leaf node of parse tree) to up

(the start symbol of parse tree) in bottom-

up manner.

4. This parsing technique uses Left Most

Derivation.

This parsing technique uses Right Most

Derivation.

5. Its main decision is to select what

production rule to use in order to

construct the string.

Its main decision is to select when to use a

production rule to reduce the string to get

the starting symbol.

6. Error detection is easy Error detection is difficult

7. Less power High power

8. Parsing table size is small Parsing table size is bigger than TDP

9. It uses left most derivation It uses reverse of right most derivation

Parser Generators

Introduction to Bison

Bison is a general purpose parser generator that converts a description for an LALR(1) context-

free grammar into a C program file. The job of the Bison parser is to group tokens into

groupings according to the grammar rules—for example, to build identifiers and operators into

expressions. The tokens come from a function called the lexical analyzer that must supply in

some fashion (such as by writing it in C).

YACC is an automatic tool for generating the parser program. YACC stands for Yet Another

Compiler which is basically the utility available from UNIX. Basically YACC is LALR parser

generator. It can report conflict or ambiguities in the form of error messages.

The Bison parser calls the lexical analyzer each time it wants a new token. It doesn‘t know what

is inside the tokens. Typically the lexical analyzer makes the tokens by parsing characters of

text, but Bison does not depend on this. The Bison parser file is C code which defines a function

named yyparse which implements that grammar. This function does not make a complete C

program: you must supply some additional functions.

Bison program specification,

Stages in Writing Bison program

 Formally specify the grammar in a form recognized by Bison

 Write a lexical analyzer to process input and pass tokens to the parser.

 Write a controlling function that calls the Bison produced parser.

 Write error-reporting routines.

Bison Program structure

A bison specification consists of four parts:
%{

C declarations
%}
Bison declarations
%%

Grammar rules
%%

Additional C codes
Productions in Bison are of the form
Non-terminal: tokens/non-terminals {action}
|Tokens/non | terminals {action}
……………………………….. ;

Programming Example
/* Mini Calculator */
/* calc.lex */
%{

#include "heading.h"
#include "tok.h"
int yyerror(char *s);
int yylineno = 1;

%}
digit [0-9]

Yacc or Bison
Compiler

C- Compiler

a.out

y.tab.c

a.out

Output
Stream

y.tab.c

Input
Stream

Yacc
specification
Filename.y

int_const {digit}+
%%

{int_const} {yylval.int_val = atoi(yytext); return INTEGER_LITERAL; }
"+" {yylval.op_val = new std::string(yytext); return PLUS; }
"*" {yylval.op_val = new std::string(yytext); return MULT; }
[\t]* { }
[\n] {yylineno++; }

. {std::cerr << "SCANNER "; yyerror(""); exit(1); }

%%
/* Mini Calculator */
/* calc.y */
%{

#include "heading.h"
int yyerror(char *s);
int yylex(void);

%}
%union{
 int int_val;
 string* op_val;

}
%start input
%token <int_val> INTEGER_LITERAL
%type <int_val> exp
%left PLUS
%left MULT

%%
input: /* empty */
 | exp { cout << "Result: " << $1 << endl;}
 ;
exp: INTEGER_LITERAL { $$ = $1; }
 | exp PLUS exp { $$ = $1 + $3; }
 | exp MULT exp { $$ = $1 * $3; }
 ;
%%
int yyerror(string s)
{
 extern int yylineno; // defined and maintained in lex.c
 extern char *yytext; // defined and maintained in lex.c
 cerr << "ERROR: " << s << " at symbol \"" << yytext;
 cerr << "\" on line " << yylineno << endl;
 exit(1);
}
int yyerror(char *s)
{
 return yyerror(string(s));
}

Exercise:

Q. For the grammar,

 S [C]S|∈

 C {A}C| ∈

 A A()| ∈

Construct the predictive top down parsing table (LL (1) parsing table)

 [1]. Construct the SLR parsing table for the following grammar
 X → S S + | S S * | a

[2]. Construct the SLR parsing table for the following grammar
 S‘ → S

S → aABe
A → Abc
A → b
B → d

3. Construct LR(1) parsing table for given grammar:

S‘→S
S→CC
C→cC
C→d

Example 3: Show that the following grammar is LR(1) but not LALR(1)
 S → Aa | bAc |Bc |bBa
 A → d
 B → d

