
File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 1

File handling and Streams

Stream Classes(Class hierarchy)

 A stream is a name given to flow of data. In C++ stream is represented by an object of a particular

class e.g. cin and cout are input and output stream objects.

There are no any formatting characters in stream like %d, %c etc in C which removes major source of

errors.Due to overloading operators and functions, we can make them work with our own classes.

The Stream class hierarchy:

filebuf: The class filebuf sets the file buffer to read and write.

ios: ios class is parent of all stream classes and contains the majority of C++ stream features.

istream class: Derived from ios and perform input specific activities.

ostream class: derived from ios class and perform output specific activities.

ios

istream

streambuf

filebuf

ostream

 iostream Iostream_

withassign
 ostream_withaassign

istream_withassign

ofstream fstream ifstream

fstreambase

<fastream.h>

<iostream.h>

C++ Class Hierarchy

Input stream

output stream

program
Disk File

ostream

m

istream istream

Data

input

Data

output

rea

d

rea

d

write

File I/O

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 2

iostream class: Derived from both istream and ostream classes, it can perform both input and output

activities and used to derive iostream_withassign class.

_withassign classes: There are three _withassign classes.

- istream_withassign

- ostream_withassign

- iostream_withasssign

These classes are much like those of their parent but include the overloaded assignment operators.

streambuf: sets stream buffer i.e. an area in memory to hold the objects actual data. Each object of a

class associated with the streambuf object so if we copy the stream object it cause the confusion that

we are also copying streambuf object. So _withassign classes can be used if we have to copy otherwise

not.

fstreambase: Provides operations common to file streams. Serves as a base for fstream, ifstream and

ofstream and contains open() and close() functions.

ifstream: Contains input operations in file. Contains open() with default input mode, inherits get(),

getline() read(), seekg(), tellg() from istream.

ofstream: Provides output operation in file. Contains open() with default output mode, inherits put().

Seekp(), tellp() and write() from ostream.

fstream: Provides support for simultaneous input and output operations. Contains open() with default

input mode: Inherits all the functions of istream and ostream through iostream.

File I/O with stream classes:

In C++,file handling is done by using C++ streams. The classes in c++ for file I/O are ifstream for

input files,ofstream for output files, and fstream for file used for both input and output operation.

These classes are derived classes from istream,ostream,and iostream respectively and also from

fstreambase.

 -The header file for ifstream,ofstream and fstream classes is <fstream.h>

-To create and write disk file we use ofstream class and create object of it.

 e.g. ofstream outf;

The creation and opening file for write operation is done either using its constructor or using open()

member function which had already been defined in ofstream class.

Creating and opening file for write operation is as:
ofstream outf(“myfile.txt”); //using constructor of ofstream class.

 Or
ofstream outf;

outf.open(“myfile.txt”); // using open() member function.

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 3

Writing text into file:

 We use the object of ofstream to write text to file created as:
outf<<”This is the demonstration of file operation\n”;

outf<<”You can write your text\n”;

outf<<”The text are written to the disk files\n”;

An example for writing to disk file.
#include<fstream.h>

void main()

{ //constructor creates file and ready to write

ofstream outf(“myfile.txt”);

 /* Alternate for above line is

 ofstream outf; //using open() member function

 outf.open(“myfile.txt”);

 */

 outf<<”File demonstration program\n”;

//writes strings to file myfile.txt

 outf<<”These strings are written to disk\n”;

 }

Writing data to file:
int x = 20; float f = 2.5;

char ch = 'c'; char* str = " string";

Writing to file is done as
Outf<<x<<" " <<f<<' '<<ch<<' '<<str;

Example

#include<iostream.h>

#include<fstream.h>

void main()

{

 char ch='c';

 int i= 70;

 float f = 6.5;

 char *str= "Patan";

 ofstream fout("Test.data");

 fout<<ch<<' '<<' '<<f<<' '<<str;

 cout<<"Data written to file\n";

}

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 4

Reading data from file:

-To read data from file , we use an object of ifstream class File is opened for reading using constructor

of ifstream class or open() member function as;
ifstream fin("test.txt"); //constructor

or

ifstream fin;

fin.open("test.txt"); // member function open();

Reading data is done as:

Fin>>ch>>i>>f>>str; which is similar as reading data from keyboard

by cin object.

String with embedded blanks:

-Require delemeter line \n for each string with embedded blank and read/write operation is easy.

Reading text from file:

To read text from file we use ifstream class and file is opened for read operation using constructor or

open() member function.

e.g. : ifstream infile(“myfile.txt”); //using constructor

or

ifstream infile;

infile.open(“myfile.txt”);

 // Reading from file myfile.txt:

 While(infile) // or while(!infile.eof()) until end of file

 {

 infile.getline(buffer,maxlength); //buffer to be defined as char

 //string of length maxlength

 cout<<buffer; // for display to screen

 }

 A sample program to read from myfile.txt

#include<fstream.h>

#include<iostream.h>

void main()

{

 const int LEN = 100;

 char text[LEN]; //for buffer

 ifstream infile(“myfile.txt”);

while(infile) //until end of file Alternate is

//while(!infile.eof())

 {

 infile.getline(text,LEN); // read a line of text

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 5

 cout<<endl<<text; //display line of text

 }

}

Character I/O in file[get() and put() function]

put() and get() functions are members of ostream and istream classes so they are inherited to ofstream

and ifstream objects. put() is used to write a single character in file and get is used for reading a

character from file.

Example:
#include<iostream.h>

#include<fstream.h>

#include<string.h>

void main()

{

 char*str="This is a string written to file one char at a time";

 ofstream fout;

 fout.open("myfile.txt");

 for(int i=0;i<strlen(str);i++)]

 {

 fout.put(str[i]);

 }

 cout<<"File write completed";

}

// Reading character wise from above file

char ch;

ifstream infile;

infile.open("myfile.txt");

while(infile)

{

 infile.get(ch);

 cout<<ch;

}

Working with multiple file:
When more than one file is used in a single program for read write operation one file is closed or

disconnected from program using close() member function and other file is opened using open().

A sample program:

#include<iostream.h>

#include<fstream.h>

void main()

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 6

{

ofstream outfile;

//create file district and open for write

outfile.open(“district”);

outfile<<”Kathmandu\n”;

outfile<<”Lalitpur\n”;

outfile<<”Kavreplanchowk\n”;

outfile<<”Dhading\n”;

outfile.close(); // close the file district after writing

outfile.open(“headqtr”);

outfile<<”Kathmandu\n”;

outfile<<”Patan\n”;

outfile<<”Dhulikhel\n”;

outfile<<”Trisuli\n”;

outfile.close(); //closes the file headqtr

//Reading the above files

const int LEN = 80;

char text[LEN];

ifstream infile(“district”); //opens file district for read

while(infile)

{

 infile.getline(text,LEN);

 cout<<endl<<text;

}

inflie.close(); //closes file district after display

infile.open(“headqtr”);

while(infile)

{

 infile.getline(text,LEN);

 cout<<text;

}

infile.close(); //closes file headqtr

}

Writing and reading of user input to the file:

 We can also write user-input (values of variables in a program input from keyboard) and read those

values by using objects of ofstream and ifstream respectively same as done above . Look at these

simple program example.

#include<fstream.h>

void main()

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 7

{

 ofstream fout(“test”); //creates and open for writing

 cout<<”Enter the Name:”;

 char name[20];

 cin>>name; //reading from keyboard

 fout<<name<<endl; //writing to the file “test”

 cout<<”Enter telephohe:”;

 int tel;

 cin>>tel; //reading from keyboard

 fout<<tel; //writing to file “test”

 fout.close(); //Closes the file “test”

 ifstream fin(“test”); //opens the file test for read

 fin>>name; //reading from file

 fin>>tel; //reading from file

 cout<<endl<<”The name is: “<<name;

 cout<<endl<<”Telephone no: “ <<tel;

 fin.close();

 }

Opening file in different mode:

 In above example we have used the ofstream and ifstream constructors or open() member function

using only one argument i.e. filename e.g. “test” etc. However this can be done by using two argument.

One is filename and other is filemode.

 Syntax:

 Stream-object.open(“filename”,filemode);

The second argument filemode is the parameter which is used for what purpose the file is opened. If

we haven’t used any filemode argument and only filename with open() function, the default mode is

as:

 ios::in for ifstream functions means open for reading only.

 i.e. fin.open(“test”); is equivalent to fin.open(“test”,ios::in); as default

 ios::out for ofstream functions means open for writing only.

 fout.open(“test”); is same as fout.open(“test”,ios::out); as default.

Class fstream inherits all features of ifstream and ofstream so we can use fstream object for both

input/output operation in file. When fstream class is used , we should mention the second parameter

<filemode> with open().

The file mode parameter can take one or more such predefined

constants in ios class. The following are such file mode parameters.

 Parameters Meanings

ios::app Append to end of file

ios::ate Go to end-of-file on opening

ios::binary Binary file

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 8

ios::in open file for reading only

ios::nocreate Opens fails if the file does not exists

ios::noreplace Open files if the file already exists

ios::out Open file for writing only

ios::trunc Delete the contents of files if it exits

- Opening file in ios::out mode also opens in the ios::trunc mode default

- ios::app and ios::ate takes to the end-of-file when opening but only difference is that ios::app

allows to add data only end-of-file but ios::ate allows us to add or modify data at anywhere in

the file. In both case file is created if it does not exists.

- Creating a stream ofstream default implies output(write) mode and ifstream implies

input(read), but fstream stream does not provide default parameter so we must provide the

mode parameter with fstream.

- The mode can combine two or more parameters using bitwise OR operator (|)

e.g. fout.open(“test”,ios::app|ios::out);

File Pointers:

The file management system associates two types of pointers with each file.

1. get pointer (input pointer)

2. put pointer (output pointer)

These pointers facilitate the movement across the file while reading and writing.

 • The get pointer specifies a location from where current read operation initiated.

 • The put pointer specifies a location from where current write operation initiated.

The file pointer is set to a suitable location initially depending upon the mode which it is opened.

 Read-only Mode: When a file is opened in read-only mode, the input (get) pointer is initialized to

the beginning of the file.

 Write-only: mode: In this mode, existing contents are deleted if file exists and put pointer is set to

beginning of the file.

 Append mode: In this mode, existing contents are unchanged and put pointer is set to the end of file

so writing can be done from end of file.

Read

t e s t f i l e

 Input pointer

write

 output pointer

Append

t e s t f i l e
 output pointer

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 9

Functions manipulating file pointers:

C++ I/O system supports 4 functions for setting a file to any desired position inside the file.

 The functions are

Function member of class Action

seekg() ifstream moves get file pointer to a specific location

seekp() ofstream moves put file pointer to a specific location

tellg() ifstream Return the current position of the get ptr

tellp() ofstream Return the current position of the put ptr

 These all four functions are available in fstream class by inheritance. The two seek() functions

have following prototypes.
 istream & seekg (long offset, seek_dir origin =ios::beg);

 ostream & seekp (long offset, seek_dir origin=ios::beg);

- Both functions set file ptr to a certain offset relative to specified origin. The origin is relative

point for offset measurement. The default value for origin is ios::beg.

- (seek_dir) an enumeration declaration given in ios class as

orgin value seek from
ios::beg seek from beginning of file

ios::cur seek from current location

ios::end seek from end of file

e.g. ifstream infile;

 infile.seekg(20,ios::beg); or infile.seekg(20); // default ios::beg move

file ptr to 20th byte in the file. The reading start from 21st item [byte start from 0] with file.

Then after, infile.seekg(10,ios::cur); moves get pointer 10 bytes further from current

position.

Similarly:
ofstream outfile;

outfile.seekp(20,ios::beg); // out file. seek p (20);

moves file put pointer to 20th byte and if write operation is initiated, start writing from 21st item.

Consider following example

20 bytes
ios::beg get ptr

20 bytes
ios::beg get ptr ios::cur

10 bytes

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 10

ofsteam outfile("student",ios::app);

int size=outfile.tellp();

Return the size of file in byte to variable size since ios::app takes file put ptr at end of file. The

function tellp() returns the takes file put ptr at end of file. The function tellp() returns the current

position of put ptr.

Equivalently:
ifstream infile("student");

infile.seekg(0,ios::end);

int size=infile.tellg() ;

 This returns the current file pointer position which is at end

of file so we gget he size of fife "student".

Some of pointer offset calls and their actions:

Assume: ofstream fout;

Seek Action

fout.seekg(0,ios::beg) Go to beginning of the file

fout.seekg(0,ios::cur) Stay at current location

fout.seekg(0,ios::end) Go to the end of file

fout.seekg(n,ios::beg) move to (n+1) byte from beginning of file.

fout.seekg (n,ios::cur) move forword by n bytes from currrent position

fout.seekg(-n,ios:: cur) move backward by n bytes from currnt position

fout.seekp(n,ios:: beg) move write pointer (n+1) byte location

fout.seekp(-n,ios:: cur) move write ptr n bytes backwards.

File I/O with fstrem class

Fstream class supports simultaneous input/output operations. It inherits function from istream and

ostream class through iostream.

Following program illustrates this
#include<iostream.h>

#include<fstream.h> //Assume file student.in

#include<conio.h> //is created with

#include<process.h> //1. no of student (count)

void main() //2. for n students

{

 fstream infile; // input file name

 fstream outfile; // output file percentage sane

 int i, count, percentage;

 char name[20];

 //open for read mode

 infile.open("student.in",ios::in);

 if(infile.fail()) // if operation failed.

 {

 cout<<"Error: student.in open fail";

 exit(1);

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 11

 }

 //open next file for write

 outfile.open("student.out",ios::out);

 if(outfile.fail())

 { cout<<"Error:......"; exit(1);

 }

 infile>>count; // no of student

 outfile<<" student Information processing" <<endl;

 outfile<<" ------------------------------" <<endl;

 for(i=0; i<count; i++)

 { // Read data percentage from input file

 infile>>name;

 infile>>percentage;

 // write in output file.

 outfile<<"Name:"<<name<<endl;

 outfile<<"precentage:"plercentage<<endl;

 outfile<<"passed in:";

 if(percentage>=75)

 outfile<<"first Division/distinction";

 else if(percentage>=45)

 outfile<<" Second Div";

 else if(percentage>=35)

 outfile<<"Passed";

 else

 outfile<<"Failed";

 outfile<<endl;

 outfile<<"....................."<<endl;

 }

 // close files;

 infile.close();

 outfile.close();

}

The put () and get () function:

– The function get() is a member function of the file stream

class fstream, and used to read a single character from file.

– The function put() is member function of fstream class and used

to write a single character into file.

Example:

#include<fstream.h>

void main()

{

char c, string[100];

fstream file("student.txt",ios::in|ios::out);

cout<<"Enter string:";

for (int i=0; string[i]!='\0'; i++)

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 12

file.put(string[i]);

file.seekg(0); // seek to the beging

cout<<"output string:";

while(file)

{

 file.get(c);

 cout<<c;

}

}

The write () and read () function:

• The write () function is a member of stream class fstream and used to write data in file

 as binary format.

• The read () function is used to read data (binary form) from a file.

• The data representation in binary format in file is same as in system. The no of byte

 required to store data in text form is proportional to its magnitude but in binary form,

 the size is fixed.

e.g.

3 2

 2 bytes

 2 byte

 5 bytes 2 bytes

Text format Binary format

The prototype for read () & write () functions are as:.

infile.read((char*)&variable, sizeof(variable));

outfile.write((char*)&variable, sizeof(variable));

 The first parameter is a pointer to a memory location at which the data is to be retrieved [read()] or to

be written [write()] function.

 The second parameter indicates the number of bytes to be transferred.

Example :writing variable in to files
#include<fstream.h>

void main()

{

int number1=530;

 float number2=100.50;

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 2 6 4 0

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 13

// open file in read binary mode, read integer and class

 ofstream ofile("number.bin",ios::binary);

 ofile.write((char*)&number1, sizeof(number1));

 ofile.write((char*)&number2, sizeof(float));

 ofile:close();

// open file in read binary mode, read integer & close

 ifstream ifile ("number.bin",ios::binary);

 ifile.read((char*)&number1,sizeof(number1));

 ifile.read((char*) &number2,sizeof(number2));

 cout<<number1<<" "<<number2<<endl;

 ifile.close();

}

Object I/O in file

C++ is Object-oriented language so we need objects to be written in file and read from file .

Following examples show the I/O operations .

Writing object to disk file:

Generally binary mode is used which writes object in disk in bit configurations.

//example
#include<fstream.h>

#include<iostream.h>

class emp

{

 char empname[20];

 int eno;

 float sal;

 public:

 void getdata()

 {

 cout<<"Enter Name:"; cin>>empname;

 cout<<"Enter Emp No:"; cin>>eno;

 cout<<"Enter salary:"; cin>>sal;

 }

};

void main()

{

emp em;

cout<<"Enter the detail of employee"<<endl;

em.getdata();

ofstream fout("emp.dat");

fout.write((char*)&em,sizeof(em));

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 14

cout<<"Object written to file";

}

READING FROM FILE:

#include<fstream.h>

#include<iostream.h>

class emp

{

 char empname[20];

 int eno;

 float sal;

 public:

 void showdata()

 {

 cout<<"\nName:"<<empname<<endl;

 cout<<"Emp NO:"<<eno<<endl;

 cout<<"Salary:"<<sal<<endl;

 }

};

void main()

{

emp em;

ifstream fin("emp.dat");

fin.read((char*)&em,sizeof(em));

cout<<"Object detail from file";

em.showdata();

}

Writing and reading objects:
//student.cpp

#include<iostream.h>

#include<fstream.h>

#include<iomanip.h>

class student

{

 char name[20];

 int roll;

 char add[20];

 public:

 void readdata()

 {

 cout<<"Enter name:";cin>>name;

 cout<<"Enter Roll. no.:";cin>>roll;

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 15

 cout<<"Enter address:";cin>>add;

 }

 void showdata()

 {

 cout<<setw(10)<<roll<<setiosflags(ios::left)<<setw(10)

 <<name<<setiosflags(ios::left)<<setw(10)<<add<<endl;

 }

};

void main()

{

 student s[5];

 fstream file;

 file.open("record.dat", ios::in|ios::out);

 cout<<"enter detail for 5 students:";

 for(int i=0;i<5;i++)

 {

 s[i].readdata();

 file.write((char*)&s[i],sizeof(s[i]));

 }

 file.seekg(0);//move pointer begining.

 cout<<"Output from file"<<endl;

 cout<<setiosflags(ios::left)<<setw(10)<<"RollNo"

<<setiosflags(ios::left)<<setw(10)<<"Name"

<<setiosflags(ios::left)<<setw(10)<<"Address"<<endl;

 for(i=0;i<5;i++)

 {

 file.read((char*)&s[i],sizeof(s[i]));

 s[i].showdata();

 }

 file.close();

}

Command Line Arguments

C++ supports the features that facilitates the supply of arguments to the main() function. The

arguments are supplied to the main at the time of program execution from command line. The main

function takes two arguments. First of which is argument count argc and second is an array of

arguments name argv[] as

main(int argc, char*argv[])

such program is invoked in command prompt as

C> programname arg1 arg2….

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 16

Following example shows the use of command line arguments which reads two different files and

display the contents one containing even numbers and another containing odd numbers.

//Program commandline arguments

//evenodd.cpp
#include<iostream.h>

#include<fstream.h>

#include<stdlib.h>

#include<conio.h>

int main(int argc,char*argv[])

{

 int number[9]={11,22,33,44,55,66,77,88,99};

 if(argc!=3)

 {

 cout<<"argc="<<argc<<endl;

 cout<<"Error in arguments"<<endl;

 getch();

 exit(1);

 }

 ofstream fout1, fout2;

 fout1.open(argv[1]);

 if(fout1.fail())

 {

 cout<<"couldnot open the file"<<argv[1]<<endl;

 getch();

 exit(1);

 }

 fout2.open(argv[2]);

 if(fout1.fail())

 {

 cout<<"couldnot open the file"<<argv[2]<<endl;

 getch();

 exit(1);

 }

 for(int i=0;i<9;i++)

 {

 if(number[i]%2==0)

 fout2<<number[i]<<" ";

 else

 fout1<<number[i]<<" ";

 }

 fout1.close();

 fout2.close();

 ifstream fin;

 char ch;

 for(i=1;i<argc;i++)

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 17

 {

 fin.open(argv[i]);

 cout<<"Contents of "<<argv[i]<<endl;

 while(fin)

 {

 fin.get(ch);

 cout<<ch;

 }

 cout<<endl<<endl;

 fin.close();

 }

 return 0;

}

This program can be invoked in command line as:

C:\evenodd EVEN ODD

The output of program will be;

Contents of EVEN

11 33 55 77 99

Contents of ODD

22 44 66 88

Example 2:

A program that copies contents of a text file to another file

#include<iostream.h>

#include<fstream.h>

#include<stdlib.h>

#include<conio.h>

int main(int arg,char*argv[])

{

char *str="This is a test file written and saved into disk for

copy";

 if(arg!=3)

 {

 cout<<"argc="<<arg<<endl;

 cout<<"Error in arguments"<<endl;

 getch();

 exit(1);

 }

 ofstream fout;

https://collegenote.pythonanywhere.com/

File Handling in C++ B.Sc. II

 https://collegenote.pythonanywhere.com/ Prepared by: Hemanta G.C. 18

 fout.open("test");

 fout<<str<<endl;

 fout<<"The contents of string is written into the file"<<endl;

 fout.close();

 fout.open(argv[2]);

 if(fout.fail())

 {

 cout<<"couldnot open the6 file"<<argv[2]<<endl;

 getch();

 exit(1);

 }

 ifstream fin;

 fin.open(argv[1]);

 if(fin.fail())

 {

 cout<<"couldnot open the file"<<argv[1]<<endl;

 getch();

 exit(1);

 }

 while(fin)

 { char ch;

 fin.get(ch);

 fout<<ch;

 }

 fin.close();

 fout.close();

 cout<<"File "<<argv[1]<<" is "<<"Copied to "<<argv[2]<<endl;

 return 0;

}

Execute it as:

C:\filecpy test TEST1

Output will be

File test is Copied to TEST1;

https://collegenote.pythonanywhere.com/

