
 Page 1

Unit 5
Central Processing Unit (CPU)

Introduction
Part of the computer that performs the bulk of data-processing operations is called the central
processing unit (CPU). It consists of 3 major parts:

Fig: Major components of CPU

Here, we will proceed from programmer’s point of view (as we know CA is the study of computer
structure and behavior as seen by the programmer) which includes the instruction formats, addressing
modes, instruction set and general organization of CPU registers.

General Register Organization
A bus organization of seven CPU registers is shown below:

(a) Block diagram (register organization)

Why we need CPU registers?
 During instruction execution, we

could store pointers, counters,
return addresses, temporary results
and partial products in some
locations in RAM, but having to refer
memory locations for such
applications is time consuming
compared to instruction cycle. So for
convenient and more efficient
processing, we need processor
registers (connected through
common bus system) to store
intermediate results.

• Register set: stores intermediate data during
execution of an instruction

• ALU: performs various microoperations required
• Control unit: supervises register transfers and

instructs ALU

For more notes visit https://collegenote.pythonanywhere.com

 Page 2

All registers are connected to two multiplexers (MUX) that select the registers for bus A and bus B.
Registers selected by multiplexers are sent to ALU. Another selector (OPR) connected to ALU selects the
operation for the ALU. Output produced by ALU is stored in some register and this destination register
for storing the result is activated by the destination decoder (SELD).

Example: R1 ← R2 + R3

– MUX selector (SELA): BUS A ← R2
– MUX selector (SELB): BUS B ← R3
– ALU operation selector (OPR): ALU to ADD
– Decoder destination selector (SELD): R1 ← Out Bus

Control word
Combination of all selection bits of a processing unit is called control word. Control Word for above CPU
is as below:

The 14 bit control word when applied to the selection inputs specify a particular microoperation.
Encoding of the register selection fields and ALU operations is given below:

Example: R1 ← R2 - R3
This microoperation specifies R2 for A input of the ALU, R3 for the B input of the ALU, R1 for the
destination register and ALU operation to subtract A-B. Binary control word for this microoperation
statement is:

Examples of different microoperations are shown below:

For more notes visit https://collegenote.pythonanywhere.com

 Page 3

Stack Organization
This is useful last-in, first-out (LIFO) list (actually storage device) included in most CPU’s. Stack in digital
computers is essentially a memory unit with a stack pointer (SP). SP is simply an address register that
points stack top. Two operations of a stack are the insertion (push) and deletion (pop) of items. In a
computer stack, nothing is pushed or popped; these operations are simulated by incrementing or
decrementing the SP register.

Register stack
It is the collection of finite number of registers. Stack pointer (SP) points to the register that is currently
at the top of stack.

Fig: Block diagram of a 64-word stack

Memory stack
A portion of memory can be used as a stack with a processor register as a SP. Figure below shows a
portion of memory partitioned into 3 parts: program, data and stack.

Diagram shows 64-word register stack. 6-bit address SP points stack
top. Currently 3 items are placed in the stack: A, B and C do that
content of SP is now 3 (actually 000011). 1-bit registers FULL and EMTY
are set to 1 when the stack is full and empty respectively. DR is data
register that holds the binary data to be written into or read out of the
stack.

/* Initially, SP = 0, EMPTY = 1(true), FULL = 0(false) */
Push operation Pop operation
SP ← SP + 1 DR ← M [SP]
M [SP] ← DR SP ← SP − 1
If (SP = 0) then (FULL ← 1) If (SP = 0) then (EMPTY ← 1)
EMPTY ← 0 FULL ← 0

PC: used during fetch phase to read an instruction.
AR: used during execute phase to read an operand.
SP: used to push or pop items into or from the stack.

Here, initial value of SP is 4001 and stack grows with
decreasing addresses. First item is stored at 4000,
second at 3999 and last address that can be used is
3000. No provisions are available for stack limit checks.

PUSH: POP:
SP ← SP - 1 DR ← M[SP]
M[SP] ← DR SP ← SP + 1

For more notes visit https://collegenote.pythonanywhere.com

 Page 4

Processor Organization
In general, most processors are organized in one of 3 ways:

1. Single register (Accumulator) organization

 Basic Computer is a good example
 Accumulator is the only general purpose register
 Uses implied accumulator register for all operations

2. General register organization

 Used by most modern processors
 Any of the registers can be used as the

source or destination for computer
operations.

3. Stack organization

 All operations are done with the stack
 For example, an OR instruction will pop

the two top elements from the stack,
do a logical OR on them, and push the
result on the stack.

Types of instruction

Instruction format of a computer instruction usually contains 3 fields: operation code field (opcode),
address field and mode field. The number of address fields in the instruction format depends on the
internal organization of CPU. On the basis of no. of address field we can categorize the instruction as
below:

• Three-Address Instructions

Computers with three-address instruction formats can use each address field to specify either a
processor register or a memory operand.

Assembly language program to evaluate X = (A + B) * (C + D):

 ADD R1, A, B // R1 ← M [A] + M [B]
 ADD R2, C, D // R2 ← M[C] + M [D]
 MUL X, R1, R2 // M[X] ← R1 * R2

 Results in short programs
 Instruction becomes long (many bits)

• Two-Address Instructions

These instructions are most common in commercial computers.

Program to evaluate X = (A + B) * (C + D):

Example:
ADD X // AC ← AC + M[X]
LDA Y // AC ← M[Y]

Example:
ADD R1, R2, R3 // R1 ← R2 + R3
ADD R1, R2 // R1 ← R1 + R2
MOV R1, R2 // R1 ← R2
ADD R1, X // R1 ← R1 + M[X]

Example:
PUSH X // TOS ← M[X]
ADD // TOS = TOP(S) + TOP(S)

For more notes visit https://collegenote.pythonanywhere.com

 Page 5

 MOV R1, A // R1 ← M [A]
 ADD R1, B // R1 ← R1 + M [A]
 MOV R2, C // R2 ← M[C]
 ADD R2, D // R2 ← R2 + M [D]
 MUL R1, R2 // R1 ← R1 * R2
 MOV X, R1 // M[X] ← R1

 Tries to minimize the size of instruction
 Size of program is relatively larger.

• One-Address Instructions

One-address instruction uses an implied accumulator (AC) register for all data manipulation. All
operations are done between AC and memory operand.

Program to evaluate X = (A + B) * (C + D):

 LOAD A // AC ← M [A]
 ADD B // AC ← AC + M [B]
 STORE T // M [T] ← AC
 LOAD C // AC ← M[C]
 ADD D // AC ← AC + M [D]
 MUL T // AC ← AC * M [T]
 STORE X // M[X] ← AC

 Memory access is only limited to load and store
 Large program size

• Zero-Address Instructions

A stack-organized computer uses this type of instructions.

Program to evaluate X = (A + B) * (C + D):

 PUSH A // TOS ← A
 PUSH B // TOS ← B
 ADD // TOS ← (A + B)
 PUSH C // TOS ← C
 PUSH D // TOS ← D
 ADD // TOS ← (C + D)
 MUL // TOS ← (C + D) * (A + B)

 POP X // M[X] ← TOS

The name “zero-address” is given to this type of computer because of the absence of an address
field in the computational instructions.

For more notes visit https://collegenote.pythonanywhere.com

 Page 6

Addressing Modes
I am repeating it again guys:”Operation field of an instruction specifies the operation that must be
executed on some data stored in computer register or memory words”. The way operands (data) are
chosen during program execution depends on the addressing mode of the instruction. So, addressing
mode specifies a rule for interpreting or modifying the address field of the instruction before the
operand is actually referenced.
We use variety of addressing modes to accommodate one or both of following provisions:

 To give programming versatility to the user (by providing facilities as: pointers to memory,
counters for loop control, indexing of data and program relocation)

 To use the bits in the address field of the instruction efficiently

Types of addressing modes

 Implied Mode

Address of the operands is specified implicitly in the definition of the instruction.
 - No need to specify address in the instruction
 - Examples from Basic Computer CLA, CME, INP
 ADD X;
 PUSH Y;
 Immediate Mode

Instead of specifying the address of the operand, operand itself is specified in the instruction.
 - No need to specify address in the instruction
 - However, operand itself needs to be specified
 - Sometimes, require more bits than the address
 - Fast to acquire an operand
 Register Mode

Address specified in the instruction is the address of a register
 - Designated operand need to be in a register
 - Shorter address than the memory address
 - A k-bit address field can specify one of 2k registers.
 - Faster to acquire an operand than the memory addressing
 Register Indirect Mode
 Instruction specifies a register which contains the memory address of the operand.

- Saving instruction bits since register address is shorter than the memory address
- Slower to acquire an operand than both the register addressing or memory addressing
- EA (effective address) = content of R.

 Autoincrement or Autodecrement Mode
It is similar to register indirect mode except that the register is incremented or decremented after
(or before) its value is used to access memory. When address stored in the register refers to a table
of data in memory, it is necessary to increment or decrement the register after every access to the
table.

 Direct Addressing Mode
 Instruction specifies the memory address which can be used directly to access the memory

- Faster than the other memory addressing modes
- Too many bits are needed to specify the address for a large physical memory Space
- EA= IR(address)

For more notes visit https://collegenote.pythonanywhere.com

 Page 7

 Indirect Addressing Mode
- The address field of an instruction specifies the address of a memory location that

contains the address of the operand
- When the abbreviated address is used large physical memory can be addressed with a

relatively small number of bits
- Slow to acquire an operand because of an additional memory access
- EA= M[IR (address)]

 Relative Addressing Modes

The Address field of an instruction specifies the part of the address which can be used along with a
designated register (e.g. PC) to calculate the address of the operand.

 - Address field of the instruction is short
 - Large physical memory can be accessed with a small number of address bits
 3 different Relative Addressing Modes:
* PC Relative Addressing Mode:
 - EA = PC + IR(address)
* Indexed Addressing Mode
 - EA = IX + IR(address) { IX is index register }
* Base Register Addressing Mode
 - EA = BAR + IR(address)

Numerical Example (Addressing modes)

Fig: numerical example of addressing modes

We have 2-word instruction “load to AC”
occupying addresses 200 and 201. First word
specifies an operation code and mode and second
part specifies an address part (500 here).
Mode field specify any one of a number of
modes. For each possible mode we calculate
effective address (EA) and operand that must be
loaded into AC.
Direct addressing mode: EA = address field
500 and AC contains 800 at that time.
Immediate mode: Address part is taken as the
operand itself. So AC = 500. (Obviously EA = 201
in this case)
Indirect mode: EA is stored at memory address
500. So EA=800. And operand in AC is 300.
Relative mode:

 PC relative: EA = PC + 500=702 and
operand is 325. (since after fetch phase
PC is incremented)

 Indexed addressing: EA=XR+500=600
and operand is 900.

Register mode: Operand is in R1, AC = 400
Register indirect mode: EA = 400, so AC=700
Autoincrement mode: same as register indirect
except R1 is incremented to 401 after execution of
the instruction.
 Autodecrement mode: decrements R1 to 399,
so AC is now 450.

For more notes visit https://collegenote.pythonanywhere.com

 Page 8

Following listing shows the vale of effective address and operand loaded into AC for 9 addressing
modes.

Direct address EA = 500 // AC ← M[500]
 AC content = 800
Immediate operand EA = 201 // AC ← 500
 AC content = 500
Indirect address EA = 500 // AC ← M[M[500]]
 AC content = 300
Relative address EA = 500 // AC ← M[PC+500]
 AC content = 325
Indexed address EA = 500 // AC ← (IX+500)
 AC content = 900
Register EA = 500 // AC ← R1
 AC content = 400
Register indirect EA = 400 // AC ← M[R1]
 AC content = 700
Autoincrement EA = 500 // AC ← (R1)
 AC content = 700
Autodecrement EA = 399 //AC ← -(R)
 AC content = 450

Data Transfer and Manipulation

Computers give extensive set of instructions to give the user the flexibility to carryout various
computational tasks. The actual operations in the instruction set are not very different from one
computer to another although binary encodings and symbol name (operation) may vary. So, most
computer instructions can be classified into 3 categories:

1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

Data transfer Instructions
Data transfer instructions causes transfer of data from one location to another without
modifying the binary information content. The most common transfers are:

• between memory and processor registers
• between processor registers and I/O
• between processor register themselves

Table below lists 8 data transfer instructions used in many computers.

For more notes visit https://collegenote.pythonanywhere.com

 Page 9

HEY!, different computer use different mnemonics for the same instruction name.

Instructions described above are often associated with the variety of addressing modes.
Assembly language uses special character to designate the addressing mode. E.g. # sign placed
before the operand to recognize the immediate mode. (Some other assembly languages modify
the mnemonics symbol to denote various addressing modes, e.g. for load immediate: LDI).
Example: consider load to accumulator instruction when used with 8 different addressing
modes:

Data manipulation Instructions
Data manipulation instructions provide computational capabilities for the computer. These are
divided into 3 parts:
4. Arithmetic instructions
5. Logical and bit manipulation instructions
6. Shift instructions
These instructions are similar to the microoperations in unit3. But actually; each instruction
when executed must go through the fetch phase to read its binary code value from memory.
The operands must also be brought into registers according to the rules of different addressing
mode. And the last step of executing instruction is implemented by means of microoperations
listed in unit 3.

Arithmetic instructions
Typical arithmetic instructions are listed below:

Load: denotes transfer from memory to registers (usually AC)
Store: denotes transfer from a processor registers into memory
Move: denotes transfer between registers, between memory
words or memory & registers.
Exchange: swaps information between two registers or register
and a memory word.
Input & Output: transfer data among registers and I/O terminals.
Push & Pop: transfer data among registers and memory stack.

Table: Recommended assembly
language conventions for load
instruction in different
addressing modes

For more notes visit https://collegenote.pythonanywhere.com

 Page 10

Logical and bit manipulation instructions
Logical instructions perform binary operations on strings of bits stored in registers and are useful for
manipulating individual or group of bits representing binary coded information. Logical instructions each
bit of the operand separately and treat it as a Boolean variable.

Shift instructions
Instructions to shift the content of an operand are quite useful and are often provided in several
variations (bit shifted at the end of word determine the variation of shift). Shift instructions may specify
3 different shifts:

• Logical shifts
• Arithmetic shifts
• Rotate-type operations

• Clear instr. causes specified operand to be
replaced by 0’s.

• Complement instr. produces the 1’s
complement.

• AND, OR and XOR instructions produce
the corresponding logical operations on
individual bits of the operands.

• Increment (decrement) instr. adds 1 to
(subtracts 1 from) the register or memory
word value.

• Add, subtract, multiply and divide
instructions may operate on different
data types (fixed-point or floating-point,
binary or decimal).

• Table lists 4 types of shift instructions.
• Logical shift inserts 0 at the end position
• Arithmetic shift left inserts 0 at the end

(identical to logical left shift) and arithmetic
shift right leave the sign bit unchanged
(should preserve the sign).

• Rotate instructions produce a circular shift.
• Rotate left through carry instruction

transfers carry bit to right and so is for
rotate shift right.

For more notes visit https://collegenote.pythonanywhere.com

 Page 11

Program control instructions
Instructions are always stored in successive memory locations and are executed accordingly. But
sometimes it is necessary to condition the data processing instructions which change the PC value
accidently causing a break in the instruction execution and branching to different program segments.

 Name Mnemonic

RISC and CISC
An important aspect of computer architecture is the design of the instruction set for the processor. Early
computers had small and simple instruction sets, forced mainly by the need to minimize the hardware
used to implement them. As digital hardware became cheaper with the advent of ICs, computer
instructions tended to increase both in number and complexity. Many computers have instruction sets
that include 100-200 instructions employing variety of data types and large number of addressing
modes and are classified as Complex Instruction Set Computer (CISC). In early 1980s, a number of
computer designers recommended that computers use fewer instructions with simple constructs so as
to execute them faster with in CPU without using memory as often. This type of computer is classified as
a Reduced Instruction Set Computer (RISC).

CISC
One reason to provide a complex instruction set is the desire to simplify the compilation (done by
compilers to convert high level constructs to machine instructions) and improve the overall computer
performance.
Essential goal: Provide a single machine instruction for each statement in high level language.
Examples: Digital Equipment Corporation VAX computer and IBM 370 computer.

Characteristics:

1. A large no of instructions - typically from 100 to 250 instructions.
2. A large variety of addressing modes – typically form 5 to 20.
3. Variable-length instruction formats
4. Instructions that manipulate operands in memory

RISC
Main Concept: Attempt to reduce execution time by simplifying the instruction set of the computer.

Characteristics:

1. Relatively few instructions and addressing modes.
2. Memory access limited to load and store instructions
3. All operations done with in CPU registers (relatively large no of registers)
4. Fixed-length, easily decoded instruction format

• Branch (usually one address instruction) and
jump instructions can be changed
interchangeably.

• Skip is zero address instruction and may be
conditional & unconditional.

• Call and return instructions are used in
conjunction with subroutine calls.

For more notes visit https://collegenote.pythonanywhere.com

 Page 12

5. Single cycle instruction execution
6. Hardwired rather than Microprogrammed control
7. Use of overlapped-register windows to speed procedure call and return
8. Efficient instruction pipeline

Overlapped Resister Windows
Procedure call and return occurs quite often in high-level programming languages. When translated into
machine language, procedure call produces a sequence of instructions that save register values, pass
parameters needed for the procedure and then calls a subroutine to execute the body of the
procedure. After a procedure return, the program restores the old register values, passes results to the
calling program and returns from the subroutine. Saving & restoring registers and passing of parameters
& results involve time consuming operations.
A characteristic of some RISC processors is use of overlapped register windows to provide the passing of
parameters and avoid need for saving & restoring register values. The concept of overlapped register
windows is illustrated below:

 Fig: Overlapped Resister Windows

 System has a total of 74 registers (Just an example)
 R0 – R9 = global registers (hold parameters shared by all

procedures)
 Other 64 registers are divided into 4 windows to

accommodate procedures A, B, C and D.
 Each register window consists of 10 local registers and two

sets of 6 registers common to adjacent windows.
 Common overlapped registers permit parameters to be

passed without the actual movement of data
 Only one register window is activated at any time with a

pointer indicating the active window.
 Four windows have a circular organization with A being

adjacent to D.

Example: Procedure A calls B
 Registers R26 to R31 are common

to both procedures and therefore
procedure A stores the
parameters for procedure B in
these registers.

 B uses local registers R32 through
R41 for local variable storage.

 When B is ready to return at the
end of its computation, programs
stores results in registers R26-R31
and transfers back to the register
window of procedure A.

For more notes visit https://collegenote.pythonanywhere.com

 Page 13

In general, the organization of register windows will have following relationships:
• Number of global registers = G
• Number of local register in each window = L
• Number of registers common to windows = C
• Number of windows = W

Now,
 Window size = L + 2C +G
 Register file = (L+C)W + G (total number of register needed in the processor)

Example: In above fig, G = 10, L = 10, C = 6 and W = 4. Thus window size = 10+12+10 = 32 registers and
register file consists of (10+6)*4+10 = 74 registers.

Exercises: textbook chapter 8 8.12 (do it yourself)

For more notes visit https://collegenote.pythonanywhere.com

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

