
 Page 1

Condensed Notes

On
Computer Architecture

(According to BScCSIT syllabus, TU)

By Bishnu Rawal

For more notes visit https://collegenote.pythonanywhere.com

 Page 2

Unit 1
Data Representation

Number System
Number of digits used in a number system is called its base or radix (r). We can categorize number system as
below:

- Binary number system (r = 2)
- Octal Number System (r = 8)
- Decimal Number System (r = 10)
- Hexadecimal Number system (r = 16)

Number system conversions (quite easy guys, do it on your own)

Decimal Representation
We can normally represent decimal numbers in one of following two ways

- By converting into binary
- By using BCD codes

By converting into binary
Advantage

 Arithmetic and logical calculation becomes easy. Negative numbers can be represented easily.
Disadvantage

 At the time of input conversion from decimal to binary is needed and at the time of output conversion
from binary to decimal is needed.

Therefore this approach is useful in the systems where there is much calculation than input/output.

By using BCD codes

Disadvantage
 Arithmetic and logical calculation becomes difficult to do. Representation of negative numbers is tricky.

Advantage
 At the time of input conversion from decimal to binary and at the time of output conversion from

binary to decimal is not needed.

Therefore, this approach is useful in the systems where there is much input/output than arithmetic and logical
calculation.

For more notes visit https://collegenote.pythonanywhere.com

 Page 3

Alphanumeric Representation
Alphanumeric character set is a set of elements that includes the 10 decimal digits, 26 letters of the alphabet
and special characters such as $, %, + etc. The standard alphanumeric binary code is ASCII(American Standard
Code for Information Interchange) which uses 7 bits to code 128 characters (both uppercase and lowercase
letters, decimal digits and special characters).

Complements

NOTE: Decimal digits in ASCII can be
converted to BCD by removing the
three higher order bits, 011.

(r-1)'s Complement
(r-1)'s complement of a number N is defined as
(rn -1) –N
Where N is the given number

r is the base of number system
n is the number of digits in the given
number

To get the (r-1)'s complement fast, subtract each
digit of a number from (r-1).

Example:

- 9's complement of 835 10 is 164 10 (Rule:
(10n -1) –N)

- 1's complement of 1010 2 is 0101 2 (bit by
bit complement operation)

r's Complement
r's complement of a number N is defined as rn –N
Where N is the given number
 r is the base of number system

n is the number of digits in the given
number

To get the r's complement fast, add 1 to the low-
order digit of its (r-1)'s complement.

Example:

- 10's complement of 83510 is 16410 + 1 =
16510

- 2's complement of 10102 is 01012 + 1 =
01102

For more notes visit https://collegenote.pythonanywhere.com

 Page 4

Subtraction of unsigned Numbers (Using complements)
When subtraction is implemented in digital hardware, borrow-method is found to be less efficient than the
method that uses complements. The subtraction of two n-digit unsigned numbers M-N (N≠0) in base r can be
done as follows:

There is no end carry, so answer is negative 59282 = 10's complement of 40718.

Subtraction with complements is done with binary numbers in similar manner using same procedure outlined
above.
NOTE: negative numbers are recognized by the absence of the end carry and the complemented result.

Fixed-Point Representation
Positive integers, including 0 can be represented as unsigned numbers. However for negative numbers, we use
convention of representing left most bit of a number as a sign-bit: 0 for positive and 1 for negative. In addition,
to represent fractions, integers or mixed integer-fraction numbers, number may have a binary (or decimal)
point. There are two ways of specifying the position of a binary point in a resister:

 by employing a floating-point notation.(discussed later)
 by giving it a fixed position (hence the name)

o A binary point in the extreme left of the resister to make the stored number a fraction.
o A binary point in the extreme right of a resister to make the stored number an integer.

Integer representation
There is only one way of representing positive numbers with sign-bit 0 but when number is negative the sign is
represented by 1 and rest of the number may be represented in one of three possible ways:

 Signed magnitude representation

For more notes visit https://collegenote.pythonanywhere.com

 Page 5

 Signed 1’s complement representation
 Signed 2’s complement representation

Signed magnitude representation of a negative number consists of the magnitude and a negative sign. In other
two representations, the negative number is represented in either 1's or 2's complement of its positive value.

Examples: Representing negative numbers

Arithmetic addition and subtraction of signed numbers

Addition
Mostly signed 2's complement system is used. So, in this system only addition and complementation is used.
Procedure: add two numbers including sign bit and discard any carry out of the sign bit position. (note:
negative numbers initially be in the 2's complement and that if the sum obtained after the addition is negative,
it is in 2's complement form).

Subtraction
Subtraction of two signed binary numbers is done as: take the 2's complement of the subtrahend (including the
sign bit) and add it to the minuend (including the sign-bit). The carry out of the sign bit position is discarded.

Idea: subtraction operation can be changed to the addition operation if the sign of the subtrahend is changed:

Example: (-6)-(-13) = +7, in binary with 8-bits this is written as:
 -6 → 11111010
 -13 → 11110011 (2's complement form)
Subtraction is changed to addition by taking 2's complement of the subtrahend (-13) to give (+13).
 -6 → 11111010
 +13 → 00001101

 +7 → 100000111 (discarding end carry).

Signed Magnitude Notation
 Complement only the

sign bit
 Example:

+9 0 001001
-9 1 001001

Signed 1’s complement Notation
 Complement all the bits

including sign bit.
 Example:

+9 0 001001
-9 1 110110

Signed 2’s complement Notation
 Take the 2's complement

of the number, including
its sign bit

 Example:
+9 0 001001
-9 1 110111

In each of the 4 cases, the operation performed
is always addition, including the sign-bits. Any
carry out of the sign bit is discarded and negative
results are automatically in 2's complement form.

For more notes visit https://collegenote.pythonanywhere.com

 Page 6

Overflow
When two numbers of n digits are added and the sum occupies n+1 digits, we say that an overflow has
occurred. A result that contains n+1 bits can't be accommodated in a resister with a standard length of n-bits.
For this reason many computers detect the occurrence of an overflow setting corresponding flip-flop.
An overflow may occur if two numbers added are both positive or both negative. For example: two signed
binary numbers +70 and +80 are stored in two 8-bit resisters.

Since the sum of numbers 150 exceeds the capacity of the resister (since 8-bit resister can store values ranging
from +127 to -128), hence the overflow.

Overflow detection
An overflow condition can be detected by observing two carries: carry into the sign bit position and carry out of
the sign bit position.

Hey boys, consider example of above 8-bit resister, if we take the carry out of the sign bit position as a sign
bit of the result, 9-bit answer so obtained will be correct. Since answer can not be accommodated within 8-bits,
we say that an overflow occurred.

If these two carries are equal ==> no overflow
If these two carries are not same ==> overflow condition is produced.

If two carries are applied to an exclusive-OR gate, an overflow will be detected when output of the gate is equal
to 1.

Decimal Fixed-Point Representation
Decimal number representation = f(binary code used to represent each decimal digit). Output of this function is
called the Binary coded Decimal (BCD). A 4-bit decimal code requires 4 flip-flops for each decimal digit.
Example: 4385 = (0100 0011 1000 0101)BCD

While using BCD representation,
Disadvantages:

 wastage of memory (Viz. binary equivalent of 4385 uses less bits than its BCD representation)
 Circuits for decimal arithmetic are quite complex.

Advantages:
 Eliminate the need for conversion to binary and back to decimal. (since applications like Business data

processing requires less computation than I/O of decimal data, hence electronic calculators perform
arithmetic operations directly with the decimal data (in binary code))

For the representation of signed decimal numbers in BCD, sign is also represented with 4-bits, plus with 4 0's
and minus with 1001 (BCD equivalent of 9). Negative numbers are in 10's complement form.

RULE: While adding if nibble (4-bit)-result > 9, 0110 (15-9 = 6) is added to the result and formatting 5-bit
ultimate sum with two nibbles, we get the actual BCD sum. On 8-bit sum (two nibbles), most significant nibble
is propagated to next nibble position as carry and residue (Least significant nibble) will be the result for that
position.

For more notes visit https://collegenote.pythonanywhere.com

 Page 7

Consider the addition: (+375) + (-240) = +135 [0positive, 9negative in case of radix 10]
 0 375 (0000 0011 0111 0101)BCD

 + 9 760 (1001 0111 0110 0000)BCD

 -- ---
 0 135 (0000 0001 0011 0101)BCD (Will be explained in class)
Floating-Point Representation
The floating-point representation of a number has two parts: mantissa and exponent
Mantissa : represents a signed, fixed-point number. May be a fraction or an integer
Exponent: designates the position of the decimal (or binary) point

Example1: decimal number +6132.789 is represented in floating-point as:
 Fraction exponent
 +0.6132789 +04
Floating-point is interpreted to represent a number in the form: m * r e. Only the mantissa m and exponent e
are physically represented in resisters. The radix r and the radix-point position are always assumed.
Example2: binary number +1001.11 is represented with an 8-bit fraction and 6-bit exponent as,
 Fraction exponent
 +01001110 000100
or equivalently,
 m * 2e = +(.1001110)2 * 2+4

Normalization
A floating-point number is said to be normalized if the most significant digit of the mantissa is nonzero. For
example, decimal number 350 is normalized but 00035 is not.

Other Binary codes
Most common type of binary-coded data found in digital computer is explained before. A few additional binary
codes used in digital systems (for special applications) are explained below.

Gray code
The reflected binary or Gray code is used to represent digital data converted from analog information. Gray
code changes by only one bit as it sequences from one number to the next.

Table: 4-bit Gray code

Weighted code (2421)
2421 is an example of weighted code. In this, corresponding bits are multiplied by the weights indicated and
the sum of the weighted bits gives the decimal digit.

For more notes visit https://collegenote.pythonanywhere.com

 Page 8

Example: 1101 when weighted by the respective digits 2421 gives 2*1+4*1+2*0+1*1 = 7.

NOTE: Ladies and gentlemen…, you have already studied about BCD codes. BCD can be assigned the weights
8421 and for this reason it is sometimes called 8421 code.

Excess-3 codes
The excess-3 code is a decimal code used in older computers. This is un-weighted code.
Excess-3 code = BCD binary equivalent + 3(0011)
NOTE: excess-n code is possible adding n to the corresponding BCD equivalent.

Excess-3 Gray
In ordinary Gray code, the transition from 9 back to 0 involves a change of three bits (from 1101 to 0000). To
overcome this difficulty, we start from third entry 0010 (as first number) up to the twelfth entry 1010, there by
change of only one bit is possible upon transition from 1010 to 0010. Since code has been shifted up three
numbers, it is called the excess-3 Gray.

Table: 4 different binary codes for the decimal digit

Error Detection Codes
Binary information transmitted through some form of communication medium is subject to external noise that
could change bits from 1 to 0 and vice versa. An error detection code is a binary code that detects digital errors
during transmission. The detected errors can not be corrected but their presence is indicated. The most
common error detection code used is the parity bit. A parity bit(s) is an extra bit that is added with original
message to detect error in the message during data transmission.

Even Parity
One bit is attached to the information so that the total number of 1 bits is an even number.

 Message Parity
 1011001 0
 1010010 1

For more notes visit https://collegenote.pythonanywhere.com

 Page 9

Odd Parity
One bit is attached to the information so that the total number of 1 bits is an odd number.

 Message Parity
 1011001 1
 1010010 0
Parity generator
Parity generator and checker networks are logic circuits constructed with exclusive-OR functions. Consider a 3-
bit message to be transmitted with an odd parity bit. At the sending end, the odd parity is generated by a parity
generator circuit. The output of the parity checker would be 1 when an error occurs i.e. no. of 1’s in the four
inputs is even.

P = x⊕y⊕z

Message (xyz) Parity bit (odd)
000 1
001 0
010 0
011 1
100 0
101 1
110 1
111 0

Parity Checker
Considers original message as well as parity bit
e = p⊕x⊕y⊕z
e= 1 => No. of 1’s in pxyz is even => Error in data
e= 0 => No. of 1’s in pxyz is odd => Data is error free

Circuit diagram for parity generator and parity checker

Fig: Error detection with odd parity bit.

For more notes visit https://collegenote.pythonanywhere.com

 Page 10

EXERCISES: Text Book chapter3 3.15, 3.17, 3.22, 3.26

3.15 (Solution)

3.17 HINT: see notes
3.22 (Solution)

3.26 (Solution)

For more notes visit https://collegenote.pythonanywhere.com

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

