
Page 1

Unit 4
Control Unit

In digital computer, function of control unit is to initiate sequences of microoperations. Types
of microoperations for particular system are finite. The complexity of digital system is
dependent on the number of sequences of microoperations that are performed. Two
complementary techniques used for implementing control unit: hardwired and micro
programmed.

Hardwired control

When the control signals are generated by hardware using conventional logic design
techniques, the control unit is said to be hardwired. We have already studied about the
hardwired control unit of basic computer and timing signals associated with it, so guys, turn
back to unit3 (textbook, chapter-5) for this portion.

Microprogrammed control

Basic terminologies:

Control Memory (Control Storage: CS)

 Storage in the microprogrammed control unit to store the microprogram.

Control word
 It is a string of control variables (0’s and 1’s) occupying a word in control memory.

Microprogram

 Program stored in control memory that generates all the control signals required to execute the
instruction set correctly

 Consists of microinstructions

Microinstruction

 Contains a control word and a sequencing word
 Control Word – contains all the control information required for one clock cycle
 Sequencing Word - Contains information needed to decide the next microinstruction address

Writable Control Memory (Writable Control Storage: WCS)

 CS whose contents can be modified:
 Microprogram can be changed
 Instruction set can be changed or modified

For more notes visit https://collegenote.pythonanywhere.com

Page 2

A computer that employs a microprogrammed control unit will have two separate memories: main
memory and a control memory. The user’s program in main memory consists of machine instructions
and data whereas control memory holds a fixed micro program that cannot be altered by the user. Each
machine instruction initiates a series of microinstructions in control memory.

The general configuration of a microprogrammed control unit is demonstrated in the following block
diagram:

Fig: Microprogrammed control organization

Dynamic Microprogramming

 Computer system whose control unit is implemented with a microprogram in WCS.
 Microprogram can be changed by a systems programmer or a user

Control Address Register: Control address register contains address of microinstruction.

Control Data Register: Control data register contains microinstruction.

Sequencer

 The device or program that generates address of next microinstruction to be executed is
called sequencer.

Address Sequencing
Each computer instruction has its own microprogram routine in control memory to generate the
microoperations that execute the instruction. Process of finding address of next micro-instruction to be
executed is called address sequencing. Address sequencer must have capabilities of finding address of
next micro-instruction in following situations:

• In-line Sequencing
• Unconditional Branch
• Conditional Branch
• Subroutine call and return
• Looping
• Mapping from instruction op-code to address in control memory.

Following is the block diagram for control memory and the associated hardware needed for selecting
the next microinstruction address.

For more notes visit https://collegenote.pythonanywhere.com

Page 3

Fig: Block diagram of address sequencer.

 Control address register receives address of next micro instruction from different sources.
 Incrementer simply increments the address by one
 In case of branching branch address is specified in one of the field of microinstruction.
 In case of subroutine call return address is stored in the register SBR which is used when

returning from called subroutine.

Conditional Branch

Simplest way of implementing branch logic hardware is to test the specified condition and branch to the
indicated address if condition is met otherwise address resister is simply incremented. If Condition is
true, h/w set the appropriate field of status register to 1. Conditions are tested for O (overflow), N
(negative), Z (zero), C (carry), etc.

Unconditional Branch

Fix the value of one status bit at the input of the multiplexer to 1. So that, branching can always be
done.

For more notes visit https://collegenote.pythonanywhere.com

Page 4

Mapping

Assuming operation code of 4-bits which can specify 16 (24) distinct instructions. Assume further and
control memory has 128 words, requiring an address of 7-bits. Now we have to map 4-bit operation
code into 7-bit control memory address. Thus, we have to map Op-code of an instruction to the address
of the Microinstruction which is the starting microinstruction of its subroutine in memory.

Direct mapping:

Directly use opcode as address of Control memory

Another approach of direct mapping:

Transfer Opcode bits to use it as an address of control memory.

Extended idea: Mapping function implemented by ROM or PLD(Programmable Logic Device)

Use opcode as address of ROM where address of control memory is stored and than use that address as
an address of control memory. This provides flexibility to add instructions for control memory as the
need arises.

ADD Routine
AND Routine

LDA Routine
STA Routine
BUN Routine

Control

Storage

0000

0001

0010

OP-codes of Instructions

 ADD

 AND

 LDA

 STA

 BUN

0000

0001

0010

0011

.

.

.

Address

OPCODE Mapping memory (PLD) Control Address Register Control Memory

Fig: mapping from instruction code to
microinstruction address

For more notes visit https://collegenote.pythonanywhere.com

Page 5

Subroutines

Subroutines are programs that are used by another program to accomplish a particular task.
Microinstructions can be saved by employing subroutines that use common sections of micro code.

Example: the sequence of microoperations needed to generate the effective address is common to all
memory reference instructions. Thus, this sequence could be a subroutine that is called from within
many other routines to execute the effective address computation.

Subroutine resister is used to save a return address during a subroutine call which is organized in LIFO
(last in, first out) stack.

Microprogram (An example)

Once we have a configuration of a computer and its microprogrammed control unit, the designer
generates the microcode for the control memory. Code generation of this type is called
microprogramming and is similar to conventional machine language programming. We assume here a
simple digital computer similar (but not identical) to Manos’ basic computer.

Computer configuration

Block diagram is shown below; it consists of two memory units: a main memory for storing instructions
and data, and a control memory for storing the microprogram. 4 resisters are with processor unit and 2
resisters with the control unit.

Fig: Computer hardware configuration

For more notes visit https://collegenote.pythonanywhere.com

Page 6

Microinstruction Format

We know the computer instruction format (explained in unit3) for different set of instruction in main
memory. Similarly, microinstruction in control memory has 20-bit format divided into 4 functional parts
as shown below.

 F1, F2, F3: Microoperation fields

 CD: Condition for branching

 BR: Branch field

 AD: Address field

Each microoperation below is defined using resister transfer statements and is assigned a symbol for use
in symbolic microprogram.

Description of CD Description of BR

CD (condition) field consists of two bits representing 4 status bits and BR (branch) field (2-bits) used
together with address field AD, to choose the address of the next microinstruction.

Microinstruction fields (F1, F2, F3)

Here, microoperations are subdivided into three fields of 3-bits each. These 3 bits are used to encode 7
different microoperations. No more than 3 microoperations can be chosen for a microinstruction, one
for each field. If fewer than 3 microoperations are used, one or more fields will contain 000 for no
operation.

F1 F2 F3 CD BR AD

3 3 3 2 2 7

For more notes visit https://collegenote.pythonanywhere.com

Page 7

Symbolic Microinstructions

Symbols are used in microinstructions as in assembly language. A symbolic microprogram can be
translated into its binary equivalent by a microprogram assembler.

Format of Microinstruction:

Contains five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic address terminated with a colon

Micro-ops: consists of one, two, or three symbols separated by commas

CD: one of {U, I, S, Z},

Where U: Unconditional Branch

 I: Indirect address bit

 S: Sign of AC

 Z: Zero value in AC

BR: one of {JMP, CALL, RET, MAP}

AD: one of {Symbolic address, NEXT, empty (in case of MAP and RET)}

Symbolic Microprogram (example)

FETCH Routine: During FETCH Read an instruction from memory and decode the instruction and update
PC

Sequence of microoperations in the fetch cycle:

Symbolic microprogram for the fetch cycle:

ORG 64

FETCH: PCTAR U JMP NEXT

 READ, INCPC U JMP NEXT

 DRTAR U MAP

AR ← PC

DR ← M[AR], PC ← PC + 1

AR ← DR(0-10), CAR(2-5) ← DR(11-14), CAR(0,1,6) ← 0

For more notes visit https://collegenote.pythonanywhere.com

Page 8

• Control Storage: 128 20-bit words

• The first 64 words: Routines for the 16 machine instructions

• The last 64 words: Used for other purpose (e.g., fetch routine and other subroutines)

• Mapping: OP-code XXXX into 0XXXX00, the first address for the 16 routines are

 0(0 0000 00), 4(0 0001 00), 8, 12, 16, 20, ..., 60

Partial Symbolic Microprogram

Binary Microprogram

Symbolic microprogram is a convenient form for writing microprograms in a way that people can
understand. But this is not a way that the microprogram is stored in memory. It must be translated into
binary by means of assembler.

Binary equivalent of a microprogram translated by an assembler for fetch cycle:

E.g. the execution of ADD
instruction is carried out by
the microinstructions at
addresses 1 and 2. The first
microinstruction reads
operand from into DR. The
second microinstruction
performs an add
microoperation with the
content of DR AC and then
jumps back to the beginning
of the fetch routine.

For more notes visit https://collegenote.pythonanywhere.com

Page 9

Binary address F1 F2 F3 CD BR AD

1000000 110 000 000 00 00 1000001

1000001 000 100 101 00 00 1000010

1000010 101 000 000 00 11 0000000

Binary program for control memory

Design of Control Unit

F-field decoding

The 9-bits of the microoperation field are divided into 3 subfields of 3 bits each. The control memory
output of each subfield must be decoded to provide distinct microoperations. The outputs of the
decoders are connected to the appropriate inputs in the processor unit.

Fig below shows 3 decoders and connections that must be made from their outputs.

For more notes visit https://collegenote.pythonanywhere.com

Page 10

Fig: Decoding of microoperation fields

Microprogram Sequencer

Basic components of a microprogrammed control unit are control memory and the circuits that
select the next address. This address selection part is called a microprogram sequencer. The
purpose of microprogram sequencer is to load CAR so that microinstruction may be read and
executed. Commercial sequencers include within the unit an internal resister stack to store
addresses during microprogram looping and subroutine calls.

Internal structure of a typical microprogram sequencer is shown below in the diagram. It
consists of input logic circuit having following truth table.

Fig: Input Logic Truth for Microprogram Sequencer

E.g. when F1=101 (binary 5), next
clock pulse transition transfers
the content of DR(0-10) to AR
(DRTAR). Similarly when
F1=110(6), there is a transfer
from PC to AR (PCTAR). Outputs 5
& 6 of decoder F1 are connected
to the load inputs of AR so that
when either is active information
from multiplexers is transferred
to AR.

Arithmetic logic shift unit instead
of using gates to generate control
signals, is provided inputs with
outputs of decoders (AND, ADD
and ARTAC).

For more notes visit https://collegenote.pythonanywhere.com

Page 11

Fig: Microprogram sequencer for a control memory

-MUX1 selects an address from one
of four sources of and routes it into
CAR.

-MUX2 tests the value of selected
status bit and result is applied to
input logic circuit.

-Output of CAR provides address for
the control memory

-Input logic circuit has 3 inputs I0, I1
and T and 3 outputs S0, S1 and L.
variables S0 and S1 select one of the
source addresses for CAR. L enables
load input of SBR.

-e.g. when S1S0=10, MUX input
number 2 is selected and establishes
a transfer path from SBR to CAR.

For more notes visit https://collegenote.pythonanywhere.com

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

