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Unit 3 
Basic Computer Organization and Design 

 
 

Introduction 
We  introduce  here  a  basic  computer  whose  operation  can  be  specified  by  the  resister  transfer 
statements.  Internal  organization  of  the  computer  is  defined  by  the  sequence  of  microoperations  it 
performs on data stored  in its  resisters. Every  different processor type has its own design (different 
registers,  buses,  microoperations,  machine  instructions,  etc).  Modern  processor  is  a  very  complex 
device. It contains: 

– Many registers 
– Multiple arithmetic units, for both integer and floating point calculations 
– The ability to pipeline several consecutive instructions for execution speedup. 

However,  to  understand  how  processors  work,  we  will  start  with  a  simplified  processor  model.  M. 
Morris Mano introduces a simple processor model; he calls it a “Basic Computer”. The Basic Computer 
has two components, a processor and memory 

• The memory has 4096 words in it 
– 4096 = 212, so it takes 12 bits to select a word in memory 

• Each word is 16 bits long 
 
Instruction code and Stored program organization 
Question: What do you understand by stored program organization? 
Question: What is instruction and instruction format? 
Instruction  code  is  a  group  of  bits  that  instructs  the  computer  to  perform  a  specific  operation.  It  is 
usually divided into parts. Most basic part is operation (operation code). Operation code is group of 
bits  that  defines  operations  as  add,  subtract,  multiply,  shift,  complement  etc.  The  instructions  of  a 
program, along with any needed data are stored in memory. The CPU reads the next instruction from 
memory. It is placed in an Instruction Register (IR). Control circuitry in control unit then translates the 
instruction into the sequence of microoperations necessary to implement it.  Stored program concept 
is the ability to store and execute instructions. 
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Instruction Format of Basic Computer 
A computer instruction is often divided into two parts 

– An opcode (Operation Code) that specifies the operation for that instruction 
– An address that specifies the registers and/or locations in memory to use for that 

operation 
In the Basic Computer, since the memory contains 4096 (= 2 12) words, we needs 12 bit to specify the 
memory  address  that  is  used  by  this  instruction.  In  the  Basic  Computer,  bit  15  of  the  instruction 
specifies the addressing mode (0: direct addressing, 1: indirect addressing). Since the memory words, 
and hence the instructions, are 16 bits long, that leaves 3 bits for the instruction’s opcode. 

 
 

 
 
 
 
 

Addressing Modes 
The address field of an instruction can represent either 

– Direct address: the address operand field is effective address (the address of the 
operand) or, 

– Indirect address: the address in operand field contains the memory address where 
effective address resides.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effective Address (EA): The address, where actual data resides is called effective address. 
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Basic Computer Registers 
Computer  instructions  are  normally  stored  in  the  consecutive  memory  locations  and  are  executed 
sequentially  one  at  a  time.  Thus  computer  needs  processor  resisters  for  manipulating  data  and 
holding memory address which are shown in the following table: 
 

Symbol Size Register Name Description 
DR 16        Data Register Holds memory operand 
AR 12        Address Register         Holds address for memory 
AC 16        Accumulator Processor register 
IR 16      Instruction Register     Holds instruction code 
PC 12        Program Counter Holds address of instruction 
TR 16         Temporary Register     Holds temporary data 
INPR 8         Input Register              Holds input character 
OUTR 8 Output Register            Holds output character 

 
Since the memory in the Basic Computer only has 4096 (=212) locations, PC and AR only needs 12 bits 
Since the word size of Basic Computer only has 16 bit, the DR, AC, IR and TR needs 16 bits. The Basic 
Computer uses a very simple model of input/output (I/O) operations 

– Input devices are considered to send 8 bits of character data to the processor 
– The processor can send 8 bits of character data to output devices 

The Input Register (INPR) holds an 8 bit character gotten from an input device and the Output Register 
(OUTR) holds an 8 bit character to be sent to an output device. 
 
Common Bus system of Basic computer 
The registers in the Basic Computer are connected using a bus. This gives a savings in circuitry over 
complete connections between registers. Three control lines, S2, S1, and S0 control which register the 
bus selects as its input. 
 

 
 S2 S1 S0 Register 

0   0   0  X (nothing) 
0   0   1     AR 
0   1   0     PC 
0   1   1  DR 
1   0   0    AC 
1   0   1    IR 
1   1   0     TR 
1   1   1    Memory 

Either one of the registers will have its load signal 
activated, or the memory will have its read signal 
activated which will determine where the data 
from the bus gets loaded. The 12-bit registers, AR 
and PC, have 0’s loaded onto the bus in the high 
order 4 bit positions. When the 8-bit register OUTR 
is loaded from the bus, the data comes from the 
low order 8 bits on the bus. 
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Fig: Basic computer resister connected in a common bus. 
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Instruction Formats of Basic Computer 
Question: What are different instruction format used basic computer? 
Question: What is instruction set completeness? Is instruction set of basic computer complete?  
The  basic  computer  has  3  instruction  code  formats.  Type  of  the  instruction  is  recognized  by  the 
computer control from 4-bit positions 12 through 15 of the instruction. 
 

 

 
 

 

 
 

 

 
 

Instruction Set Completeness 
An instruction set is said to be complete if it contains sufficient instructions to perform operations in 
following categories: 
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Functional Instructions 
• Arithmetic, logic, and shift instructions 
• Examples: ADD, CMA, INC, CIR, CIL, AND, CLA 

Transfer Instructions 
• Data transfers between the main memory and the processor registers 
• Examples: LDA, STA 

Control Instructions 
• Program sequencing and control 
• Examples: BUN, BSA, ISZ 

Input/output Instructions 
• Input and output 
• Examples: INP, OUT 

 
Instruction set of Basic computer is complete because: 

 ADD,  CMA  (complement),  INC  can  be  used  to  perform  addition  and  subtraction  and  CIR 
(circular right shift), CIL (circular left shift) instructions can be used to achieve any kind of shift 
operations.  Addition  subtraction  and  shifting  can  be  used  together  to  achieve  multiplication 
and  division.  AND,  CMA  and  CLA  (clear  accumulator)  can  be  used  to  achieve  any  logical 
operations. 

 LDA  instruction  moves  data  from  memory  to  register  and  STA  instruction  moves  data  from 
register to memory. 

 The branch instructions BUN, BSA and ISZ together with skip instruction provide the 
mechanism of program control and sequencing. 

 INP instruction is used to read data from input device and OUT instruction is used to send data 
from processor to output device. 

 
Instruction Processing & Instruction Cycle (of Basic computer) 
 
Control Unit 
Control  unit  (CU)  of  a  processor  translates  from  machine  instructions  to  the  control  signals  for  the 
microoperations that implement them. There are two types of control organization: 
Hardwired Control 

 CU is made up of sequential and combinational circuits to generate the control signals. 
 If logic is changed we need to change the whole circuitry 
 Expensive 
 Fast 

Microprogrammed Control 
 A  control  memory  on  the  processor  contains microprograms  that  activate  the  necessary 

control signals 
 If logic is changed we only need to change the microprogram 
 Cheap 
 Slow 

 
NOTE: Microprogrammed control unit will be discussed in next chapter. 
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Question:  How  basic  computer  translates  machine  instructions  to  control  signals  using  hardwired 
control? Explain with block diagram. (OR Discuss hardwired control unit of basic computer?)  
The block diagram of a hardwired control unit is shown below. It consists of two decoders, a sequence 
counter, and a number of control logic gates. 
 

 
Fig: Control unit of a basic computer 

 
 

Timing signals 
 Generated by 4-bit sequence counter and 4x16 decoder. 
 The SC can be incremented or cleared. 
 Example: T0, T1, T2, T3, T4, T0, T1 . . . 

Assume: At time T4, SC is cleared to 0 if decoder output D3 is active: D3T4: SC 0 

 
 
 

Clock
T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR 
SC

Mechanism:  
 An instruction read from memory is 

placed in the instruction resister 
(IR) where it is decoded into three 
parts: I bit, operation code and bits 
0 through 11. 

 The operation code bit is decoded 
with 3 x 8 decoder producing 8 
outputs D0 through D7. 

 Bit 15 of the instruction is 
transferred to a flip-flop I. 

 And operand bits are applied to 
control logic gates. 

 The 16 outputs of 4-bit sequence 
counter (SC) are decoded into 16 
timing signals T0 through T15.  

This means instruction cycle of basic 
computer can not take more than 16 
clock cycles. 
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Instruction cycle 
In Basic Computer, a machine instruction is executed in the following cycle: 

1. Fetch an instruction from memory 
2. Decode the instruction 
3. Read the effective address from memory if the instruction has an indirect address 
4. Execute the instruction 

Upon  the  completion  of  step  4,  control  goes  back  to  step  1  to  fetch,  decode  and  execute  the  next 
instruction. This process is continued indefinitely until HALT instruction is encountered. 
 
Fetch and decode 
The  microoperations  for  the  fetch  and  decode  phases  can  be  specified  by  the  following  resister 
transfer statements: 

 
 

 
 

Fig: Resister transfers for the fetch phase 
 
 
 

It is necessary to transfer the 
address from PC to AR during 
clock transition associated with 
the timing signal T0. The 
instruction  read  from memory  is 
then placed in IR with clock 
transition associated with the 
timing signal T1. At the same 
time,  PC  is  incremented  by  one 
to prepare for the next 
instruction in the program. At 
time T2, the opcode in IR is 
decoded, the indirect bit is 
transferred to flip-flop I, and the 
address part of the instruction is 
transferred to AR. 
 
NOTE: SC is incremented after 
each  clock  pulse  to  produce  the 
sequence T0, T1 and T2. 
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Determine the type of the instruction 
The timing signal that is active after decoding  is  T 3. During time T 3, the control unit determines the 
type of instruction that was just read from memory. Following flowchart presents an initial 
configuration  for  the  instruction  cycle  and  shows  how  the  control  determines  the  instruction  type 
after decoding.  
 

 
 

Fig: Flowchart for instruction cycle (Initial configuration) 
 
 
Resister transfers needed  for the execution of  resister-reference and memory-reference instructions 
are explained below: (I/O instructions will be discussed later) 
Resister-reference instructions: 
Register Reference Instructions are recognized with 

- D7 = 1,  I = 0 
- Register Ref. Instr. is specified in b0 ~ b11 of IR 
- Execution starts with timing signal T3 

Let 
r = D7 I’T3   => Common to all Register Reference Instruction 
Bi = IR (i), i=0, 1, 2... 11. [Bit in IR(0-11) that specifies the operation] 
 
CLA rB11: AC ←  0, SC ←  0     Clear AC 
CLE rB10: E ←  0, SC ←  0      Clear E 

The  three  instruction types  are  subdivided 
into four separate paths: 
 
 D'7IT3: AR M[AR]  (Indirect address) 
 D'7I'T3: Nothing 
 D7I'T3: Execute register-reference instrs. 
 D7IT3: Execute input-output instructions. 
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CMA rB9: AC ←  AC’, SC ←  0     Complement AC 
CME rB8: E ←  E’, SC ←  0      Complement E 
CIR rB7: AC ←  shr AC, AC(15) ←  E, E ←  AC(0), SC ←  0 Circulate right 
CIL rB6: AC ←  shl AC, AC(0) ←  E, E ←  AC(15), SC  ← 0  Circulate Left 
INC rB5: AC ←  AC + 1, SC ←  0     Increment AC 
SPA rB4: if (AC(15) = 0) then (PC ←  PC+1), SC ←  0  Skip if positive 
SNA rB3: if (AC(15) = 1) then (PC ←  PC+1), SC ←  0  skip if negative 
SZA rB2: if (AC = 0) then (PC ←  PC+1), SC ←  0   skip if AC zero 
SZE rB1: if (E = 0) then (PC ←  PC+1), SC ←  0   skip if E zero 
HLT rB0: S ←  0, SC ←  0   (S is a start-stop flip-flop)  Halt computer 
 
Memory-reference instructions 
 Once an instruction has been loaded to IR, it may require further access to memory to perform its 

intended function (direct or indirect). 
 The effective address of the instruction is in the AR and was placed their during: 

- Time signal T2 when I = 0 or 
- Time signal T3 when I = 1 

 Execution of memory reference instructions starts with the timing signal T4. 
 Described symbolically using RTL. 
 

Symbol Operation Decoder Symbolic Description 
  AND D0 AC ←   AC ∧ M[AR] 
  ADD D1 AC ←   AC + M[AR], E ←  Cout 
  LDA D2 AC ←   M[AR] 
  STA D3 M[AR] ←   AC 
  BUN D4 PC ←   AR 
  BSA D5 M[AR] ←   PC, PC ← AR + 1 
  ISZ D6 M[AR] ←   M[AR] + 1, if M[AR] + 1 = 0 then PC ←  PC+1 
 
AND to AC 
This  instruction  performs  the  AND  logical  operation  on  pairs  of  bits  on  AC  and  the  memory  word 
specified by the effective address. The result is transferred to AC. Microoperations that execute these 
instructions are: 
D0T4: DR ←  M[AR]     //Read operand 
D0T5: AC ←AC ∧ DR, SC ←  0    //AND with AC 
 
ADD to AC 
D1T4: DR ←  M[AR]     //Read operand 
D1T5: AC ←  AC + DR, E ←  Cout, SC ←  0  //Add to AC and stores carry in E 
 
LDA: Load to AC 
D2T4: DR ←  M[AR]     //Read operand 
D2T5: AC ←  DR, SC ←  0    //Load AC with DR 
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STA: Store AC 
D3T4: M[AR] ←  AC, SC ←  0    // store data into memory location 
 
BUN: Branch Unconditionally 
D4T4: PC ←  AR, SC ←  0    //Branch to specified address 
 
BSA: Branch and Save Return Address  
D5T4: M[AR] ←  PC,  AR ←  AR + 1    // save return address and  increment AR 
D5T5: PC ←  AR, SC ←  0     // load PC with AR 
 
ISZ: Increment and Skip-if-Zero 
D6T4: DR ←  M[AR]     //Load data into DR  
D6T5: DR  ← DR + 1     // Increment the data 
D6T4: M[AR] ←  DR,  if (DR = 0) then (PC ←  PC + 1),  SC ←  0 

// if DR=0 skip next instruction by incrementing PC 
 
 
Input-Output and Interrupt  
In computer, instructions and data stored in memory come from some input device and 
Computational results must be transmitted to the user through some output device.  
 
Input-output configuration 
The  terminal  sends  and  receives  serial  information.  Each  quantity  of  information  has  8  bits  of  an 
alphanumeric code. Two basic computer resisters INPR and OUTR communicate with a communication 
interfaces. 
 

 
Fig: Input-output configuration 

 
 

 INPR: Input register - 8 bits 
 OUTR: Output register- 8 bits 
 FGI: Input flag - 1 bit (Is a 

control flip-flop, set to 1 
when new information is 
available) 

 FGO: Output flag - 1 bit 
 IEN: Interrupt enable - 1 bit 
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Scenario1: when a key is struck in the keyboard, an 8-bit alphanumeric code is shifted into INPR and 
the input flag FGI is set to 1. As long as the flag is set, the information in INPR can not be changed by 
striking another key. The control checks the flag bit, if 1, contents of INPR is transferred in parallel to 
AC  and  FGI  is  cleared  to  0.  Once  the  flag  is  cleared,  new  information  can  be  shifted  into  INPR  by 
striking another key. 
Scenario2: OUTR works similarly but the direction of information flow is reversed. Initially FGO is set 
to 1. The computer checks the flag bit; if it is 1, the information is transferred in parallel to OUTR and 
FGO  is  cleared  to  0.  The  output  device  accepts  the  coded  information,  prints  the  corresponding 
character and when operation is completed, it sets FGO to 1. 
 
Input-output Instructions 
I/O instructions are needed to transferring information to and form AC register, for checking the flag 
bits and for controlling the interrupt facility. 
 

 
 
Program Interrupt 

• Input and Output interactions with electromechanical peripheral devices require huge 
processing times compared with CPU processing times 

– I/O (milliseconds) versus CPU (nano/micro-seconds) 
• Interrupts permit other CPU instructions to execute while waiting for I/O to complete 
• The I/O interface, instead of the CPU, monitors the I/O device. 
• When  the  interface  founds  that  the  I/O  device  is  ready  for  data  transfer,  it  generates  an 

interrupt request to the CPU 
• Upon detecting an interrupt, the CPU stops momentarily the task it is doing, branches to the 

service routine to process the data transfer, and then returns to the task it was performing. 
 

Scenario3: consider a computer which completes instruction cycle in 1µs. Assume I/O device that can 
transfer  information  at  the  maximum  rate  of  10  characters/sec.  Equivalently,  one  character  every 
100000µs.  Two  instructions  are  executed  when  computer  checks  the  flag  bit  and  decides  not  to 
transfer information. Which means computer will check the flag 50000 times between each transfer. 
Computer is wasting time while checking the flag instead of doing some useful processing task. 
 
 IEN (Interrupt-enable flip-flop) 

- can be set and cleared by instructions 
- When cleared, the computer cannot be interrupted 
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Interrupt cycle 
This is a hardware implementation of a branch and save return address operation. 
 

 
 

Fig: flowchart of interrupt cycle 
 

 
Fig: Demonstration of interrupt cycle 

 
Resister transfer operations in interrupt cycle 
Register Transfer Statements for Interrupt Cycle 

- R F/F ← 1 if IEN (FGI + FGO) T0’T1’T2’ ↔ T0’T1’T2’ (IEN) (FGI + FGO): R ← 1 
 The  fetch  and  decode  phases  of  the  instruction  cycle  must  be  modified:  Replace  T0,  T1,  T2  with 

R'T0, R'T1, R'T2 
 The interrupt cycle : RT0:  AR ← 0, TR ← PC 

 RT1: M[AR] ← TR, PC ← 0 
 RT2: PC ← PC + 1, IEN ← 0, R ← 0, SC ← 0 

 

 At  the  beginning  of  the  instruction  cycle, 
the  instruction that is  read  from memory 
is in address 1. 

 At memory address 1, the programmer 
must store a branch instruction that sends 
the control to an interrupt service routine 

 The instruction that returns the control to 
the original program is "indirect BUN 0" 
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Complete computer description  
Flowchart 
This is the final flowchart of the instruction cycle including interrupt cycle for the basic computer. 

 
Microoperations  
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Design of Basic Computer (BC) 
 
Hardware Components of BC 

1. A memory unit: 4096 x 16. 
2. Registers: 

AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC 
3. Flip-Flops(Status): 

I, S, E, R, IEN, FGI, and FGO 
4. Decoders:  A 3x8 Opcode decoder 

A 4x16 timing decoder 
5. Common bus: 16 bits 
6. Control logic gates 
7. Adder and Logic circuit: Connected to AC 

Control Logic Gates 
 
 
 
 
 
 
 
 
 
 
 
 
 

Outputs: 
1. Input Controls of the nine registers 
2. Read and Write Controls of memory 
3. Set,  Clear,  or  Complement  Controls 

of the flip-flops 
4. S2, S1, S0 Controls to select a register 

for the bus 
5. AC, and Adder and Logic circuit 

 

Inputs:     
   

1. Two decoder outputs 
2. I flip-flop 
3. IR(0-11) 
4. AC(0-15) 

 To check if AC = 0 
 To detect sign bit AC(15) 

5. DR(0-15) 
 To check if DR = 0 

6. Values of seven flip-flops 
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Control of resisters and memory 
The control inputs of the resisters are LD (load), INR (increment) and CLR (clear). 
 

 Address Resister (AR) 
To derive the gate structure associated with the control inputs of AR: we find all the 
statements that change the contents of AR. 

 

 
 

Fig: Control gates associated with AR 
 

Similarly, control gates for the other resisters as well as the read and write inputs of memory 
can be derived. Viz. the  logic gates associated with the  read  inputs of memory is  derived by 
scanning  all  statements  that  contain  a  read  operation.  (Read  operation  is  recognized  by  the 
symbol M[AR]). 

 
The output of the logic gates that implement the Boolean expression above must be 
connected to the read input of memory. 
 

Control of flip-flops 
The control gates for the seven flip-flops can be determined in a similar manner. 
Example: 

 IEN(Interrupt Enable Flag)  

 
These three instructions can cause IEN flag to change its value. 

For more notes visit https://collegenote.pythonanywhere.com



 Page 17 
 

 
 

Fig: control inputs for IEN 
Control of Common Bus 
The 16-bit common bus is controlled by the selection inputs S 2, S1 and S0. Binary numbers for S2S1S0 is 
associated with a Boolean variable x1 through x7, which must be active in order to select the resister or 
memory for the bus. 

 
Fig: Encoder for Bus Selection Circuit 

Example: when x1 = 1, S2S1S0 must be 001 and thus output of AR will be selected for the bus. 
 
To determine the logic for each encoder input, it is necessary to find the control functions that place 
the corresponding resister onto the bus. 
Example: to find the logic that makes x1 = 1, we scan all resister transfer statements that have AR as a 
source. 

 
Therefore the Boolean function for x1 is, 

 
Similarly, for memory read operation, 
     
 

 
Fig: Encoder for bus selection inputs 
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Design of Accumulator Logic  
To  design  the  logic  associated  with  AC,  we  extract  all  resister  transfer  statements  that  change  the 
contents of AC. The circuit associated with the AC resister is shown below:  
 

 
                  Fig: circuits associated with AC 
 

 
Control of AC Resister 
The gate structure that controls the LD, INR and CLR inputs of AC is shown below:  

 
Fig: Gate structure for controlling LD, INR and CLR of AC 
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Adder and Logic Circuit 
The adder and logic circuit can be subdivided into 16 stages, with each bit corresponding to one bit of 
AC. 

 
 

Fig: One stage of adder and logic circuit 
 

 One stage of the adder and logic circuit consists  of seven AND gates, one OR gate and a full 
adder (FA) as shown above.  

 The input is labeled Ii output AC(i). 
 When LD input is enabled, the 16 inputs Ii for i = 0, 1, 2… 15 are transferred to AC(i). 
 The AND operation is achieved by ANDing AC(i) with the corresponding bit in DR(i). 
 The transfer from INPR to AC is only for bits 0 through 7.  
 The complement microoperation is obtained by inverting the bit value in AC. 
 Shift-right  operation  transfers  bit  from  AC(i+1)  and  shift-left  operation  transfers  the  bit  from 

AC(i-1). 
HEY! : The complete adder and logic circuit consists of 16 stages connected together. 

 
 
 
 
 
 
 
 

This is LD output of 
the gate structure 
which in fact is input 
for AC. (see diagram 
for gate configuration 
for AC register above) 
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EXERCISES: Textbook chapter 5   5.1, 5.2, 5.10, 5.23 
5.1(solution)  

 
 

 
5.10 (Solution) 

 
5.23 (Solution) 
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