
 Page 1

Unit 2
Microoperations

Combinational and sequential circuits can be used to create simple digital systems. These are the low-level
building blocks of a digital computer. The operations on the data in registers are called microoperations.
Examples of micro-operations are

• Shift
• Load
• Clear
• Increment

Alternatively we can say that an elementary operation performed during one clock pulse on the information
stored in one or more registers is called micro-operation. The result of the operation may replace the previous
binary information of the resister or may be transferred to another resister. Register transfer language can be
used to describe the (sequence of) micro-operations.

Microoperation types
The microoperations most often encountered in digital computers are classified into 4 categories:

1. Register transfer microoperations
2. Arithmetic microoperations
3. Logic microoperations
4. Shift microoperations

1. Resister transfer microoperations
Registers are designated by capital letters, sometimes followed by numbers (e.g., A, R13, IR). Often the names
indicate function:

MAR memory address register
PC program counter
IR instruction register

Information transfer from one register to another is described in symbolic form by replacement operator. The
statement “R2 R1” denotes a transfer of the content of the R1 into resister R2.

Control Function
Often actions need to only occur if a certain condition is true. In digital systems, this is often done via a control
signal, called a control function.

Example: P: R2 R1 i.e. if (P = 1) then (R2 R1)
 Which means “if P = 1, then load the contents of register R1 into register R2”.
If two or more operations are to occur simultaneously, they are separated with commas.

Example: P: R3 R5, MAR IR

For more notes visit https://collegenote.pythonanywhere.com

 Page 2

2. Arithmetic microoperations

• The basic arithmetic microoperations are
– Addition
– Subtraction
– Increment
– Decrement

• The additional arithmetic microoperations are
– Add with carry
– Subtract with borrow
– Transfer/Load

Summary of typical arithmetic microoperations

Binary Adder
To implement the add microoperation with hardware, we need the resisters that hold the data and the digital
component that performs the arithmetic addition. The digital circuit that generates the arithmetic sum of two
binary numbers of any lengths is called Binary adder. The binary adder is constructed with the full-adder circuit
connected in cascade, with the output carry from one full-adder connected to the input carry of the next full-
adder.

Fig.: 4-bit binary adder

An n-bit binary adder requires n full-adders. The output carry from each full-adder is connected to the input
carry of the next-high-order-full-adder. Inputs A and B come from two registers R1 and R2.

For more notes visit https://collegenote.pythonanywhere.com

 Page 3

Binary Subtractor
The subtraction A – B can be done by taking the 2's complement of B and adding to A. It means if we use the
inverters to make 1’s complement of B (connecting each Bi to an inverter) and then add 1 to the least significant
bit (by setting carry C0 to 1) of binary adder, then we can make a binary subtractor.

fig.: 4-bit binary subtractor

Binary Adder-Subtractor
Question: How binary adder and subtractor can be accommodated into a single circuit? explain.
The addition and subtraction operations can be combined into one common circuit by including an exclusive-OR
gate with each full-adder.

 Fig.: 4-bit adder-subtractor

The mode input M controls the operation the operation. When M=0, the circuit is an adder and when M=1 the
circuit becomes a subtractor. Each exclusive-OR gate receives input M and one of the inputs of B.

• When M=0: B ⊕ M = B ⊕ 0 = B, i.e. full-adders receive the values of B, input carry is B and circuit
performs A+B.

• When M=1: B ⊕ M = B ⊕ 1 = B' and C 0= 1, i.e. B inputs are all complemented and 1 is added through
the input carry. The circuit performs A + (2's complement of B).

For more notes visit https://collegenote.pythonanywhere.com

 Page 4

Binary Incrementer
The increment microoperation adds one to a number in a register. For example, if a 4-bit register has a binary
value 0110, it will go to 0111 after it is incremented. Increment microoperation can be done with a
combinational circuit (half-adders connected in cascade) independent of a particular register.

Fig.: 4-bit binary Incrementer

Arithmetic Circuit
The arithmetic microoperations can be implemented in one composite arithmetic circuit. By controlling the
data inputs to the adder (basic component of an arithmetic circuit), it is possible to obtain different types of
arithmetic operations.

In the circuit below contains:

• 4 full-adders
• 4 multiplexers (controlled by selection inputs S0 and S1)
• two 4-bit inputs A and B and a 4-bit output D
• Input carry cin goes to the carry input of the full-adder.

Output of the binary adder is calculated from the arithmetic sum: D = A + Y + cin .

By controlling the value of Y with the two selection inputs S1 & S0 and making cin= 0 or 1, it is possible to
generate the 8 arithmetic microoperations listed in the table below:

For more notes visit https://collegenote.pythonanywhere.com

 Page 5

Fig: 4-bit arithmetic circuit

For more notes visit https://collegenote.pythonanywhere.com

 Page 6

3. Logic microoperations
Question: What do you mean by Logic microoperations? Explain with its applications.
Question: How Logic microoperations can be implemented with hardware?
Logic microoperations are bit-wise operations, i.e., they work on the individual bits of data. Useful for bit
manipulations on binary data and for making logical decisions based on the bit value. There are, in principle, 16
different logic functions that can be defined over two binary input variables. However, most systems only
implement four of these

– AND (^), OR (۷), XOR (⊕), Complement/NOT
The others can be created from combination of these four functions.

Hardware implementation
Hardware implementation of logic microoperations requires that logic gates be inserted be each bit or pair of
bits in the resisters to perform the required logic operation.

Applications of Logic Microoperations

Logic microoperations can be used to manipulate individual bits or a portion of a word in a register. Consider
the data in a register A. Bits of register B will be used to modify the contents of A.

– Selective-set A A + B
– Selective-complement A A ⊕ B
– Selective-clear A A • B’
– Mask (Delete) A A • B
– Clear A A ⊕ B
– Insert A (A • B) + C
– Compare A A ⊕ B

For more notes visit https://collegenote.pythonanywhere.com

 Page 7

Selective-set
In a selective set operation, the bit pattern in B is used to set certain bits in A.
 1 1 0 0 At

 1 0 1 0 B

 1 1 1 0 At+1 (A A + B)
Bits in resister A are set to 1 when there are corresponding 1's in resister B. It does not affect the bit positions
that have 0's in B.

Selective-complement
In a selective complement operation, the bit pattern in B is used to complement certain bits in A.
 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A A ⊕ B)
If a bit in B is 1, corresponding position in A get complemented from its original value, otherwise it is
unchanged.

Selective-clear
In a selective clear operation, the bit pattern in B is used to clear certain bits in A.
 1 1 0 0 At

 1 0 1 0 B

 0 1 0 0 At+1 (A A • B')
If a bit in B is 1, corresponding position in A is set to 0, otherwise it is unchanged.

Mask Operation
In a mask operation, the bit pattern in B is used to clear certain bits in A.
 1 1 0 0 At

 1 0 1 0 B

 1 0 0 0 At+1 (A A • B)
If a bit in B is 0, corresponding position in A is set to 0, otherwise it is unchanged. This is achieved logically
ANDing the corresponding bits of A and B.

Clear Operation
In clear operation, if the bits in the same position in A and B same, that bit in A is cleared (putting 0 there),
otherwise same bit in A is set(putting 1 there). This operation is achieved by exclusive-OR microoperation.
 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A A ⊕ B)

Insert Operation
An insert operation is used to introduce a specific bit pattern into A register, leaving the other bit positions
unchanged.

For more notes visit https://collegenote.pythonanywhere.com

 Page 8

This is done as
– A mask (ANDing) operation to clear the desired bit positions, followed by
– An OR operation to introduce the new bits into the desired positions
– Example

» Suppose you want to introduce 1010 into the low order four bits of A:

 1101 1000 1011 0001 A (Original)
 1101 1000 1011 1010 A (Desired)

 1101 1000 1011 0001 A (Original)
 1111 1111 1111 0000 B (Mask)

 1101 1000 1011 0000 A (Intermediate)
 0000 0000 0000 1010 Added bits

 1101 1000 1011 1010 A (Desired)

4. Shift microoperations
Question: What do you mean by shift microoperations? Explain its types.
Question: Is there a possibility of Overflow during arithmetic shift? If yes, how it can be detected?
Shift microoperations are used for serial transfer of data. They are also used in conjunction with arithmetic,
logic and other data processing operations. The contents of a resister can be shifted left or right. There are
three types of shifts

1. Logical shift
2. Circular shift
3. Arithmetic shift

Right Shift Operation

Left shift operation

1. Logical shift
A logical shift is one that transfers 0 through the serial input. In a Register Transfer Language, the following
notation is used

– shl for a logical shift left
– shr for a logical shift right

Examples:

R2 shr R2

Serial
input

Serial
input

For more notes visit https://collegenote.pythonanywhere.com

 Page 9

R3 shl R3

Logical right shift (shr)

Logical left shift (shl)

2. Circular Shift (rotate operation)
Circular-shift circulates the bits of the resister around the two ends without the loss of information.

Right circular shift operation

Left circular shift operation:

In a RTL, the following notation is used

• cil for a circular shift left
• cir for a circular shift right
• Examples:

R2 cir R2
R3 cil R3

3. Arithmetic shift
An arithmetic shift is meant for signed binary numbers (integer). An arithmetic left shift multiplies a signed
number by 2 and an arithmetic right shift divides a signed number by 2. Arithmetic shifts must leave the sign bit
unchanged because the sign of the number remains the same when it is multiplied or divided by 2. The left
most bit in a resister holds a sign bit and remaining hold the number. Negative numbers are in 2's complement
form.
In a Resister Transfer Language, the following notation is used

– ashl for an arithmetic shift left
– ashr for an arithmetic shift right
– Examples:

» R2 ashr R2
» R3 ashl R3

0

0

For more notes visit https://collegenote.pythonanywhere.com

 Page 10

Arithmetic shift-right
Arithmetic shift-right leaves the sign bit unchanged and shifts the number (including a sign bit) to the right.
Thus Rn-1 remains same; Rn-2 receives input from Rn-1 and so on.

Arithmetic shift-left
Arithmetic shift-left inserts a 0 into R0 and shifts all other bits to left. Initial bit of R n-1 is lost and replaced by the
bit from Rn-2.

Overflow case during arithmetic shift-left:
If a bit in Rn-1 changes in value after the shift, sign reversal occurs in the result. This happens if the multiplication
by 2 causes an overflow.
Thus, left arithmetic shift operation must be checked for the overflow: an overflow occurs after an arithmetic
shift-left if before shift Rn-1≠Rn-2.

Hardware implementation of shift microoperations
A combinational circuit shifter can be constructed with multiplexers as shown below:

 Fig: 4-bit combinational circuit shifter

V
Before the shift, if the leftmost
two bits differ, the shift will
result in an Overflow

An overflow flip-flop V can be used to
detect an arithmetic shift-left overflow.
 V = Rn-1 ⊕ Rn-2

If V = 0, there is no overflow but if V = 1,
overflow is detected.

 It has 4 data inputs A0 through A3

and 4 data outputs H0 through H3.
 There are two serial inputs, one for

shift-left (I L) and other for shift-right
(IR).

 When S = 0: input data are shifted
right (down in fig).

 When S = 1: input data are shifted
left (up in fig).

For more notes visit https://collegenote.pythonanywhere.com

 Page 11

Arithmetic Logic Shift Unit
This is a common operational unit called arithmetic logic unit (ALU). To perform a microoperation, the contents
of specified registers are placed in the inputs of the common ALU. The ALU performs the operation and transfer
result to destination resister.

 Fig: One stage of arithmetic logic shift unit

Table: Function table for Arithmetic logic shift unit

 A particular microoperation is
selected with inputs s1 and s0.

 A 4x1 MUX at the output chooses
between an arithmetic output in Di
and logic output Ei.

 Other two inputs to the MUX receive
inputs Ai-1 for right-shift operation
and Ai+1 for left-shift operation.

 The diagram shows just one typical
stage. The circuit must be repeated n
times for an n-bit ALU.

This circuit provides 8 arithmetic
operations, 4 logic operations and 2
shift operations. Each operation is
selected with five variables s3, s2, s1,
s0 and cin. The input carry cin is used
for arithmetic operations only. Table
below lists the 14 operations of the
ALU.

For more notes visit https://collegenote.pythonanywhere.com

 Page 12

EXERCISES: Textbook chapter 4 4.8, 4.13, 4.17, 4.18, 4.19, 4.21

4.8(Solution)

4.13(Solution)

4.17(Solution)

4.18(Solution)

4.19(do it yourself)
4.21(do it too)

For more notes visit https://collegenote.pythonanywhere.com

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

