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Introduction:

● Dynamic programming is an optimization method which was developed by Richard 
Bellman in 1950.

● Dynamic programming is used to solve the multistage optimization problem in which 
dynamic means reference to time and programming means planning or tabulation.

● Dynamic programming approach consists of three steps for solving a problem that is as 
follows:

– The given problem is divided into subproblems as same as in divide and conquer 
rule. However dynamic programming is used when the subproblems are not 
independent of each other but they are interrelated. i.e. they are also called as 
overlapping problems.

– To avoid this type of recomputation of overlapping subproblem a table is created in 
which whenever a subproblem is solved, then its solution will be stored in the table 
so that in future its solution can be reused.

– The solution of the subproblem is combined in a bottom of manner to obtain the 
optimal solution of a given problem.
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Introduction:
● Dynamic Programming is mainly an optimization over 

plain recursion. 
● Wherever we see a recursive solution that has repeated 

calls for same inputs, we can optimize it using Dynamic 
Programming. 

● The idea is to simply store the results of sub-problems, 
so that we do not have to re-compute them when 
needed later. 

● This simple optimization reduces time complexities from 
exponential to polynomial.



  

Unit-5: Dynamic Programming

Design and Analysis of Algorithms     (CSC-314)

Introduction:
● Dynamic Programming (DP) is an algorithmic technique 

for solving an optimization problem by breaking it down 
into simpler sub-problems and utilizing the fact that the 
optimal solution to the overall problem depends upon 
the optimal solution to its subproblems.

● Let’s take the example of the Fibonacci numbers. As we 
all know, Fibonacci numbers are a series of numbers in 
which each number is the sum of the two preceding 
numbers. The first few Fibonacci numbers are 0, 1, 1, 2, 
3, 5, and 8, and they continue on from there.
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Introduction:
● Dynamic Programming (DP) is an algorithmic technique 

for solving an optimization problem by breaking it down 
into simpler sub-problems and utilizing the fact that the 
optimal solution to the overall problem depends upon 
the optimal solution to its subproblems.

● Let’s take the example of the Fibonacci numbers. As we 
all know, Fibonacci numbers are a series of numbers in 
which each number is the sum of the two preceding 
numbers. The first few Fibonacci numbers are 0, 1, 1, 2, 
3, 5, and 8, and they continue on from there.
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Introduction:
● If we are asked to calculate the nth Fibonacci number, we can 

do that with the following equation,

– Fib(n) = Fib(n-1) + Fib(n-2), for n > 1

● As we can clearly see here, to solve the overall problem (i.e. 
Fib(n)), we broke it down into two smaller subproblems (which 
are Fib(n-1) and Fib(n-2)). This shows that we can use DP to 
solve this problem.

● If we write simple recursive solution for Fibonacci Numbers, we 
get exponential time complexity and if we optimize it by storing 
solutions of sub-problems, time complexity reduces to linear.
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Introduction:Characteristics of Dynamic Programming

● Overlapping Sub-problems
– Subproblems are smaller versions of the original 

problem. 
– Any problem has overlapping sub-problems if finding 

its solution involves solving the same subproblem 
multiple times. 

– Take the example of the Fibonacci numbers; to find 
the fib(4), we need to break it down into the following 
sub-problems:
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Introduction:Characteristics of Dynamic Programming

● Overlapping Sub-problems

● We can clearly see the overlapping sub-problem pattern here, as 
fib(2) has been evaluated twice and fib(1) has been evaluated three 
times.
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Introduction:Characteristics of Dynamic Programming

● Optimal Substructure Property
– Any problem has optimal substructure property if its 

overall optimal solution can be constructed from the 
optimal solutions of its sub-problems. 

– For Fibonacci numbers, as we know,
● Fib(n) = Fib(n-1) + Fib(n-2)

– This clearly shows that a problem of size ‘n’ has been 
reduced to sub-problems of size ‘n-1’ and ‘n-2’. 
Therefore, Fibonacci numbers have optimal 
substructure property.
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Introduction: Greedy Algorithm vs Dynamic Programming
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Introduction: Greedy Algorithm vs Dynamic Programming
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Concept of Matrix Chain Multiplication:
● Matrix chain multiplication (or Matrix Chain Ordering Problem, 

MCOP) is an optimization problem that to find the most efficient 
way to multiply a given sequence of matrices. 

● The problem is not actually to perform the multiplications but 
merely to decide the sequence of the matrix multiplications 
involved.

● The matrix multiplication is associative as no matter how the 
product is parenthesized, the result obtained will remain the 
same. 

● For example, for four matrices A, B, C, and D, we would have:

– ((AB)C)D = ((A(BC))D) = (AB)(CD) = A((BC)D) = A(B(CD))

●
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Concept of Matrix Chain Multiplication:
● However, the order in which the product is parenthesized affects the 

number of simple arithmetic operations needed to compute the product.

●  For example, if A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 
× 60 matrix, 

– then computing (AB)C needs (10×30×5) + (10×5×60) = 1500 + 3000 
= 4500 operations 

– while computing A(BC) needs (30×5×60) + (10×30×60) = 9000 + 
18000 = 27000 operations. 

● Clearly, the first method is more efficient.

● Let A i….j denote the result of multiplying matrices i through j. It is easy 
to see that A i…j is a Pi−1 x p j matrix. 

● So for some k total cost is sum of cost of computing A i…k , cost of 
computing A k+1…j , and cost of multiplying A i…k and A k+1…j .
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Concept of Matrix Chain Multiplication:
● Example : We are given the sequence {4, 10, 3, 12, 20, and 7}. 

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7. We 
need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

● Solution:

● Let us proceed with working away from the diagonal. We 
compute the optimal solution for the product of 2 matrices.
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Concept of Matrix Chain Multiplication:
● Example-1 : We are given the sequence {4, 10, 3, 12, 20, and 7}. 

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7. We 
need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

● Solution:
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Concept of Matrix Chain Multiplication:
● Example-1 : We are given the sequence {4, 10, 3, 12, 20, and 7}. 

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7. We 
need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

● Solution:
– Here P0 to P5 are Position and M1 to M5 are matrix of size (pi to pi-1)

– On the basis of sequence, we make a formula , for Mi ------> p[i] as column and p[i-1] as row . 

– In Dynamic Programming, initialization of every method done by '0'.So we initialize it by '0'.It will 
sort out diagonally.

– We have to sort out all the combination but the minimum output combination is taken into 
consideration.

– M1: 4810

– M2: 10*3

– M3: 3*12

– M4: 12*20

– M5: 20*7
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Concept of Matrix Chain Multiplication:

● Solution:

●
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Concept of Matrix Chain Multiplication:

Solution:

● We initialize the diagonal element with equal i,j value with '0'.

● After that second diagonal is sorted out and we get all the values corresponded to it

● Now the third diagonal will be solved out in the same way.
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Concept of Matrix Chain Multiplication:

● Solution

Now product of 3 matrices:
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Concept of Matrix Chain Multiplication:

● Solution

Now product of 3 matrices:
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Concept of Matrix Chain Multiplication:

● Solution

Now product of 4 matrices:
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Concept of Matrix Chain Multiplication:

● Solution

Now product of 4 matrices:



  

Unit-5: Dynamic Programming

Design and Analysis of Algorithms     (CSC-314)

Concept of Matrix Chain Multiplication:

● Solution

Now product of 5 matrices:



  

Unit-5: Dynamic Programming

Design and Analysis of Algorithms     (CSC-314)

Concept of Matrix Chain Multiplication:

● Solution

Finally:

● The optimal cost is 1344. and the optimal substructure is

(M1M2M3M4M5)

(M1M2) (M3M4M5)

(M3M4) (M5)



  

Unit-5: Dynamic Programming

Design and Analysis of Algorithms     (CSC-314)

Concept of Matrix Chain Multiplication:

● Example: We are given the sequence {3,4,5,2 and 3}. The matrices 
M1,M2,M3,M4 have size  of 3*4, 4*5, 5*2, 2*3. Compute the optimal 
sequence for the computation of multiplication operation.

●
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Concept of Matrix Chain Multiplication:

●
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Concept of Matrix Chain Multiplication:Pseudo Code
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Concept of Matrix Chain Multiplication:Analysis

● The above algorithm can be easily analyzed for running time as O(n*n*n ), due to three nested loops.

● The space complexity is O(n*n )
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0/1 Knapsack Problem:

● The problem states-

– Which items should be placed into the knapsack such that-

– The value or profit obtained by putting the items into the knapsack is maximum.

– And the weight limit of the knapsack does not exceed.
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0/1 Knapsack Problem:

● In 0/1 Knapsack Problem,

–  As the name suggests, items are indivisible here.

–  We can not take the fraction of any item.

–  We have to either take an item completely or leave it completely.

– It is solved using dynamic programming approach.

Statement: A thief has a bag or knapsack that can contain maximum weight W of his 
loot. There are n items and the weight of ith item is Wi and it worth Vi . An amount of 
item can be put into the bag is 0 or 1 i.e. xi is 0 or 1. Here the objective is to collect the 
items that maximize the total profit earned.
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0/1 Knapsack Problem Using Dynamic Programming-

● Consider-

– Knapsack weight capacity = w

– Number of items each having some weight and value = n

– 0/1 knapsack problem is solved using dynamic programming in the following steps-

●
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0/1 Knapsack Problem Using Dynamic Programming-
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0/1 Knapsack Problem Using Dynamic Programming-
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0/1 Knapsack Problem Using Dynamic Programming-Example

● Find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach. 
Consider-

n = 4

w = 5 kg

(w1, w2, w3, w4) = (2, 3, 4, 5)

(b1, b2, b3, b4) = (3, 4, 5, 6)

Solution-

Given-

    Knapsack capacity (w) = 5 kg

    Number of items (n) = 4
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0/1 Knapsack Problem Using Dynamic Programming-Example

●
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0/1 Knapsack Problem Using Dynamic Programming-Example

●
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0/1 Knapsack Problem Using Dynamic Programming-Example

●
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0/1 Knapsack Problem Using Dynamic Programming-Example

●
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0/1 Knapsack Problem Using Dynamic Programming-Example

●
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0/1 Knapsack Problem Using Dynamic Programming-Example

●
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Compute remaining  :

● T(3,1), T(3,2), T(3,3), T(3,4), T(3,5)

● T(4,1), T(4,2), T(4,3), T(4,4), T(4,5)

And fill the table.
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0/1 Knapsack Problem Using Dynamic Programming-Example

●
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0/1 Knapsack Problem Using Dynamic Programming-

●
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0/1 Knapsack Problem Using Dynamic Programming-Pseudo Code

●
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0/1 Knapsack Problem Using Dynamic Programming

● Analysis:

– For run time analysis examining the above algorithm the overall run time of the algorithm is O(nw).
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0/1 Knapsack Problem Using Dynamic Programming

● Example

● Let the problem instance be with 7 items where v[ ] = {2,3,3,4,4,5,7} and w[] = {3,5,7,4,3,9,2} and W = 9. 
Find the maximum profit earned by using 0/1 knapsack problem.

● Consider the problem having weights and profits are: 

Weights: {3, 4, 6, 5}

Profits: {2, 3, 1, 4}

The weight of the knapsack is 8 kg and The number of items is 4.  Find the maximum profit 
earned by using 0/1 knapsack problem.
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Longest Common Sub-sequence problem (LCS):

● The longest common subsequence (LCS) is defined as the longest subsequence 
that is common to all the given sequences, provided that the elements of the 
subsequence are not required to occupy consecutive positions within the original 
sequences.

● If S1 and S2 are the two given sequences then, 

– Z is the common subsequence of S1 and S2 

– if Z is a subsequence of both S1 and S2. 

– Furthermore, Z must be a strictly increasing sequence of the indices of both 
S1 and S2.
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Longest Common Sub-sequence problem (LCS):

● In a strictly increasing sequence, the indices of the elements chosen from the 
original sequences must be in ascending order in Z.

● If

– S1 = {B, C, D, A, A, C, D}

● Then, {A, D, B} cannot be a subsequence of S1 as the order of the elements is 
not the same (ie. not strictly increasing sequence).
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Longest Common Sub-sequence problem (LCS):

● Let us understand LCS with an example.

● If

– S1 = {B, C, D, A, A, C, D}

– S2 = {A, C, D, B, A, C}

● Then, common subsequences are {B, C}, {C, D, A, C}, {D, A, C}, {A, A, C}, {A, C}, 
{C, D}, ...

● Among these subsequences, {C, D, A, C} is the longest common subsequence. 
We are going to find this longest common subsequence using dynamic 
programming.
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Longest Common Sub-sequence problem (LCS):

● Let us take two sequences:
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Longest Common Sub-sequence problem (LCS):

● The following steps are followed for finding the longest common subsequence.

● Step 1: Create a table of dimension n+1*m+1 where n and m are the lengths of X 
and Y respectively. The first row and the first column are filled with zeros.
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Longest Common Sub-sequence problem (LCS):

● The following steps are followed for finding the longest common 
subsequence.

– Step 2: Fill each cell of the table using the following logic.

– Step 2.1: If the character corresponding to the current row and 
current column are matching, then fill the current cell by adding 
one to the diagonal element. Point an arrow to the diagonal cell.

– Step 2.2: Else take the maximum value from the previous 
column and previous row element for filling the current cell. Point 
an arrow to the cell with maximum value. If they are equal, point 
to vertical one.
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Longest Common Sub-sequence problem (LCS):

●
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Longest Common Sub-sequence problem (LCS):

● Step 2 is repeated until the table is filled.
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Longest Common Sub-sequence problem (LCS):

● The value in the last row and the last column is the length of the 
longest common subsequence.
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Longest Common Sub-sequence problem (LCS):

● In order to find the longest common subsequence, start from the last 
element and follow the direction of the arrow. 

● Thus, the longest common subsequence is (C,A).
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Longest Common Sub-sequence problem (LCS):

● Examples: Find the longest common sub-sequences for the 
following.

– LCS for input Sequences x= “ABCDGH” and Y= “AEDFHR” is 
“ADH” of length 3.

– LCS for input Sequences X= “AGGTAB” and Y= “GXTXAYB” is 
“GTAB” of length 4. 
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Floyd Warshall Algorithm:

The Floyd Warshall Algorithm is for solving the All Pairs Shortest 
Path problem. 

● The problem is to find shortest distances between every pair of 
vertices in a given edge weighted directed Graph.

●



  

Unit-5: Dynamic Programming

Design and Analysis of Algorithms     (CSC-314)

Floyd Warshall Algorithm:

● Floyd-Warshall Algorithm is an algorithm for finding the shortest path 
between all the pairs of vertices in a weighted graph. 

● This algorithm works for both the directed and undirected weighted 
graphs. But, it does not work for the graphs with negative cycles 
(where the sum of the edges in a cycle is negative).

● A weighted graph is a graph in which each edge has a numerical 
value associated with it.

● Floyd-Warhshall algorithm is also called as Floyd's algorithm, Roy-
Floyd algorithm, Roy-Warshall algorithm, or WFI algorithm.

● This algorithm follows the dynamic programming approach to find 
the shortest paths.
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Floyd Warshall Algorithm:

● How Floyd-Warshall Algorithm Works?

– Let the given graph be:
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Floyd Warshall Algorithm:

● Follow the steps below to find the shortest path between all the pairs 
of vertices.

– Create a matrix A0 of dimension n*n where n is the number of 
vertices. The row and the column are indexed as i and j 
respectively. (i and j are the vertices of the graph).

– Each cell A[i][j] is filled with the distance from the ith vertex to the 
jth vertex. If there is no path from ith vertex to jth vertex, the cell is 
left as infinity. 
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Floyd Warshall Algorithm:

●  How Floyd-Warshall Algorithm Works?
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Floyd Warshall Algorithm:

●  How Floyd-Warshall Algorithm Works?

– Now, create a matrix A1 using matrix A0. The elements in the first 
column and the first row are left as they are. The remaining cells 
are filled in the following way.

– Let k be the intermediate vertex in the shortest path from source 
to destination. In this step, k is the first vertex. 

– A[i][j] is filled with (A[i][k] + A[k][j]) if (A[i][j] > A[i][k] + A[k][j]).

– That is, if the direct distance from the source to the destination is 
greater than the path through the vertex k, then the cell is filled 
with A[i][k] + A[k][j].

– In this step, k is vertex 1. We calculate the distance from source 
vertex to destination vertex through this vertex k. 
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Floyd Warshall Algorithm:

●  How Floyd-Warshall Algorithm Works?

●

●

●

●

●

● For example: For A1[2, 4], the direct distance from vertex 2 to 4 is 4 
and the sum of the distance from vertex 2 to 4 through vertex (ie. from 
vertex 2 to 1 and from vertex 1 to 4) is 7. Since 4 < 7, A0[2, 4] is filled 
with 4.
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Floyd Warshall Algorithm:

●  How Floyd-Warshall Algorithm Works?

– Similarly, A2 is created using A1. The elements in the second 
column and the second row are left as they are.

– In this step, k is the second vertex (i.e. vertex 2). The remaining 
steps are the same as in step 2. 
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Floyd Warshall Algorithm:

●  How Floyd-Warshall Algorithm Works?

– Similarly, A3 and A4 is also created. 
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Floyd Warshall Algorithm:

●  How Floyd-Warshall Algorithm Works?

– A4 gives the shortest path between each pair of vertices.
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Floyd Warshall Algorithm:

● Apply Floyd-Warshall algorithm for constructing the shortest path for 
the given graphs. 
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Floyd Warshall Algorithm: Pseudo code: 
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Floyd Warshall Algorithm:

● Floyd Warshall Algorithm Complexity

● Time Complexity

– There are three loops. Each loop has constant complexities. So, 
the time complexity of the Floyd-Warshall algorithm is O(n3).

● Space Complexity

– The space complexity of the Floyd-Warshall algorithm is O(n2).
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Travelling Salesman Problem:

● Problem Statement

● A traveler needs to visit all the cities from a list, where 
distances between all the cities are known and each city 
should be visited just once. 

● What is the shortest possible route that he visits each city 
exactly once and returns to the origin city?
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Travelling Salesman Problem:

● Travelling salesman problem is the most well known computational 
problem.

● We can use brute-force approach to evaluate every possible tour 
and select the best one. For n number of vertices in a graph, there 
are (n - 1)! num.ber of possibilities.

● Instead of brute-force using dynamic programming approach, the 
solution can be obtained in lesser time, though there is no 
polynomial time algorithm.
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Travelling Salesman Problem:

● Let us consider a graph G = (V, E), where V is a set of cities and E is a set of weighted 
edges. 

● An edge e(u, v) represents that vertices u and v are connected. Distance between 
vertex u and v is d(u, v), which should be non-negative.

● Suppose we have started at city 1 and after visiting some cities now we are in city j. 

● Hence, this is a partial tour. We certainly need to know j, since this will determine which 
cities are most convenient to visit next. 

● We also need to know all the cities visited so far, so that we don't repeat any of them. 

● Hence, this is an appropriate sub-problem.
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Travelling Salesman Problem:

● For a subset of cities S Є {1, 2, 3, ... , n} that includes 1, and j Є S, let C(S, j) be the 
length of the shortest path visiting each node in S exactly once, starting at 1 and 
ending at j.

● When |S| > 1, we define C(S, 1) =  since the path cannot start and end at 1.∝

● Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1 
and end at j. We should select the next city in such a way that

– C(S,j)=minC{d(i,j)+(S−{j},i)} where i S and i≠jc(S,j)∈
=minC{d(i,j)+(s−{j},i)}  where i S and i≠j∈
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Travelling Salesman Problem:

●
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Travelling Salesman Problem: Example

●
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Travelling Salesman Problem: Example

● Clearly, g(i,s) =min{Cik + g(jk, S-{k})} where kbelongs to S

● S = Φ= Ci1

– Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5

– Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6

– Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8
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Travelling Salesman Problem: Example

● S = 1

● Cost(i,s)=min{Cost(j,s–(j))+d[i,j]}Cost(i,s)=min{Cost(j,s)−(j))+d[i,j]}

– Cost(2,{3},1)=d[2,3]+Cost(3,Φ,1)=9+6=15 cost(2,{3},1)=d[2,3]+cost(3,Φ,1)=9+6=15

– Cost(2,{4},1)=d[2,4]+Cost(4,Φ,1)=10+8=1cost(2{4},1)=d[2,4]+cost(4,Φ,1)=10+8=18

– Cost({2},1)=d[3,2]+Cost(2,Φ,1)=13+5=18cost(3{2},1)=d[3,2]+cost(2,Φ,1)=13+5=18

– Cost({4},1)=d[3,4]+Cost(4,Φ,1)=12+8=20cost(3{4},1)=d[3,4]+cost(4,Φ,1)=12+8=20

– Cost(4,{3},1)=d[4,3]+Cost(3,Φ,1)=9+6=15cost(4,{3},1)=d[4,3]+cost(3,Φ,1)=9+6=15

– Cost(4,{2},1)=d[4,2]+Cost(2,Φ,1)=8+5=13cost(4,{2},1)=d[4,2]+cost(2,Φ,1)=8+5=13
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Travelling Salesman Problem: Example

●
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Travelling Salesman Problem: Example

●
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Travelling Salesman Problem: Example

● For the following graph find the minimum cost of tour 

 

Travelling Salesman Problem: Example

●
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Concepts of Memoization:
● In computing, memoization or memoisation is an optimization 

technique used primarily to speed up computer programs by 
storing the results of expensive function calls and returning the 
cached result when the same inputs occur again.

● Most of the Dynamic Programming problems are solved in two 
ways:  

● Tabulation: Bottom Up

● Memoization: Top Down
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Concepts of Memoization:
● Memoization ensures that a method doesn't run for the same inputs more than 

once by keeping a record of the results for the given inputs (usually in a hash 
map). 

● We can imagine the recursive calls of this method as a tree, where the two 
children of a node are the two recursive calls it makes. 

● We can see that the tree quickly branches out of control: 
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Concepts of Memoization:
●  To avoid the duplicate work caused by the branching, we can wrap the method 

in a class that stores an instance variable, memo, that maps inputs to outputs. 

● Then we simply check memo to see if we can avoid computing the answer for 
any given input, and save the results of any calculations to memo.

● Now in our recurrence tree, no node appears more than twice: 
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Concepts of Memoization:
● Memoization is a common strategy for dynamic programming problems, which 

are problems where the solution is composed of solutions to the same problem 
with smaller inputs (as with the Fibonacci problem, above). 

● The other common strategy for dynamic programming problems is going 
bottom-up, which is usually cleaner and often more efficient.
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● Thank You!
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