
C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

Operator Overloading and Data(type) conversion

The mechanism of giving special meanings to an operator is called operator overloading.

The operator such as +, -, +=, >, >> etc are designed to operate only on standard data types

in structured programming language such as C. The operator + can be used to perform the

addition operation on integer, floating point etc

.

Operator overloading provides a flexible option for the creation of new definition for most

of the C++ operators. So operator overloading is the feature of C++ realizing the

polymorphism. We can overload all C++ operator except the following:

 Class member access operators (. , .*)

 Scope resolution operator (::)

 Size operator (sizeof)

 Condition operator (?:)

Even though the semantics of an operator can be extended, we cannot change its syntax.

When an operator is overloaded, its original meaning is not lost. The grammatical rules

defined by C++ that govern its use such as the number of operands, precedence, and

associatively of the operator remain the dame for overloaded operators.

The concept of operator overloading can also be applied to data conversion. C++ offers

automatic conversion of primitive data types. But the conversion of user defined data

types requires some effort on the part of the programmer.

Hence we see that operator overloading concepts are applied for extending capability of

operators to operate on user defined data and for data conversion.

 The keyword operator is used for overloading the C++ operators.
retrun_type operator operator_symbol(argu_list)

{

 //body of function.

}

The keyword operator indicates that the operator symbol following it, is the C++ operator

to be overloaded to operate on members of its class.

 Overloading without explicit arguments to an operator function is known as unary

operator overloading and overloading with a single explicit argument is known as

binary operator overloading. However, with friend functions, unary operators take one

explicit argument and binary operators take two explicit arguments.

Unary Operator Overloading

We can overload unary operator to an object in much the same way as is applied to an int

or float variable. The syntax for overloading the unary operator is:
retrun_type operator operator_symbol()

{

 //body of function.

}

The following examples illustrate the overloading of unary operators:

 Counter operator +();

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 int operator –();

 void operator ++();

//overloading unary operator

#include<iostream.h>

#include<conio.h>

class Counter

{

 private:

 unsigned int count;

 public:

 Counter() {count=0;}//constructor

 int get_count(){return count;}

 void operator ++() {count++;}//increment count

};

void main()

{

Counter c1,c2;

 cout<<"\n c1="<<c1.get_count();

 cout<<"\n c2="<<c2.get_count();

 c1++;//unary operator on objects

 c2++;

 ++c2;

 cout<<"\n c1="<<c1.get_count();

 cout<<"\n c2="<<c2.get_count();

 // int x=5; x++; cout<<”x=”<<x;

 //original meaning is not destroyed.

 getch();

}

By overloading we can use ++ operator for decrement and -- operator for increment

giving different semantics. The process of operator overloading generally involves

following steps.

1. Declare a class whose objects are to be manipulated using operators.

2. Declare the operator function, in public part of class. It can either normal member

function or friend function.

3. Define operator function within the body of a class or outside the body of the class

but function prototype must be inside the class body.

Invoking overloading unary operator:

Prefix form: operator objectname;

Postfix form: objectname operator;

Invoking binary operator:

Object1 operator object2;

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

Overloading Unary operator that return a value:
If we have to use overloaded operator function for return a value as:
Obj2=obj1++; //returned object of obj++ is assigned to obj2

//Example: unary operator overloading with return type.
#include <iostream.h>

class sample

{

 private :

 int x;

 public :

 sample (){x=10;} // constructor

 int getvalue (){return x;}

 sample operator ++()

 {

 x++;

 sample temp; // temporary object

 temp.x = x;

 return temp;

 }

};

void main()

{

 sample obj1,obj2;

 cout<<endl<<"intial obj1="<<obj1.getvalue();

 cout<<endl<<"intial obj2="<<obj2.getvalue();

 obj1++; obj1++;

 obj2=obj1++;

 cout<<endl<<"Final obj1="<<obj1.getvalue();

 cout<<endl<<"final obj2="<<obj2.getvalue();

}

//output

intial obj1=10

intial obj2=10

Final obj1=13

final obj2=13

Nameless temporary object : A convenient way to return an object is to create a

nameless temporary object in the return statement itself . In the above program, modify

class definition by
public :

sample() {x=10;} //constructor without argument

sample (int val) {x=val;} // one argument constructor

……….

…………

sample operator++()

{

x=x+1; // or x++;call one argument constructor

 //from nameless object.

return sample(x);

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

}

Here statement return sample(x); creates a nameless object by passing an initialization

value.

Note : When ++ or – is used in its overloaded role, there is no difference between pre and

post – operations . i.e. object ++ and ++obj has the same role.

 i.e. obj2=++obj1; and obj2=obj++; has exactly same effect

So to distinguish postfix and prefix operation,c++ provides additional syntax to express

this prefix and postfix operation. The operator function.

Operator++() above is defined to indicate prefix and postfix

operation as

// prefix operation

sample operator ++ ()

{

return (++val); // object is created with ++val

// i.e new valueof val and returned

}

// postfix operation

sample operator ++ (int)

{

return(val++) // object is created with val++

 // i.e old value and value is returned.

}

We can give increment role to -- operator and decrement role to ++ operator defining

operator function as
// decrement role to ++

sample operator ++()

{

x--;

return sample(x);

}

// increment role to --

sample operator --()

{

x++;

return sample(x); // increments

}

//overloading unary ++ to increment time by 1 seconds
#include<iostream.h>

class time

{

 int hrs;

 int min;

 int sec;

 public:

 time(){hrs=0;min=0;sec=0;}

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 time(int h,int m,int s)

 {

 hrs=h;min=m;sec=s;

 }

 void read()

 {

 cout<<"Enter time:hh mm ss:";

 cin>>hrs>>min>>sec;

 }

 void show()

 {

 cout<<hrs<<":"<<min<<":"<<sec;

 }

 //unary increment operator overloading

 void operator++()

 {

 ++sec;

 if(sec>=60)

 {

 sec=0;

 ++min;

 }

 if(min>=60)

 {

 min=0;

 ++hrs;

 }

 }

 };

 void nexttime(time &t)

 {

 cout<<"Time :"; t.show();

 ++t;

 cout<<"On increment time becomes: "; t.show();

 cout<<endl;

 }

void main()

{

 time t1(3,56,59);

 time t2(4,58,59);

 nexttime(t1);

 nexttime(t2);

 ++t2;

 nexttime(t2);

 time now;

 now.read();

 nexttime(now);

}

//output

Time :3:56:59 On increment time becomes: 3:57:0

Time :4:58:59 On increment time becomes: 4:59:0

Time :4:59:1 On increment time becomes: 4:59:2

Enter time:hh mm ss:3 59 59

Time :3:59:59 On increment time becomes: 4:0:0

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

Binary operator overloading
Binary operators can be overloaded as unary operator. The syntax for overloading the

biary operator is:
retrun_type operator operator_symbol(arg)

{

 //body of function.

}

The binary overloaded operator function takes the first object as an implicit operand and

the second operand must be passed explicitly. The data members of the first object are

accessed without using the dot operator whereas, the second argument members can be

accessed using the dot operator if argument is an object, and otherwise it can be accessed

directly.

The following examples illustrate the overloading of binary operators:

 Complex operator +(complex c);

 int operator –(int a);

 void operator /(complex c);

 int operator *(complex c);

//Addition of 2D vector without overloading

#include<iostream.h>

#include<conio.h>

class vector

{

 int x,y;

 public:

 vector(){}

 vector(int a, int b)

 {x=a; y=b; }

 void get()

 {

 cout<<"Enter x:"; cin>>x;

 cout<<"Enter y:"; cin>>y;

 }

 vector addvector(vector v2)

 {

 vector temp;

 temp.x=x+v2.x;

 temp.y=y+v2.y;

 return temp;

 }

 void put()

 {

 cout<<" (x,y) =("<<x<<","<<y<<")";

 }

}; //end class

void main()

{

 vector v1;

 cout<<"Enter V1"<<endl;

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 v1.get();

 vector v2,v3;

 cout<<"Enter V2:";

 v2.get();

 v3= v1.addvector(v2); //call to add function

 cout<<endl<<"V1="; v1.put(); //that adds two vectors in 2D

 cout<<endl<<"V2=" ; v2.put();

 cout<<endl<<"V3="; v3.put();

 getch();

}

//Addition of 2D vector with overloading

#include<iostream.h>

#include<conio.h>

class vector

{

 int x,y;

 public:

 vector(){}

 vector(int a, int b)

 {x=a; y=b; }

 void get()

 {

 cout<<"Enter x:"; cin>>x;

 cout<<"Enter y:"; cin>>y;

 }

 vector operator+(vector v2)

 {

 vector temp;

 temp.x=x+v2.x;

 temp.y=y+v2.y;

 return temp;

 }

 void put()

 {

 cout<<" (x,y) =("<<x<<","<<y<<")";

 }

}; //end class

void main()

{

 vector v1, v2,v3;

 cout<<"Enter V1"<<endl;

 v1.get();

 cout<<"Enter V2:";

 v2.get();

 v3= v1 + v2; //call to add function

 cout<<endl<<"V1="; v1.put(); //that adds two vectors in 2D

 cout<<endl<<"V2=" ; v2.put();

 cout<<endl<<"V3="; v3.put();

 getch();

}

//overloading binary operators

#include<iostream.h>

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

#include<conio.h>

class complex

{

 private:

 float rl;

 float im;

 public:

 complex() {}

 complex(float real, float imag)

 {rl=real;im=imag;}

 void display()

 {

 cout<<"("<<rl<<"+i"<<im<<")";

 }

 complex operator+(complex c)

 {

 complex temp;

 temp.rl=rl+c.rl;

 temp.im=im+c.im;

 return temp;

 }

};

void main()

{

 complex c1,c2,c3;

 c1=complex(4.4,3.6);

 c2=complex(1.8,1.06);

 c3=c1+c2;

 c1.display();cout<<" + ";c2.display();

 cout<<" = "; c3.display();

 getch();

}

Concatenating strings with overloaded + operator
In C, + operator can not concatenate two strings. In C++ it is possible to use + operator to

concatenate two strings using overloaded + . The original mining of + can not be altered

for basic data type but we are giving additional meaning to this +.
//String concatenation using + operator

#include<iostream.h>

#include<string.h>

#include<conio.h>

class String

{

 private:

 char str[40];

 public:

 String()

 {

 strcpy(str," ");

 }

 String(char *mystr)

 {

 strcpy(str,mystr);

 }

 void display()

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 {

 cout<<str;

 }

 String operator +(String s)

 {

 String temp;

 temp=str;

 strcat(temp.str,s.str);

 return temp;

 }

};//end of class String

void main()

{

 String s1="Tribhuvan";

 String s2="University";

 String s3;

 s3=s1+s2;

 s1.display();cout<<" + ";

 s2.display(); cout<<" = ";

 s3.display();

 getch();

}

Overloaded relational operator
The relational operators can also be overloaded as other binary operators to extend

their semantics. The following example shows the ‘>’ operator overloading to use it for

comparison of two user defined objects.

Example:
//overloading relational operator

#include<iostream.h>

#include<stdlib.h>

#include<conio.h>

class money

{

 private:

 int rs; float ps;

 public:

 money(){rs=0;ps=0.0;} //no argument constructor

 money(int r,float p)

 {

 rs=r; ps=p;

 }

 void show()

 {

 cout<<"Rs. : "<<rs<<" Ps. "<<ps;

 }

 void get()

 {

 cout<<"Enter Rs.:";cin>>rs;

 cout<<"Enter Ps.:";cin>>ps;

 }

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 int operator>(money);

}; //end class

//definition of > outside the class definition

int money::operator>(money m2)

{

 float mm1=rs+ps/100;

 float mm2 = m2.rs+m2.ps/100;

 return(mm1>mm2)?true:false;

}

void main()

{

 money m1;

 m1.get();

 money m2;

 m2.get();

 cout<<"Amount 1:";m1.show();

 cout<<endl<<"Amount 2:";m2.show();

 if(m1>m2)

 cout<<endl<<"Amount 1 is greater than amount2";

 else

 cout<<endl<<"Amount 1 is less than to amount2";

 getch();

}

Overloading equality operator
//overloading == operator

#include<iostream.h>

#include<conio.h>

class ratio

{

 int num, den;

 public:

 ratio(){}

 ratio(int n, int d) {num =n;den=d;}

 void get()

 {

 cout<<"Nr:";cin>> num;

 cout<<"Dr:";cin>>den;

 }

int operator==(ratio&r)

 {

 return (num*r.den==den*r.num);

 }

};

void main ()

{

 ratio r1;

 r1.get();

 ratio r2;

 r2.get();

 if(r1==r2)

 cout<<"Equal Ratio";

 else

 cout<<"Unequal Ratio";

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 getch();

}

Overloading with Friend Functions

Friend function plays a very important role in operator overloading by providing the

flexibility denied by the member functions of a class. The only difference between a friend

function and member function is that, the friend functions requires the arguments to be

explicitly passed to the function and processes them explicitly, where as member function

considers the first argument implicitly.

Syntax:
friend return_type operator Operator_symbol(args……)

{

 //body…….

}

Example:
//Addition of 2D vector with overloading

#include<iostream.h>

#include<conio.h>

class vector

{

 int x,y;

 public:

 vector(){}

 vector(int a, int b)

 {x=a; y=b; }

 void get()

 {

 cout<<"Enter x:"; cin>>x;

 cout<<"Enter y:"; cin>>y;

 }

 void put()

 {

 cout<<" (x,y) =("<<x<<","<<y<<")";

 }

 friend vector operator +(vector v1, vector v2);

}; //end class

vector operator +(vector v1, vector v2)

{

 vector temp;

 temp.x=v1.x+v2.x;

 temp.y=v1.y+v2.y;

 return temp;

}

void main()

{

 vector v1, v2,v3;

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 cout<<"Enter V1"<<endl;

 v1.get();

 cout<<"Enter V2:";

 v2.get();

 v3= v1 + v2; //call to add function

 cout<<endl<<"V1="; v1.put(); //that adds two vectors in 2D

 cout<<endl<<"V2=" ; v2.put();

 cout<<endl<<"V3="; v3.put();

 getch();

}

Rules for overloading operators

 Only existing operators can be overloaded. New operators cannot be created.

 The overloaded operator must have at least one operand that is of user-defined

type.

 We cannot change the meaning of an operator. That is, we cannot redefine the plus

(+) operator to subtract one value from other.

 Overloaded operators follow the syntax rules of the original operators. That cannot

be overridden.

 As described above, all operators cannot be overloaded.

 Unary operators, overloaded by means of a member function take no explicit

arguments and return no explicit values. But, those overloaded by means of friend

function take one argument.

 Binary operators, overloaded by means of a member function take one explicit

argument. But, those overloaded by means of friend function take two arguments.

Data Conversion
In an expression constants and variables of different types can be mixed. The type of data

to the right of an assignment operator is automatically converted into the type of the

variable on the left. For example:
 int m;

 float x=4.45667;

 m=x;

 convert x to an integer before its value is assigned to m. Thus, the fractional part is

truncated. That is the type conversions are automatic as long as the data types involved are

built-in type. Lets discuss what happens when they are user-defined data types.
 C3 = C1 +C2;

When the objects are of the same class type, the operations of addition and assignment are

carried out smoothly and the compiler does not give any error message. The assignment of

data items are handled by the compiler with no effort on the part of the programmer,

whether they are basic or user defined if both the source and destination data items are of

the same data-type. The variables may be of user-defined data type or basic data type. In

case the data items are of different types, data conversion interface must be explicitly

specified by the user. These include conversions between basic and user-defined types or

between the user defined data items of different types.

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

1. Conversion between basic data types

Consider the statement
 float weight;

 int age;

 weight=age;

The compiler calls a special routine to convert the value of age, which is represented in an

integer format, to a floating-point format, so that it can be assigned to weight. The

compiler has several built-in routines for the conversion of basic data types such as char to

int, float to double etc. This features of the compiler, which performs conversion of data

without the user intervention is known as implicit type conversion.

The compiler can be instructed explicitly to perform type conversion operators known as

typecast operators. For example, to convert int to float, the statement is
 weight = (float)age;

where the keyword float enclosed between braces is the typecast operator. This is C style

of typecasting which is valid in C++ too. In C++, the above statement can also be

expressed as:
 weight = float(age);

2. Conversion between Objects and Basic types.

 The user cannot rely on the compiler to perform conversion from user-defined data

types to basic data types and vice-versa, because the compiler does not know anything any

thing about the logical meaning of user defined data types. To perform meaningful

conversion, the user must supply the necessary conversion function.

a) Conversion basic to user-defined data types

 To convert data from a basic type to a user-defined type, the conversion function

should be defined in user-defined object’s class in the form of the constructor. The

constructor function takes a single argument of basic data type as:

 constructor(Basic_Type)

 {

 //converting statements

 }

//conversion from basic type to object

#include<iostream.h>

#include<conio.h>

class Meter

{

 private:

 float length;

 public:

 Meter()

 {

 length=0;

 }

 Meter(float l)

 {

 length=l/100.0;

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 }

 void showlength()

 {

 cout<<"Length (in meter)="<<length;

 }

 };

void main()

{

 Meter m1;

 float l1;

 cout<<"\nEnter lengrh(in cms):";

 cin>>l1;

 //m1 is user-defined and l1 is basic

 m1=l1;//convert from basic to user-defined ;

 m1.showlength();

 getch();

}

b) Conversion user-defined to basic data types

The conversion function should be defined in user-defined object’s class in the form of the

operator function. The operator function is defined as an overloaded basic data type which

takes no arguments. It converts the data members of an object to basic data types and

returns a basic data-item.

//conversion from object to basic types

#include<iostream.h>

#include<conio.h>

class Meter

{

 private:

 float length;

 public:

 Meter()

 {

 length=0;

 }

 operator float()

 {

 float l;

 l=length*100.0;//meter to centimeter

 return (l);

 }

 void getlength()

 {

 cout<<"\nEnter length (in meters):";

 cin>>length;

 }

 };

void main()

{

 Meter m1;

 float l1;

 m1.getlength();

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 //m1 is user-defined and l1 is basic

 l1=m1;//convert from user-defined to basic;

 cout<<"Length in cms="<<l1;

 getch();

}

c. Conversion between objects of different classes.

The C++ compiler does not support data conversion between objects of user-defined

classes. Consider the following:

 classA obj_a;

 classB obj_b;

 ……………

 obj_a = obj_b;

The conversion method can be either defined in classA or classB depending on whether it

should be one-argument constructor or an operator function.

i) Conversion Routine in Source object: operator function

The conversion routine in the source object’s class is implemented as an operator function.

//destination object class

class classA

{

 //classA here……..

};

//souce object class

class classB

{

private:

 …………..

 public:

 operator classA()//destination object class name

 {

 //code for conversion from classB to classA

 }

};

In an assignment statement such as,

 obj_a=obj_b;

obj_b is the source object of the class classB and obj_a is the destination object of the

class classA. The conversion operator classA() exists in the source object’s class.

//conversion from objects of different classes

//degree to radian

#include<iostream.h>

#include<conio.h>

#define pi 3.14159

class Radian

{

 private:

 float rad;

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 public:

 Radian()

 {

 rad=0.0;

 }

 Radian (float r)

 {

 rad=r;

 }

 float getradian()

 {

 return rad;

 }

 void display()

 {

 cout<<"Radian ="<<getradian();

 }

};

class Degree

{

 private:

 float degree;

 public:

 Degree()

 {

 degree=0.0;

 }

 operator Radian()

 {

 float radian;

 radian=degree*pi/180.0;

 return(Radian(radian));

 }

 void input()

 {

 cout<<"enter degree";

 cin>>degree;

 }

};

void main()

{

 Degree d1;

 Radian r1;

 //d1 and r1 are objects

 d1.input();

 r1=d1;

 r1.display();

 getch();

}

ii) Conversion Routine in Destination Object: constructor function

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

The conversion routine can be defined in the destination object’s class as a one-argument

constructor.

//source object class

class classB

{

 //classB here……..

};

//destination object class

class classA

{

private:

 …………..

 public:

 operator classA(classB obj_b)

//destination object class name

//object of source class

 {

 //code for conversion from classB to classA

 }

};

In an assignment statement such as,

 obj_a=obj_b;

obj_b is the source object of the class classB and obj_a is the destination object of the

class classA. The conversion constructor function classA(classB obj_b) exists in the

destination object’s class.

//conversion from objects of different classes

//constructor function

//degree to radian

#include<iostream.h>

#include<conio.h>

#define pi 3.14159

class Degree

{

 private:

 float degree;

 public:

 Degree()

 {

 degree=0.0;

 }

 float getdegree()

 {

 return degree;

 }

 void input()

 {

C++/ Operator Overloading B.Sc.II

https://collegenote.pythonanywhere.com/ HGC

 cout<<"enter degree";

 cin>>degree;

 }

};

class Radian

{

 private:

 float rad;

 public:

 Radian()

 {

 rad=0.0;

 }

 float getradian()

 {

 return rad;

 }

 Radian(Degree deg)

 {

 rad=deg.getdegree()*pi/180.0;

 }

 void display()

 {

 cout<<"Radian ="<<getradian();

 }

};

void main()

{

 Degree d1;

 Radian r1;

 //d1 and r1 are objects

 d1.input();

 r1=d1;

 r1.display();

 getch();

}

