
 Page 1

Unit 8
Input Output Organization

I/O plays a crucial role in any modern computer system. Therefore, a clear understanding and
appreciation of the fundamentals of I/O operations, devices, and interfaces are of great importance.

I/O subsystem
The input-output subsystem of a computer, referred as I/O, provides an efficient mode of
communication between the central system and outside environment. Data and programs must be
entered into the computer memory for processing and result of computations must be must be
recorded or displayed for the user.

Peripheral devices
Input or output devices attached to the computer are called peripherals. Keyboards, display units and
printers are most common peripheral devices. Magnetic disks, tapes are also peripherals which provide
auxiliary storage for the system.

Not all input comes from people and not all intended for people. In various real time processes as
machine tooling, assembly line procedures and chemical & industrial processes, various processes
communicate with each other providing input and/or outputs to other processes.

Input-Output Interface
Input-output interface provides a method for transferring information between internal storage and
external I/O devices. It resolves the differences between the computer and peripheral devices. The
major differences are:

Output Devices
- CRT
- Printer (Impact, Ink Jet,

Laser, Dot Matrix)
- Digital incremental Plotters
- Auxiliary storage

Input Devices
 Keyboard and mouse
 Touch screen
 Light pen
 Auxiliary storage
 Card reader
 Optical and magnetic character

readers
 Data acquisition equipments

 I/O organization of a computer is a function of size of the computer and the devices
connected to it. In other words, amount of hardware computer possesses to
communicate with no. of peripheral units, differentiate between small and large
system.

 IO devices communicating with people and computer usually transfer
alphanumeric information using ASCII binary encoding.

For more notes visit https://collegenote.pythonanywhere.com

 Page 2

 Peripherals are electromechanical and electromagnetic devices and manner of operation is
different from that of CPU which is electronic component.

 Data transfer rate of peripherals is slower than that of CPU. So some synchronization
mechanism may be needed.

 Data codes and formats in peripherals differ from the word format in CPU and memory.
 Operating modes of peripherals are different from each other and each must be controlled so

as not to disturb other.

To resolve these differences, computer system usually include special hardware unit between CPU and
peripherals to supervise and synchronize I/O transfers, which are called Interface units since they
interface processor bus and peripherals.

I/O Bus and Interface Modules
Peripherals connected to a computer need special communication link to interface with CPU. This
special link is called I/O bus. Fig below clears the idea:

Fig: Connection of I/O bus to I/O devices

Functions of an interface are as below:

o Decodes the device address (device code)
o Decodes the I/O commands (operation or function code) in control lines.
o Provides signals for the peripheral controller
o Synchronizes the data flow
o Supervises the transfer rate between peripheral and CPU or Memory

I/O commands
The function code provided by processor in control line is called I/O command. The
interpretation of command depends on the peripheral that the processor is addressing. There
are 4 types of commands that an interface may receive:

a) Control command: Issued to activate the peripheral and to inform it what to do? E.g. a magnetic
tape unit may be instructed to backspace tape by one record.

b) Status command: Used to check the various status conditions of the interface before a transfer
is initiated.

c) Data input command: Causes the interface to read the data from the peripheral and places it
into the interface buffer. [HEY! Processor checks if data are available using status command and
then issues a data input command. The interface places the data on data lines, where they are
accepted by the processor]

 I/O bus from the processor is
attached to all peripheral interfaces.

 I/O bus consists of Data lines,
address and control lines.

 To communicate with a particular
device, the processor places a
device address on the address lines.
Each peripheral has an interface
module associated with its
interface.

For more notes visit https://collegenote.pythonanywhere.com

 Page 3

d) Data output command: Causes the interface to read the data from the bus and saves it into the
interface buffer.

I/O Bus versus Memory Bus
In addition to communicating with I/O, processor also has to work with memory unit. Like I/O bus,
memory bus contains data, address and read/write control lines. 3 physical organizations, the computer
buses can be used to communicate with memory and I/O:

a) Use two separate buses, one for memory and other for I/O: Computer has independent sets of
data, address and control buses, one for accessing memory and other for I/O. usually employed
in a computer that has separate IOP (Input Output Processor).

b) Use one common bus for both memory and I/O having separate control lines
c) Use one common bus for memory and I/O with common control lines

Isolated I/O versus Memory-Mapped I/O
Question: Differentiate between isolated I/O and memory-mapped I/O.

Isolated I/O Configuration

 Two functionally and physically
separate buses

o Memory bus
o I/O bus

 Each consists of the same three
main groupings of wires

o Address (example might
be 6 wires, or up to 2 6 =
64 devices)

o Data
o Control

 Each device interface has a port which
consists of a minimum of:

o Control register
o Status register
o Data-in (Read) register (or buffer)
o Data-out (Write) register (or

buffer)

 CPU can execute instructions to manipulate
the I/O bus separate from the memory bus

 Now only used in very high performance
systems

For more notes visit https://collegenote.pythonanywhere.com

 Page 4

Memory-Mapped I/O configuration

In this case, Memory space is not only ordinary system memory. It can refer to all the addresses that the
programmer may specify. These addresses correspond to all the possible valid addresses that the CPU
may place on its memory bus address lines.

 Diagram shows a hypothetical example of

 a 10,000 byte memory space
 Shows the principal regions

 of the memory Space of a
computer system

 Random Access Memory (RAM) includes both:
ROM: Read-only memory (0000-0999)
RWM: Read-write memory (5000-9999)

 Unused memory space
No devices connected to these addresses
If CPU tries to access, causes a hardware
 or bus error

I/O interface Unit (an example)
I/O interface unit is shown in the block diagram below, it consists:

 Two data registers called ports.
 A control register
 A status register
 Bus buffers
 Timing and control circuits

 The memory bus is the only bus in the system
 Device interfaces assigned to the address

space of the CPU or processing element
 Most common way of interfacing devices to

computer systems
 CPU can manipulate I/O data residing in

interface registers with same instructions that
are used to access memory words.

 Typically, a segment of total address space is
reserved for interface registers.

For more notes visit https://collegenote.pythonanywhere.com

 Page 5

Fig: I/O interface unit

Modes of I/O transfer (Types of I/O)
Binary information received from an external device is usually stored in memory for later processing.
CPU merely executes I/O instructions and may accept data from memory unit (which in fact is ultimate
source or destination). Data transfer between the central computer and I/O devices may be handled in
one 3 modes:

 Programmed I/O
 Interrupt-initiated I/O
 Direct memory access (DMA)

Programmed I/O
Programmed I/O operations are the result of I/O instructions written in the computer program. Each
data item transfer is initiated by an instruction in the program. Usually, the transfer is to and from a CPU
register and peripheral. Other instructions are needed to transfer the data to and from CPU and
memory. Transferring data under program control requires constant monitoring of the peripheral by the
CPU. Once a data transfer is initiated, the CPU is required to monitor the interface to see when a
transfer can again be made. It is up to the programmed instructions executed in the CPU to keep close
tabs on everything that is taking place in the interface unit and the I/O device. In programmed I/O
method, I/O device does not have direct access to memory. Transfer from peripheral to memory/ CPU
requires the execution of several I/O instructions by CPU.

 Interface communicates
with CPU through data bus

 Chip select (CS) and
Register select (RS) inputs
determine the address
assigned to the interface.

 I/O read and write are two
control lines that specify
input and output.

 4 registers directly
communicates with the I/O
device attached to the
interface.

 Address bus selects the interface
unit through CS and RS1 & RS0.

 Particular interface is selected by
the circuit (decoder) enabling CS.

 RS1 and RS0 select one of 4
registers.

For more notes visit https://collegenote.pythonanywhere.com

 Page 6

Now for programmed I/O, a program is written for the computer to check the flag bit to determine if I/O
device has put byte of data in data register of interface.

Interrupt-initiated I/O
Since polling (constantly monitoring the flag F) takes valuable CPU time, alternative for CPU is to let the
interface inform the computer when it is ready to transfer data. This mode of transfer uses the interrupt
facility. While the CPU is running a program, it does not check the flag. However, when the flag is set,
the computer is momentarily interrupted from proceeding with the current program and is informed of
the fact that the flag has been set. The CPU deviates from what it is doing to take care of the input or
output transfer. After the transfer is completed, the computer returns to the previous program to
continue what it was doing before the interrupt.
The CPU responds to the interrupt signal by storing the return address from the program counter into a
memory stack and then control branches to a service routine that processes the required I/O transfer.

Diagram shows data transfer from I/O
device to CPU. Device transfers bytes of
data one at a time as they are available.
When a byte of data is available, the
device places it in the I/O bus and
enables its data valid line. The interface
accepts the byte into its data register
and enables the data accepted line. The
interface sets a bit in the status register
that we will refer to as an F or "flag" bit.

Flowchart of the program that must be written to
the CPU is shown here. The transfer of each byte
(assuming device is sending sequence of bytes)
requires 3 instructions:

a) Read status register
b) Check F bit. If not set branch to a) and if set

branch to c).
c) Read data register

For more notes visit https://collegenote.pythonanywhere.com

 Page 7

Direct Memory Access (DMA)
• What is DMA? - DMA is a sophisticated I/O technique in which a DMA controller replaces the CPU

and takes care of the access of both, the I/O device and the memory, for fast data transfers. Using
DMA you get the fastest data transfer rates possible.

• Momentum behind DMA: Interrupt driven and programmed I/O require active CPU intervention (All
data must pass through CPU). Transfer rate is limited by processor's ability to service the device and
hence CPU is tied up managing I/O transfer. Removing CPU form the path and letting the peripheral
device manage the memory buses directly would improve the speed of transfer.

• Extensively used method to capture buses is through special control signals:
o Bus request (BR): used by DMA controller to request the CPU for buses. When this input is

active, CPU terminates the execution the current instruction and places the address bus,
data bus and read & write lines into a high impedance state (open circuit).

o Bus grant (BG): CPU activates BG output to inform DMA that buses are available (in high
impedance state). DMA now take control over buses to conduct memory transfers without
processor intervention. When DMA terminates the transfer, it disables the BR line and CPU
disables BG and returns to normal operation.

• When DMA takes control of bus system, the transfer with the memory can be made in following
two ways:

o Burst transfer: A block sequence consisting of a number of memory words is transferred in
continuous burst. Needed for fast devices as magnetic disks where data transmission can
not be stopped (or slowed down) until whole block is transferred.

o Cycle stealing: This allows DMA controller to transfer one data word at a time, after which it
must return control of the buses to the CPU. The CPU merely delays its operation for one
memory cycle to allow DMA to “steal” one memory cycle.

DMA Transfer
Question: what is DMA transfer? Explain.

Fig: DMA transfer in a computer system

• CPU communicates with the DMA
through address and data buses.

• DMA has its own address which
activates RS (Register select) and DS
(DMA select) lines.

• When a peripheral device sends a
DMA request, the DMA controller
activates the BR line, informing CPU
to leave buses. The CPU responds
with its BG line.

• DMA then puts current value of its
address register into the address
bus, initiates RD or WR signal, and
sends a DMA acknowledge to the
peripheral devices.

• When BG=0, RD & WR allow CPU to
communicate with internal DMA
registers and when BG=1, DMA
communicates with RAM through
RD & WR lines.

For more notes visit https://collegenote.pythonanywhere.com

 Page 8

Input-Output Processor (IOP)

 IOP is a processor with direct memory access capability that communicates with I/O devices. In this

configuration, the computer system can be divided into a memory unit, and a number of processors
comprised of CPU and one or more IOPs.

 IOP is similar to CPU except that it is designed to handle the details of I/O processing.
 Unlike DMA controller (which is set up completely by the CPU), IOP can fetch and execute its own

instructions. IOP instructions are designed specifically to facilitate I/O transfers.
 Instructions that are read form memory by an IOP are called commands to differ them form

instructions read by CPU. The command words constitute the program for the IOP. The CPU informs
the IOP where to find commands in memory when it is time to execute the I/O program.

Fig: Block diagram of computer with I/O processor

The memory occupies a central position and can communicate with each processor by means of DMA.
CPU is usually assigned the task of initiating the I/O program, from then on; IOP operates independent
of the CPU and continues to transfer data from external devices and memory.

CPU-IOP communication
Communication between the CPU and IOP may take different forms depending on the particular
computer used. Mostly, memory unit acts as a memory center where each processor leaves information
for the other.
Mechanism: CPU sends an instruction to test the IOP path. The IOP responds by inserting a status word
in memory for the CPU to check. The bits of the status word indicate the condition of IOP and I/O device
(“IOP overload condition”, “device busy with another transfer” etc). CPU then checks status word to
decide what to do next. If all is in order, CPU sends the instruction to start the I/O transfer . The memory
address received with this instruction tells the IOP where to find its program. CPU may continue with
another program while the IOP is busy with the I/O program. When IOP terminates the transfer (using
DMA), it sends an interrupt request to CPU. The CPU responds by issuing an instruction to read the
status from the IOP and IOP then answers by placing the status report into specified memory location .
By inspecting the bits in the status word, CPU determines whether the I/O operation was completed
satisfactorily and the process is repeated again.

For more notes visit https://collegenote.pythonanywhere.com

 Page 9

Fig: CPU-IOP communication

Data Communication Processor (DCP)
Data communication processor (DCP) is an I/O processor that distributes and collects data from many
remote terminals connected through telephone and other communication lines. It is a specialized I/O
processor designed to communicate directly with data communication networks (which may consists of
wide variety of devices as printers, displays, sensors etc.). So DCP makes possible to operate efficiently
in a time-sharing environment.
Difference between IOP and DCP: Is the way processor communicates with I/O devices.

• An I/O processor communicates with the peripherals through a common I/O bus i.e. all
peripherals share common bus and use to transfer information to and from I/O processor.

• DCP communicates with each terminal through a single pair of wires. Both data and control
information are transferred in serial fashion.

DCP must also communicate with the CPU and memory in the same manner as any I/O processor.

For more notes visit https://collegenote.pythonanywhere.com

 Page 10

Serial and parallel communication
Serial: Serial communication is the process of sending data one bit at a time, sequentially, over a
communication channel or computer bus. This is in contrast to parallel communication.
Parallel: Parallel communication is a method of sending several data signals simultaneously over several
parallel channels. It contrasts with serial communication; this distinction is one way of characterizing a
communications link.

Modes of data transfer
Question: What are 3 possible modes of transfer data to and from peripherals? Explain.
Data can be transmitted in between two points in 3 different modes:
 Simplex:

o Carries information in one direction only.
o Seldom used
o Example: PC to printer, radio and TV broadcasting

 Half-duplex:
o Capable of transmitting in both directions but only in one

direction at a time.
o Turnaround time: time to switch a half-duplex

line from one direction to other.
o Ex: walkie-talkie" style two-way radio

 Full duplex:

o Can send and receive data in both directions simultaneously.
o Example: Telephone, Mobile Phone, etc

For more notes visit https://collegenote.pythonanywhere.com

 Page 11

Protocol
The orderly transfer of information in a data link is accomplished by means of a protocol. A data link
control protocol is a set of rules that are followed by interconnecting computers and terminals to ensure
the orderly transfer of information.
Purpose of data link protocol:

o To establish and terminate a connection between two stations
o To identify the sender and receiver
o To identify errors
o To handle all control functions

Two major categories according to the message-framing technique used:
 Character-oriented protocol
 Bit-oriented protocol

Character-oriented protocol
It is based on the binary code of the character set (e.g. ASCII). ASCII communication control characters
are used for the purpose of routing data, arranging the text in desired format and for the layout of the
printed page.

Table: ASCII communication control characters

Here is the typical example to appreciate the function of the DCP:

Fig: message format

Typical message format that might be sent from a terminal to the processor is shown above. It contains
following portions:

For more notes visit https://collegenote.pythonanywhere.com

 Page 12

Bit-oriented protocol
It allows the transmission of serial bit stream of any length without the implication of character
boundaries. Messages are organized in a frame. In addition to the information field, a frame contains
address, control and error-checking fields.

Fig: Frame format for bit-oriented protocol

A frame starts with a 8-bit flag 01111110 followed by an address and control sequence. The information
field can be of any length. The frame check field CRC (cyclic redundancy check) detects errors in
transmission. The ending flag represents the receiving station.

For more notes visit https://collegenote.pythonanywhere.com

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

