
Design and Analysis of
Algorithms
(CSC-314)

B.Sc. CSIT

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

● A program is call iterative when there is a loop (or
repetition).

● Example: Program to find the factorial of a number
● Time complexity of iteration can be found by finding the

number of cycles being repeated inside the loop.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

 Euclidean algorithm:
● The Euclidean algorithm is one of the oldest numerical

algorithms still to be in common use.
● It solves the problem of computing the greatest common

divisor (gcd) of two positive integers.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Euclidean algorithm by subtraction
● The original version of Euclid’s algorithm is based on subtraction: we

recursively subtract the smaller number from the larger.

Greatest common divisor by subtraction.
– 1 def gcd(a, b):
– 2 if a == b:
– 3 return a
– 4 if a > b:
– 5 gcd(a - b, b)
– 6 else:
– 7 gcd(a, b - a)

● Let’s estimate this algorithm’s time complexity (based on n = a+b). The number
of steps can be linear, for e.g. gcd(x, 1), so the time complexity is O(n).

● This is the worst-case complexity, because the value x + y decreases with
every step.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Euclidean algorithm by division
● Let’s start by understanding the algorithm and then go on to

prove its correctness.
● For two, given numbers a and b, such that a ≥b:

– if b=a, then gcd(a, b) = b,
– otherwise gcd(a, b) = gcd(b, a mod b).

● Greatest common divisor by dividing.
– 1 def gcd(a, b):
– 2 if a % b == 0:
– 3 return b
– 4 else:
– 5 return gcd(b, a % b)

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Euclidean algorithm by division

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

You are given two positive numbers M and N. The task is to print greatest
common divisor of M’th and N’th Fibonacci Numbers.

● The first few Fibonacci Numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
……..

● Note that 0 is considered as 0’th Fibonacci Number.
● Example 1:

– Input : M = 3, N = 6
– Output : 2
– Fib(3) = 2, Fib(6) = 8
– GCD of above two numbers is 2

● Example 2:
– Input : M = 8, N = 12
– Output : 3
– Fib(8) = 21, Fib(12) = 144
– GCD of above two numbers is 3

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

● For Fibonacci Numbers do at your own.

We have covered sufficient examples in chapter one.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Sequential Search and its analysis
● Linear / sequential search is a very simple search

algorithm. In this type of search, a sequential search is
made over all items one by one.

● Every item is checked and if a match is found then that
particular item is returned, otherwise the search continues
till the end of the data collection.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Sequential Search and its analysis

● Sequential search, or linear search, is a search algorithm implemented on
lists.

● It is one of the most intuitive approaches to search: simply look at all
entries in order until the element is found.

● Given a target value, the algorithm iterates through every entry on the list
and compares it to the target. If they match then it is a successful search
and the algorithm returns true.

● If the end of the list is reached and no match was found, it is an
unsuccessful search and the algorithm returns false.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Given a list L of length n with the ith element denoted Li, and a target value
denoted T:

 for i from 0 to n−1:

 if Li=T:

 return i

return −1

– The basic and dominant operation of sequential search (and search
algorithms in general) is comparison. Thus we can measure the running
time of this algorithm by counting the number of comparisons it makes
given a list of size n. i.e. O(n).

– The algorithm is iterative, meaning the only space needed is the single
variable that keeps track of the index of the current element being
checked. As such, sequential search always has a constant spatial
complexity O(1).

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Sorting Algorithms:

● A Sorting Algorithm is used to rearrange a given array or list elements
according to a comparison operator on the elements.

● The comparison operator is used to decide the new order of element in the
respective data structure.

● For example: The below list of characters is sorted in increasing order of
their ASCII values. That is, the character with lesser ASCII value will be
placed first than the character with higher ASCII value.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Sorting Algorithms:

● Sorting Algorithms are methods of reorganizing a large number of items
into some specific order such as highest to lowest, or vice-versa, or even in
some alphabetical order.

● These algorithms take an input list, processes it (i.e, performs some
operations on it) and produce the sorted list.

● The most common example we experience every day is sorting clothes or
other items on an e-commerce website either by lowest-price to highest, or
list by popularity, or some other order.

● Some Examples of sorting algorithms are:

– Bubble Sort,

– Selection Sort and

– Insertion Sort

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Sorting Algorithms:

● Sorting Algorithms are methods of reorganizing a large number of items
into some specific order such as highest to lowest, or vice-versa, or even in
some alphabetical order.

● These algorithms take an input list, processes it (i.e, performs some
operations on it) and produce the sorted list.

● The most common example we experience every day is sorting clothes or
other items on an e-commerce website either by lowest-price to highest, or
list by popularity, or some other order.

● Some Examples of sorting algorithms are:

– Bubble Sort,

– Selection Sort and

– Insertion Sort

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Bubble Sort:

● Bubble sort, also referred to as comparison sort, is a simple sorting algorithm
that repeatedly goes through the list, compares adjacent elements and swaps
them if they are in the wrong order.

● This is the most simplest algorithm and inefficient at the same time.

● Yet, it is very much necessary to learn about it as it represents the basic
foundations of sorting.

● Understand the working of Bubble sort

– Bubble sort is mainly used in educational purposes for helping students
understand the foundations of sorting.

– This is used to identify whether the list is already sorted. When the list is
already sorted (which is the best-case scenario), the complexity of bubble
sort is only O(n).

– In real life, bubble sort can be visualised when people in a queue wanting to
be standing in a height wise sorted manner swap their positions among
themselves until everyone is standing based on increasing order of heights.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Bubble Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Bubble Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Bubble Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Selection Sort

● Selection sort is a simple comparison-based sorting algorithm. It is in-place
and needs no extra memory.

● The idea behind this algorithm is pretty simple. We divide the array into two
parts: sorted and unsorted. The left part is sorted subarray and the right
part is unsorted subarray. Initially, sorted subarray is empty and unsorted
array is the complete given array.

● We perform the steps given below until the unsorted subarray becomes
empty:

– Pick the minimum element from the unsorted subarray.

– Swap it with the leftmost element of the unsorted subarray.

– Now the leftmost element of unsorted subarray becomes a part
(rightmost) of sorted subarray and will not be a part of unsorted
subarray.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Selection Sort

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Selection Sort

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Selection Sort

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Selection Sort

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

● Insertion sort is the sorting mechanism where the sorted array is built
having one item at a time.

● The array elements are compared with each other sequentially and then
arranged simultaneously in some particular order.

● The analogy can be understood from the style we arrange a deck of cards.
This sort works on the principle of inserting an element at a particular
position, hence the name Insertion Sort.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

● Insertion sort is a simple sorting algorithm that works similar to the way you
sort playing cards in your hands. The array is virtually split into a sorted and
an unsorted part. Values from the unsorted part are picked and placed at
the correct position in the sorted part.

● Algorithm : To sort an array of size n in ascending order:

1: Iterate from arr[1] to arr[n] over the array.

2: Compare the current element (key) to its predecessor.

3: If the key element is smaller than its predecessor, compare it to the
elements before. Move the greater elements one position up to make
space for the swapped element.

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Insertion Sort:

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Unit-2: Iterative Algorithms

Design and Analysis of Algorithms (CSC-314)

Assignment:
● Discuss Binary Euclidean algorithm to find GCD and also

mention its complexity.
●

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

