
C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

Virtual Function, Polymorphism
Phymorphism: "one name but different forms"

– Polymorphism is implemented by function over loading and operator overloading

– Giving same name to functions with different no or types of arguments

– This information is known to compiler at compile time and compiler is able to

select the appropriate function at call time

– It is called compile time polymorphism-Early binding.

If appropriate member function are chooses at run time rather than compile time, this is

 known as runtime polymorphism or Late binding.

For this mechanism we chose member function as virtual.

Note:

Binding – is choice of property from a set of possible choices Binding is association such

as an attribute and an entity or between operation and a symbol.

[Binding time: time at which binding takes place.

 -Execution time binding [late] / Runtime

 -Translation time binding [early] / Compile time.

e.g. Statement P = P + 5: Following bindings occur.

 - Set of types for variable P: bound at language definition time

 - Type of var P: bound at compile time

 - Set of possible values of P: bound at compiler design time

 - Value of P: at execution time

 - Set of possible meaning of '+' : language defn time

 - Meaning of + in this statement: compile time

 - Representation of constant 5 : Bound at compiler design time. [language

 implementation time]

In C++, polymorphism indicates the form of a member function that can be changed at

runtime. Such member functions are called virtual functions and the corresponding class

is called polymorphic class. The objects of the polymorphic class, address by pointers,

change at runtime and respond differently for the same message. Such mechanism

requires postponement of binding of a function call to the member function declared as

virtual until runtime.

 Polymorphism

 Compile Time Run Time

Function overloading operator overloading virtual functions

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

Virtual Function: A virtual function is a function that appears to exists but does not exist

in reality.

 Declaration is done in base class as.
 class Test

{

 public:

 ……………

 virtual retrun_type function_name(args……..)

 {

 //function body

 }

};

 When we use same function in both base class and derived class and access them

using pointer of base class objects assigning the address of objects of derived class,

we expect that the function should perform the operation of which base pointer is

assigned the address but we can not get such result using general member function.

For this we can use virtual functions.

 Virtual function is declared in base class with keyword virtual and without keyword

virtual in other derived class.

 An object pointer of base class is used for assigning the address of the object of

derived class and to invoke the member function of same name for different task.

Look Example:

 A normal function accessed with object pointer.
//normal function

#include <iostream.h>

class parent

{

private :

 int a ;

 public:

 parent () { a = 1 ; }

 void display()

 {

 cout <<" \n value from parent class :" << a ;

}

};

class child1: public parent

{

 int a ;

 public:

 child1() { a = 2;}

 void display()

 { cout <<" \nValue from child1 is :" << a;}

};

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

class child2 : public parent

{ int a;

 public:

 child2() { a = 3;}

 void display()

 { cout <<" \n Value from child2 is:"<<a;}

};

void main ()

{

 parent * baseptr;

 parent p;

 baseptr = &p;

 baseptr->display();//execute display () from parent

 child1 c1;

 child2 c2;

 baseptr = &c1 ;

 baseptr->display(); // expect for execution of

 //display () of child1

 baseptr = &c2 ;

 baseptr->display(); // expectation for execution of

} //display () of child2

Run: Value from parent class 1

 Value from parent class 1

 Value from parent class 1

Which is not our expectation, our expectation was

 Value from parent class 1

 Value from child1 class 2

 Value from child2 class 3

Normal – nonvirtual pointer access

baseptr parent

baseptr->display ()

baseptr child1

baseptr->display ()

baseptr child2

baseptr->display ()

& parent display ()

display ()

display () & child2

& child1

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

 Virtual pointer access

baseptr parent

baseptr->display()

 child1

baseptr

baseptr->display()

baseptr child2

baseptr->display()

To achieve correct result we can use virtual function

#include <iostream.h>

class parent

{

private :

 int a ;

 public:

 parent() { a = 1 ; }

 virtual void display()

{ cout <<" \n value from parent class :" << a ; }

};

class child1: public parent

{

 int a ;

 public:

 child1() { a = 2;}

 void display()

 { cout <<" \nValue from child1 is :" << a;}

};

class child2 : public parent

{ int a;

 public:

 child2() { a = 3;}

 void display()

{ cout <<" \n Value from child2 is:"<<a;}

& parent virtual

display ()

display ()

display ()

& child1

& child2

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

} ;

void main ()

{

 parent * baseptr;

 parent p;

 baseptr = &p;

 baseptr->display(); // execute display () from parent

 child1 c1;

 child2 c2;

 baseptr = &c1 ;

 baseptr->display(); // execute display () of child1

 baseptr = &c2 ;

 baseptr->display(); // execute display () from child2

}

Run:

 Value from parent class : 1

 Value from child1 class : 2

 Value from child2 class : 3

 Which is correct expectation.

Abstract classes and pure virtual function:

 When the objects of base class are never instantiated, such a class is called

abstract base class or simply or simply abstract class. Such a class only exists to act as a

parent of derived classes from which objects are instantiated. It may also provide

interface for class hierarchy.

 To make a class abstract so that object instantiation is not allowed and derivation

of child classes are allowed, at least one pure virtual function should be placed in the

class.

 A pure virtual class is one with the expression = 0 is added to the declaration of

virtual function. The syntax of declaration of pure virtual function and making a class

abstract is:
 class A

{

 public:

 virtual void show() = 0 ; //pure virtual function

};

Here class A become abstract since there is presence of pure virtual function show ().

The expression = 0 has no any other meaning the equal sign = 0 does not assign 0 to

function show (). It is only method to tell the compiler that show () is pure virtual

function hence class A is abstract class.

All classes with pure virtual function are known as concrete classes.

 A pure virtual function has following properties.

1. A pure virtual function has no implementation in the base class.

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

2. It acts as an empty bucket (virtual function is partially filled bucket) that the derived

 class are supposed to fill it.

3. A pure virtual function can be invoked by its derived class.

//pure virtual function

#include<iostream.h>

#include<conio.h>

class Base

{

 public:

 virtual void show()=0;//pure virtual function

};

class Derv1: public Base

{

 public:

 void show()

 {cout<<"\n I am Derv1 class";}

};

class Derv2: public Base

{

 public:

 void show()

 {cout<<"\n I am Derv2 class";}

};

void main()

{

 Derv1 dv1;

 Derv2 dv2;

 Base *ptr;//pointer to base class

 ptr=&dv1;//address of dv1 in pointer

 ptr->show();//called from Derv1

 ptr=&dv2;

 ptr->show();//called from Dev2

 getch();

}

The pure virtual function in the base class must be override in all its derived class

from which we want to instantiate objects. If a class doesn't override pure virtual

function, it itself becomes abstract and objects cannot be instantiated.

Array of Pointers to Base class objects
//array of pointers to base class object

#include<iostream.h>

#include<conio.h>

class Base

{

 public:

 virtual void show()=0 ; // pure virtual function

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

};

class Derived1 : public Base

{

 public :

 void show() { cout <<" Derived1 \n"; }

};

class Derived2 : public Base // derived class 2

{

 public:

 void show() { cout <<" Derived2 \n" ; }

};

class Derived3 : public Base

{

 public:

 void show() { cout <<" Derived3 \n" ; }

};

class Derived4 : public Base

{

 public:

 void show() { cout <<" Derived4 \n" ; }

};

void main()

{

 // Base baseobj ; // can't make object of abstract class

 Derived1 dv1 ; // object of derived1

 Derived2 dv2 ; // object of derived2.

 Derived3 dv3 ;

 Derived4 dv4 ;

 Base *ptr[]={&dv1,&dv2,&dv3, &dv4} ;// array of ptr of base

 //class.

 cout<<"Calling functions..."<<endl;

 for(int i=0;i<4;i++)

 ptr[i]->show();

 getch();

}

Fig:

Virtual destructors: Since destructors are member functions, they can be made virtual

with placing keyword virtual before it. The syntax is

 virtual ~ classname () ; // virtual destructor.

 The destructor in base class should always be virtual. If we use delete with a base class

object to destroy the derived class object, then it calls the delete calls the member

function destructor for base class. This causes the base class object to be destroyed.

Hence making destructor of base class virtual, we can prevent such miss-operation.

Example:
#include<iostream.h>

class Base

{

 public:

 ~Base () ; // non virtual

 //virtual ~Base()

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

 {cout<<"Base Destryed\n";}

};

 class Derv1:public Base

 {

 public:

 ~Derv1()

 {

 cout<<"Derived1 destroyed\n";

 }

 };

 class Derv2:public Base

 {

 public:

 ~Derv2()

 {

 cout<<"Derived2 destroyed\n";

 }

 };

 void main()

 {

 Base * pBase = new Derv1;

 delete pBase;

 }

 The output for it is :

 Base destroyed.

• pBase stores address of object of Derv1 class.

• Delete pBase destroy the Base object i.e. calls the destructor of base class.

• If the destructor is made virtual by the line virtual ~Base () ;

 then,
 delete pBase ;

Simply calls the destructor of Derv class first and the output is now

 Derv destroyed.

 Base destroyed.

Virtual Base class:

 In multiple inheritance, if a base class parent derives its two child class then

another class is derived from two child, as

When member function of class D want to access

 data member of parent class A, then problem arises due to ambiguity.

 To resolve such ambiguity we use virtual base class.

A virtual base class is one from which classes are derived virtually. as
 class A.

 { // body of class A

 };

 class B: virtual public A

A

D

C B

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

 {

 // Body of B

 };

 class C:virtual public A

 { // Body of class C

 };

class D: public B; public C.

{

};

Example:
class parent class child1: public parent

{ protected: { };

int basedata; class child2: public parent

}; { };

class grandchild: public child1, child2

{ public:

 int getdata()

 { return basedata; } // Error: ambiguous

};

 When the member function of grandchild attempts to access base data in parent,

each child1 and child2 inherits the copy of basedata. Since grandchild class is derived

from both child1 and child2, so attempting to access base data becomes ambiguous in

grandchild.

 This ambiguity is overcome by making virtual base class as

 class child1: virtual public parent

 { };

 class child2: virtual public parent

 { };

 The use of virtual in these two class causes them to share a single common copy

of base data. So attempt to access base data in grandchild is not ambiguous.

Friend function and friend classes.

 Private member of a class can not be accessed from outside the class. Non

member function of a class cannot access the member of class. Using friend function we

can achieve this. A fried function also acts as a bridging between two class. It can operate

the object of two classes.

 Friend function is declared inside the class any where in private or public

section with keyword friend.

 Friend function are defined outside the class as a normal function.

An example: Friend function operating objects of two classes.
#include<iostream.h>

class beta ;

class alpha

{

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

 private:

 int data ;

 public:

 alpha() { data=10;}

 friend int frifunc(alpha ,beta);

};

class beta

{ private:

 int data;

 public:

 beta() { data = 20; }

 friend int frifunc(alpha, beta);

};

int frifunc(alpha a, beta b)

{ return (a.data + b.data);

}

void main ()

{

 alpha aa;

 beta bb;

 cout<<frifunc(aa, bb)<<endl;

}

output: 30

Friend class:

 When a class is to be made friend to another class, we should declare that class as

friend inside another. as
 class A class B

 { // body of A { // Body of B

 friend class B;

 }; };

Here class B is friend class to A.

 When a class is declared as friend within another class entire function of friend class

can access the private data of the class to which it becomes friend.

 Here in above example, all member function of B can access private data of

class A.

Another way of declaration
 class B;

 class A

 {

 // Body of class A

 friend B;

 };

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

 class B

 {

 // Body

};

//An Example:
#include<iostream.h>

class A

{

 private:

 int data;

 public:

 A(){data = 100;}

 friend class B;

};

class B

{

 public:

 void func1(A a)

 {cout<<"\ndata= "<<a.data;}

 void func2(A b)

 {

 cout<<"\ndata = "<<b.data<<endl;

}

};

void main()

{

 A a;

B b;

b.func1(a);

b.func2(a);

}

The output: data= 100

 data = 100

Static Function: A static function is one which is declared as static in a class. A static

function can access only static member data and can be accessed by using class name

rather than object name.

 Following example shows the static function as class member
#include<iostream.h>

class staticfun

{

 private:

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

 static int count; // count objects.

 int id;

 public:

 staticfun() // constructor

 { count++;

 id=count;

 }

 ~staticfun () // destructor

 { count--;

 cout<<"Destroying ID number"<<id<<endl;

 }

 static void show() // static function

 {

 cout<<"No of object is:"<<count<<endl;

 }

 void showid()

 {

 cout<<"ID number is:"<<id<<endl;

 }

};

int staticfun::count=0; // defn of count.

void main()

{ staticfun s1;

 staticfun:: show();

 staticfun s2,s3;

 staticfun:: show();

 s1.showid();

 s2. showid();

 s3. showid();

 cout<<"---END---"<<endl;

}

 When a data member is declared as static, there is only one such value for the entire

class. All objects of the class share the same data.

 To access such static data, we use static function that need not refer by any object and

can be called by class name with scope resolution operator(::) as

 class name:: static function();

The output of above program will be now:

 No of object is: 1

 No of object is: 3

 ID number is: 1

 ID number is: 2

 ID number is: 3

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

 END

 Destroying ID number3

 Destroying ID number2

 Destroying ID number1

'this' pointer:
 The member functions of every object have access to a magic pointer named 'this'

which points to the object itself. The this pointer is implicitly defined in each member

function.

→ Every member function of a class is born with a pointer called this. Which points to

the object with which the member function is associated.

→ When member function is invoked, it comes into existence with the value of this set to

the address of the object for which it is called.

Method of accessing member of class with 'this' is as in figure below.

 class Test

 {

 int a;

 public: refers to data member.

 func1()

 {-----

 } refers to member func.

 func2()

 { this->a; or a

 this->func1(); or func1();

 }

 };

Example:
#include<iostream.h>

class Test

{

 int a;

 public:

 void setdata(int x)

 { a=x; //or this->a=x;

 cout<<"Address of my object is :"<<this<<endl;

 }

 void showdata()

 { // normal way.

 cout<<"Data accessed normally:"<<a<<endl;

 cout<<"Address of object in showdata():"

<<this<endl;

C++ / Polymorphism B.Sc. II

https://collegenote.pythonanywhere.com/ HGC

 // data access through this

 cout<<"\nthis->a:"<<this->a;

 }

};

 void main()

 {

 Test myobj;

 myobj.setdata(20);

 myobj.showdata();

 }

Run: (Sample)
Address of my object is :0x22972446

Data accessed normally:20

Address of object in showdata():0x22972446

this->a:20

Using this for returning values:

 For returning values from member functions, this can play important role. When

an object is local to a function, the object will be destroyed when function terminates. So

it is necessary for a more permanent object while returning it by reference.

Consider a function add() for addition of two complex object called as

 c3=c1. add(c2); Where c1, c2, c3 are complex no. objects. Our function will

be as.
 complex complex:: add(complex c2)

 { real= real+ c2.real;

 imag=imag +c2.imag,

 return complex(real, imag);

 }

 It adds c2 to a default object and returns the updated default object by creating

nameless temporary object by statement
 return complex(real, imag);

 It can be replaced by the statement simply by
 return *this; // returns object by value

 Now definition of add will be

 complex add(complex c2)

 { real=real+c2.real;

 imag=imag +c2.imag,

 return*this;

 }.

