
Unit-3

Analysis

• Analysis is the first systems development life cycle (SDLC) phase where
you begin to understand, in depth, the need for system changes.
Systems analysis involves a substantial amount of effort and cost, and is
therefore undertaken only after management has decided that the
systems development project under consideration has merit and should
be pursued through this phase. Most observers would agree that many
of the errors in developed systems are directly traceable to inadequate
efforts in the analysis and design phases of the life cycle.

 The purpose of analysis is to determine what information and
information processing services are needed to support selected
objectives and functions of the organization. Gathering this information
is called requirements determination.

1 BY G.P.LEKHAK

• The results of the requirements determination can be structured
according to three essential views of the current and replacement
information systems:

 Process: The sequence of data movement and handling operations
within the system.

 Logic and timing. The rules by which data are transformed and
manipulated and an indication of what triggers data transformation.

 Data: The inherent structure of data independent of how or when they
are processed.

BY G.P.LEKHAK 2

• Determining System Requirements
• Introduction: Systems analysis is the part of the systems development

life cycle in which you determine how the current information system
functions and assess what users would like to see in a new system.
Analysis has two sub phases: requirements determination and
requirements structuring.

 In this chapter, you will learn about determining system requirements.
Techniques used in requirements determination have evolved over time
to become more structured and increasingly rely on computer support.
We will first study the more traditional requirements determination
methods, including interviewing, observing users in their work
environment, and collecting procedures and other written documents.
We will then discuss more current methods for collecting system
requirements. The first of these methods is Joint Application Design
(JAD). Next, you will read about how analysts rely more and more on
information systems to help them perform analysis. As you will see, CASE
tools, discussed in Chapter 1, are useful in requirements determination,
and prototyping has become a key tool for some requirements
determination efforts. Finally, you will learn how requirements analysis
continues to be an important part of systems analysis and design,
whether the approach involves business process redesign, new Agile
techniques (such as constant userinvolvement or usage-centered design),
or focuses on developing Internet applications.

BY G.P.LEKHAK 3

• Performing Requirements Determination

 As shown in Figure 6-1, there are two subphases to systems analysis:
requirements determination and requirements structuring. We will
address these as separate steps, but you should consider the steps as
parallel and iterative. For example, as you determine some aspects of the
current and desired system(s), you begin to structure these requirements
or build prototypes to show users how a system might behave.
Inconsistencies and deficiencies discovered through structuring and
prototyping lead you to explore further the operation of current

 system(s) and the future needs of the organization. Eventually, your ideas
and discoveries converge in a thorough and accurate depiction (the way
that something is represented or shown) of current operations and

 requirements for the new system.

BY G.P.LEKHAK 4

BY G.P.LEKHAK 5

• The Process Of Determining Requirements

• Once management has granted permission to pursue(follow or start)
development of a new system (this was done at the end of the project
identification and selection phase of the SDLC) and a project is initiated
and planned, you begin determining what the new system should do.
During requirements determination, you and other analysts gather
information on what the system should do from as many sources as

 possible: from users of the current system; from observing users; and
from reports, forms, and procedures. All of the system requirements are

carefully documented and prepared for structuring. In many ways,
gathering system requirements is like conducting any investigation.

 These characteristics include the following:

• Impertinence: You should question everything. You need to ask
questions such as: Are all transactions processed the same way? Could
anyone be charged something other than the standard price? Might we
someday want to allow and encourage employees to work for more than
one department?

BY G.P.LEKHAK 6

• Impartiality: Your role is to find the best solution to a business problem
or opportunity. It is not, for example, to find a way to justify the purchase
of new hardware or to insist on incorporating what users think they want
into the new system requirements. You must consider issues raised by all
parties and try to find the best organizational solution.

• Relax constraints: Assume that anything is possible and eliminate the
infeasible. For example, do not accept this statement: “We’ve always
done it that way, so we have to continue the practice.” Traditions are
different from rules and policies. Traditions probably started for a good
reason but, as the organization and its environment change, they may
turn into habits rather than sensible procedures.

• Attention to details: Every fact must fit with every other fact. One
element out of place means that even the best system will fail at some
time. For example, an imprecise (not accurate or exact) definition of who
a customer is may mean that you purge (remove) customer data when a
customer has no active orders, yet these past customers may be vital
contacts for future sales.

BY G.P.LEKHAK 7

• Reframing: Analysis is, in part, a creative process. You must challenge
yourself to look at the organization in new ways. You must consider how
each user views his or her requirements. You must be careful not to jump
to the following conclusion: “I worked on a system like that once—this
new system must work the same way as the one I built before.”

• Deliverables and outcomes: The primary deliverables from requirements
determination are the various forms of information gathered during the
determination process: transcripts of interviews; notes from
observation and analysis of documents; sets of forms, reports, job
descriptions, and other documents; and computer-generated output
such as system prototypes. In short, anything that the analysis team
collects as part of determining system requirements is included in the
deliverables resulting from this subphase of the systems development
life cycle. Table 6-1 lists examples of some specific information that might
be gathered during requirements determination.

BY G.P.LEKHAK 8

BY G.P.LEKHAK 9

We could group all this information in three groups:
• Information collected from conversations with or observations of users
(interview transcripts, notes from observations etc.)
•Existing written informations (business mission or strategy, forms,
reports, training manuals, flow charts and documentation of existing
system etc.)
•Computer-based information (results from JRP sessions, CASE repository
contents)

• Too much analysis is not productive, and the term analysis paralysis has
been coined (invented) to describe a systems development project that
has become bogged down (to be/become so involved in something
difficult or complicated that you cannot do anything else) in an
abundance of analysis work. Because of the dangers of excessive
analysis, today’s systems analysts focus more on the system to be
developed than on the current system. The techniques you will learn
about later in this chapter, JAD and prototyping, were developed to keep
the analysis effort at a minimum yet still keep it effective. Newer
techniques have also been developed to keep requirements

 determination fast and flexible, including continual user involvement,
usage centered design, and the Planning Game from eXtreme
Programming.

BY G.P.LEKHAK 10

BY G.P.LEKHAK 11

• Traditional methods for determining requirements

• At the core of systems analysis is the collection of information. At the
outset, you must collect information about the information systems that
are currently being used and how users would like to improve the current
systems and organizational operations with new or replacement
information systems. One of the best ways to get this information is to
talk to the people who are directly or indirectly involved in the different
parts of the organizations affected by the possible system changes: users,

 managers, funders, and so on. Another way to find out about the
current system is to gather copies of documentation relevant to current
systems and business processes.

• In this chapter, you will learn about various ways to get information
directly from stakeholders: interviews, group interviews, the Nominal
Group Technique, and direct observation. You will learn about collecting
documentation on the current system and organizational operation in
the form of written procedures, forms, reports, and other hard copy.
These traditional methods of collecting system requirements are listed in
Table 6-2.

BY G.P.LEKHAK 12

• Interviewing and listening (150)

• Interviewing is one of the primary ways analysts gather information
about an information systems project. Early in a project, an analyst may
spend a large amount of time interviewing people about their work, the
information they use to do it, and the types of information processing
that might supplement their work. Other stakeholders are interviewed to
understand organizational direction, policies, expectations managers
have on the units they supervise, and other non routine aspects of
organizational operations. During interviewing you will gather facts,
opinions, and speculation(Guess, when you guess possible answers to a
question without having enough information to be certain) and observe
body language, emotions, and other signs of what people want and how
they assess current systems. There are many ways to effectively
interview someone, and no one method is necessarily better than
another. Some guidelines you should keep in mind when you interview,
summarized in Table 6-3, are discussed next.

BY G.P.LEKHAK 13

• First, you should prepare thoroughly before the interview. Set up an
appointment at a time and for a duration convenient for the interviewee.
The general nature of the interview should be explained to the
interviewee in advance. You may ask the interviewee to think about
specific questions or issues or to review certain documentation to
prepare for the interview. You should spend some time thinking about
what you need to find out and write down your questions. Do not
assume that you can anticipate all possible questions. You want the
interview to be natural, and,

 to some degree, you want to

 spontaneously direct the

 interview as you discover

 what expertise the

 interviewee brings to the

 session.

BY G.P.LEKHAK 14

BY G.P.LEKHAK 15

Figure 6-2 Typical interview guide

BY G.P.LEKHAK 16

Figure 6-2 Typical interview guide

• Choosing Interview Questions

• You need to decide what mix and sequence of openended and closed-ended
questions you will use. Open-ended questions are usually used to probe for
information for which you cannot anticipate all possible responses or for which
you do not know the precise question to ask. The person being interviewed is
encouraged to talk about whatever interests him or her within the general
bounds of the question. An example is, “What would you say is the best thing
about the information system you currently use to do your job?” or “List the
three most frequently used menu options.” You must react quickly to answers
and determine whether or not any follow-up questions are needed for
clarification or elaboration. Sometimes body language will suggest that a user
has given an incomplete answer or is reluctant to divulge (to make something
secret known) some information; a follow-up question might yield additional
insight. One advantage of open-ended questions is that previously unknown
information can surface. You can then continue exploring along unexpected lines
of inquiry to reveal even more new information. Open-ended questions also often
put the interviewees at ease (move) because they are able to respond in their own
words using their own structure; open-ended questions give interviewees more of a
sense of involvement and control in the interview. A major disadvantage of open-
ended questions is the length of time it can take for the questions to be answered. In
addition, open-ended questions can be difficult to summarize. BY G.P.LEKHAK 17

• Closed-ended questions provide a range of answers from which the
interviewee may choose. Here is an example:

• Which of the following would you say is the one best thing about the
information system you currently use to do your job (pick only one)?

 a. Having easy access to all of the data you need

 b. The system’s response time

 c. The ability to access the system from remote locations

• Closed-ended questions work well when the major answers to questions are
well known. Another plus is that interviews based on closed-ended
questions do not necessarily require a large time commitment—more topics
can be covered. You can see body language and hear voice tone, which can
aid in interpreting the interviewee’s responses. Closed-ended questions can
also be an easy way to begin an interview and to determine which line of
open-ended questions to pursue. You can include an “other” option to
encourage the interviewee to add unanticipated responses. A major
disadvantage of closed-ended questions is that useful information that does
not quite fit into the defined answers may be overlooked as the respondent
tries to make a choice instead of providing his or her best answer.

BY G.P.LEKHAK 18

• Closed-ended questions, like objective questions on an examination, can
follow several forms, including the following choices:

• True or false.

• Multiple choice (with only one response or selecting all relevant choices).

• Rating a response or idea on a scale, say from bad to good or strongly
agree to strongly disagree. Each point on the scale should have a clear
and consistent meaning to each person, and there is usually a neutral
point in the middle of the scale.

• Ranking items in order of importance.

BY G.P.LEKHAK 19

• Interview Guidelines: First, with either open- or closed-ended questions,
do not phrase a question in a way that implies a right or wrong answer.
The respondent must feel that he or she can put his or her true opinion
and perspective and that his or her idea will be considered equally with
those of others. Questions such as “Should the system continue to
provide the ability to override the default value, even though most
users now do not like the feature?”.

• The second guideline to remember about interviews is to listen very
carefully to what is being said. Take careful notes or, if possible, record
the interview (be sure to ask permission first!). The answers may contain
extremely important information for the project.

• Third, once the interview is over, go back to your office and type up your
notes within 48 hours. If you recorded the interview, use the recording to
verify the material in your notes. After 48 hours, your memory of the
interview will fade quickly. As you type and organize your notes, write
down any additional questions that might arise from lapses (a temporary
failure) in your notes or from ambiguous information.

BY G.P.LEKHAK 20

• Make a list of unclear points that need clarification. Call the person you
interviewed and get answers to these new questions. Use the phone

 call as an opportunity to verify the accuracy of your notes. You may also
want to send a written copy of your notes to the person you interviewed
so the person can check your notes for accuracy. Finally, make sure you
thank the person for his or her time.

• Fourth, be careful during the interview not to set expectations about the
new or replacement system unless you are sure these features will be
part of the delivered system. Let the interviewee know that there are
many steps to the project and the perspectives of many people need to
be considered, along with what is technically possible. Let respondents
know that their ideas will be carefully considered, but that due to the
iterative nature of the systems development process, it is premature to

say now exactly what the ultimate system will or will not do.

BY G.P.LEKHAK 21

• Fifth, seek a variety of perspectives from the interviews. Find out what
potential users of the system, users of other systems that might be
affected by changes, managers and superiors, information systems staff
who have experience with the current system, and others think the
current problems and opportunities are and what new information
services might better serve the organization.

• Interviewing groups: One drawback to using interviews to collect
systems requirements is the need for the analyst to reconcile
(reconsider) apparent contradictions in the information collected. A
series of interviews may turn up inconsistent information about the
current system or its replacement. You must work through all of these
inconsistencies to figure out what might be the most accurate
representation of current and future systems. Such a process requires
several follow-up phone calls and additional interviews. Catching

 important people in their offices is often difficult and frustrating, and

scheduling new interviews may become very time consuming. Clearly,
gathering information about an information system through a series of
individual interviews and follow-up calls is not an efficient process.

BY G.P.LEKHAK 22

• Another option available to you is the group interview. In a group interview,
several key people are interviewed at once. To make sure all of the important
information is collected, you may conduct the interview with one or more
analysts. In the case of multiple interviewers, one analyst may ask questions
while another takes notes, or different analysts might concentrate on different
kinds of information. For example, one analyst may listen for data requirements
while another notes the timing and triggering of key events. The number of
interviewees involved in the process may range from two to however many you
believe can be comfortably accommodated.

• A group interview has a few advantages. One, it is a much more effective use of

 your time than a series of interviews with individuals (although the time
commitment of the interviewees may be more of a concern). Two, interviewing
several people together allows them to hear the opinions of other key people
and gives them the opportunity to agree or disagree with their peers. Synergies
(the combined power of a group of things when they are working together
which is greater than the total power achieved by each working separately) also
often occur. For example, the comments of one person might cause another
person to say, “That reminds me of” or “I didn’t know that was a problem.” You
can benefit from such a discussion as it helps you identify issues on which there
is general agreement and areas where views diverge widely.

BY G.P.LEKHAK 23

• The primary disadvantage of a group interview is the difficulty in
scheduling it. The more people who are involved, the more difficult it will
be finding a convenient time and place for everyone. Modern
videoconferencing technology can minimize the geographical dispersion
factors that make scheduling meetings so difficult. Group interviews are
at the core of the JAD process, which we discuss in a later section

 in this chapter. A specific technique for working with groups, Nominal
Group Technique, is discussed next.

BY G.P.LEKHAK 24

• Nominal Group Technique: Many different techniques have been
developed over the years to improve the process of working with groups.
One of the more popular techniques for generating ideas among group
members is called Nominal Group Technique (NGT). NGT is exactly what
the name indicates—the individuals working together to solve a
problem are a group in name only, or nominally. Group members may be
gathered in the same room for NGT, but they all work alone for a period
of time. Typically, group members make a written list of their ideas. At
the end of the idea-generation time, group members pool their
individual ideas under the guidance of a trained facilitator. Pooling
usually involves having the facilitator ask each person in turn for an idea
that has not been presented before. As the person reads the idea aloud,
someone else writes down the idea on a blackboard or flip chart.

• After all of the ideas have been introduced, the facilitator will then ask
for the group to openly discuss each idea, primarily for clarification.

BY G.P.LEKHAK 25

• Once all of the ideas are understood by all of the participants, the
facilitator will try to reduce the number of ideas the group will carry
forward for additional consideration. There are many ways to reduce the
number of ideas. The facilitator may ask participants to choose only a
subset of ideas that they believe are important. Then the facilitator will

go around the room, asking each person to read aloud an idea that is
important to him or her that has not yet been identified by someone
else. Or the facilitator may work with the group to identify and either
eliminate or combine ideas that are very similar to others. At some point,
the facilitator and the group end up with a tractable set of ideas, which
can be further prioritized. In a requirements determination context, the
ideas being sought in an NGT exercise would typically apply to problems
with the existing system or ideas for new features in the system being
developed.

BY G.P.LEKHAK 26

• Directly observing users 155

 For example, observation can cause people to change their normal
operating behavior. Employees who know they are being observed may
be nervous and make more mistakes than normal, may be careful to
follow exact procedures they do not typically follow, and may work faster
or slower than normal. Moreover, because observation typically cannot
be continuous, you receive only a snapshot image of the person or task
you observe, which may not include important events or activities.

 Because observation is very time consuming, you will not only observe
for a limited time, but also a limited number of people and a limited
number of sites. Again, observation yields only a small segment of data
from a possibly vast variety of data sources. Exactly which people or sites
to observe is a difficult selection problem. You want to pick both typical
and atypical people and sites, and observe during normal and abnormal
conditions and times to receive the richest possible data from
observation.

BY G.P.LEKHAK 27

• Analyzing Procedures And Other Documents

• By examining existing system and organizational documentation, system
analyst can find out details about current system and the organization. In
documents analyst can find information, such as problem with existing
systems, opportunities to meet new needs if only certain information or
information processing were available, organizational direction that can
influence information system requirements, and the reason why current
systems are designed as they are etc.

• However, when analyzing those official documentations analyst should
pay attention to the different between the systems described on the
official documentation and practical systems in real world. For the reason
of inadequacies (not enough or small in amount) of formal procedures,
individual work habits and preferences, resistance to control, and other
factors, the difference between so called formal system and informal
system universally exists.

BY G.P.LEKHAK 28

• Analyzing Procedures and other Documents

• By examining existing system and organizational documentation, system
analyst can find out details about current system and the organization
these systems supports. In documents analyst can find information such
as problem with existing systems, opportunities to meet new needs if
only certain information or information processing were available,
organizational direction that can influence information system
requirements, and the reason why current systems are designed as they
are, etc.

• However, when analyzing those official documentations, analysts should
pay attention to the difference between the systems described on the
official documentations and the practical systems in real world. For the
reason of inadequacies (not enough) of formal procedures, individual
work habits and preferences, resistance to control, and other factors, the
difference between so called formal system and informal system
universally exists.

• In documents you can find information about

 BY G.P.LEKHAK 29

• Problems with existing systems (e.g., missing information or redundant
steps)

• Opportunities to meet new needs if only certain information or information
processing were available (e.g., analysis of sales based on customer type)

• Organizational direction that can influence information system requirements
(e.g., trying to link customers and suppliers more closely to the organization)

• Titles and names of key individuals who have an interest in relevant existing
systems (e.g., the name of a sales manager who led a study of the buying
behavior of key customers)

• Values of the organization or individuals who can help determine priorities
for different capabilities desired by different users (e.g., maintaining market
share even if it means lower short-term profits)

• Special information processing circumstances that occur irregularly that may
not be identified by any other requirements determination technique (e.g.,
special handling needed for a few large-volume customers that requires use
of customized customer ordering procedures)

BY G.P.LEKHAK 30

• The reason why current systems are designed as they are, which
can suggest features left out of current software, which may now
be feasible and more desirable (e.g., data about a customer’s
purchase of competitors’ products were not available when the
current system was designed; these data are now available from
several sources)

• Data, rules for processing data, and principles by which the
organization operates that must be enforced by the information
system (e.g., each customer is assigned exactly one sales
department staff member as a primary contact if the customer has
any questions)

BY G.P.LEKHAK 31

• Contemporary Methods For Determining system Requirements

• Even though we called interviews, observation, and document analysis
traditional methods for determining a system’s requirements, all of these
methods are still very much used by analysts to collect important
information. Today, however, there are additional techniques to collect
information about the current system, the organizational area requesting
the new system, and what the new system should be like.

• In this section, you will learn about several contemporary information-
gathering techniques for analysis (listed in Table 6-5): JAD, CASE tools to
support JAD, and prototyping.

• As we said earlier, these techniques can support effective information
collection and structuring while reducing the amount of time required for
analysis.

BY G.P.LEKHAK 32

BY G.P.LEKHAK 33

• Joint Application Design (JAD)
• A structured process in which users, managers, and analysts work

together for several days in a series of intensive meetings to specify or
review system requirements.

• Joint Application Design (JAD) started in the late 1970s at IBM, and since
then the practice of JAD has spread throughout many companies and
industries.

• The main idea behind JAD is to bring together the key users, managers,
and systems analysts involved in the analysis of a current system. The
primary purpose of using JAD in the analysis phase is to collect systems
requirements simultaneously from the key people involved with the
system. The result is an intense (extreme and forceful or (of a feeling)
very strong) and structured, but highly effective, process. As with a
group interview, having all the key people together in one place at one
time allows analysts to see where there are areas of agreement and
where there are conflicts. Meeting with all of these important people for
over a week of intense sessions allows you the opportunity to resolve
conflicts, or at least to understand why a conflict may not be simple to
resolve.

BY G.P.LEKHAK 34

• JAD sessions are usually conducted at a location other than the place
where the people involved normally work. The idea behind such a
practice is to keep participants away from as many distractions as
possible so that they can concentrate on systems analysis. A JAD may last
anywhere from four hours to an entire week and may consist of several
sessions. A JAD employs thousands of dollars of corporate resources,

 the most expensive of which is the time of the people involved. Other
expenses include the costs associated with flying people to a remote site
and putting them up in hotels and feeding them for several days.

 The typical participants in a JAD are listed below:

• JAD session leader: The JAD session leader organizes and runs the JAD.
This person has been trained in group management and facilitation as
well as in systems analysis. The JAD leader sets the agenda and sees that
it is met; he or she remains neutral on issues and does not contribute
ideas or opinions, but rather concentrates on keeping the group on the
agenda, resolving conflicts and disagreements, and soliciting (manage)

all ideas.

BY G.P.LEKHAK 35

• Users: The key users of the system under consideration are vital
participants in a JAD. They are the only ones who have a clear
understanding of what it means to use the system on a daily basis.

• Managers: Managers of the work groups who use the system in question
provide insight into new organizational directions, motivations for and
organizational impacts of systems, and support for requirements
determined during the JAD.

• Sponsor: As a major undertaking due to its expense, a JAD must be
sponsored by someone at a relatively high level in the company. If the
sponsor attends any sessions, it is usually only at the very beginning or
the end.

• Systems analysts: Members of the systems analysis team attend the JAD,
although their actual participation may be limited. Analysts are there to
learn from users and managers, not to run or dominate the process.

• Scribe: The scribe takes notes during the JAD sessions. This is usually
done on a laptop. Notes may be taken using a word processor, or notes
and diagrams may be entered directly into a CASE tool.

BY G.P.LEKHAK 36

• IS staff: Besides systems analysts, other information systems (IS) staff,
such as programmers, database analysts, IS planners, and data center
personnel, may attend to learn from the discussion and possibly
contribute their ideas on the technical feasibility of proposed ideas or the
technical limitations of current systems.

• JAD sessions are usually held in special-purpose rooms where
participants sit around horseshoe-shaped tables, as shown in Figure 6-6.
These rooms are typically equipped with whiteboards. Other audiovisual
tools may be used, such as magnetic symbols that can be easily
rearranged on a whiteboard, flip charts, and computer-generated
displays. Flip-chart paper is typically used for keeping track of issues
that cannot be resolved during the JAD or for those issues requiring
additional information that can be gathered during breaks in the
proceedings. Computers may be used to create and display form or

 report designs, diagram existing or replacement systems, or create
prototypes.

BY G.P.LEKHAK 37

BY G.P.LEKHAK 38

• When a JAD is completed, the end result is a set of documents that detail

 the workings of the current system related to the study of a replacement
system. Depending on the exact purpose of the JAD, analysts may also
walk away from the JAD with some detailed information on what is
desired of the replacement system.

• CASE Tools During JAD: For requirements determination and structuring,
the most useful CASE tools are used for diagramming and form and
report generation.

• Some observers advocate using CASE tools during JADs (Lucas, 1993).
Running a CASE tool during a JAD enables analysts to enter system
models directly into a CASE tool, providing consistency and reliability in
the joint model-building process.

• The CASE tool captures system requirements in a more flexible and
useful way than can a scribe or an analysis team making notes. Further,
the CASE tool can be used to project menu, display, and report designs,
so users can directly observe old and new designs and evaluate their
usefulness for the analysis team.

BY G.P.LEKHAK 39

• Advantage of JAD

• JAD allows you to resolve difficulties more simply and produce better,
error-free software.

• The joint collaboration between the company and the clients lowers all
risks.

• JAD reduces costs and time needed for project development.

• Well-defined requirements improve system quality.

• Due to the close communication, progress is faster.

• JAD encourages the team to push each other to work faster and deliver
on time.

• Disadvantage of JAD

• Different opinions within the team make it difficult to align goals and
maintain focus

• Depending on the size of the project , JAD may require a significant time
commitment.

BY G.P.LEKHAK 40

• Using Prototyping During Requirements Determination:

• Prototyping: An iterative process of systems development in which
requirements are converted to a working system that is continually
revised through close collaboration between an analyst and users.

• Prototyping will enable you to quickly convert basic requirements into a
working, though limited, version of the desired information system. The
prototype will then be viewed and tested by the user. Typically, seeing
verbal descriptions of requirements converted into a physical system will
prompt the user to modify existing requirements and generate new ones.
For example, in the initial interviews, a user might have said that he
wanted all relevant utility billing information (e.g., the client’s name and
address, the service record, and payment history) on a single computer
display form. Once the same user sees how crowded and confusing such
a design would be in the prototype, he might change his mind and
instead ask to have the information organized on several screens, but
with easy transitions from one screen to another. He might also be
reminded of some important requirements (data, calculations, etc.) that
had not surfaced during the initial interviews.

BY G.P.LEKHAK 41

BY G.P.LEKHAK 42

• As the prototype changes through each iteration, more and more of the
design specifications for the system are captured in the prototype. The
prototype can then serve as the basis for the production system in a
process called evolutionary prototyping.

• Alternatively, the prototype can serve only as a model, which is then
used as a reference for the construction of the actual system. In this
process, called throwaway prototyping, the prototype is discarded after
it has been used.

• Evolutionary Prototyping:

• In evolutionary prototyping, you begin by modeling parts of the target
system and, if the prototyping process is successful, you evolve the rest
of the system from those parts (McConnell, 1996). A life-cycle model of
evolutionary prototyping illustrates the iterative nature of the process
and the tendency to refine the prototype until it is ready to release
(Figure 6-8).

BY G.P.LEKHAK 43

• Systems must be designed to support scalability, multiuser support, and
multiplatform support. Few of these design specifications will be coded
into a prototype. Further, as much as 90 percent of a system’s
functioning is devoted to handling exceptional cases (McConnell, 1996).
Prototypes are designed to handle only the typical cases, so exception
handling must be added to the prototype as it is converted to the
production system. Clearly, the prototype captures only part of the
system requirements.

BY G.P.LEKHAK 44

BY G.P.LEKHAK 45

• Throwaway Prototyping : Unlike evolutionary prototyping, throwaway
prototyping does not preserve the prototype that has been developed.
With throwaway prototyping, there is never any intention to convert the
prototype into a working system.

• Instead, the prototype is developed quickly to demonstrate some aspect
of a system design that is unclear or to help users decide among different
features or interface characteristics. Once the uncertainty the prototype
was created to address has been reduced, the prototype can be
discarded, and the principles learned from its creation and testing can
then become part of the requirements determination.

BY G.P.LEKHAK 46

• Radical Methods For Determining System Requirements

• The overall process by which current methods are replaced with radically
new methods is generally referred to as business process reengineering
(BPR).

• To better understand BPR, consider the following analogy. Suppose you
are a successful European golfer who has tuned your game to fit the style
of golf courses and weather in Europe. You have learned how to control
the flight of the ball in heavy winds, roll the ball on wide open greens,
putt on large and undulating greens, and aim at a target without the aid
of the landscaping common on North American courses. When you come
to the United States to make your fortune on the US tour, you discover
that incrementally improving your putting, driving accuracy, and sand

 shots will help, but the new competitive environment is simply not suited
to your style of the game. You need to reengineer your whole approach,
learning how to aim at targets, spin and stop a ball on the green, and
manage the distractions of crowds and the press. If you are good enough,
you may survive, but without reengineering, you will never be a winner.

BY G.P.LEKHAK 47

• Just as the competitiveness of golf forces good players to adapt their
games to changing conditions, the competitiveness of our global
economy has driven most companies into a mode of continuously
improving the quality of their products and services (Dobyns and
Crawford-Mason, 1991). Organizations realize that creatively using
information technologies can yield significant improvements in most
business processes.

• Identifying Processes To Reengineer

• A first step in any BPR effort relates to understanding what processes to
change. To do this, you must first understand which processes represent
the key business processes for the organization. Key business processes
are the structured set of measurable activities designed to produce a
specific output for a particular customer or market. The important aspect
of this definition is that key processes are focused on some type of
organizational outcome, such as the creation of a product or the delivery
of a service. Key business processes are also customer focused. In other
words, key business processes would include all activities used to design,
build, deliver, support, and service a particular product for a particular
customer. BY G.P.LEKHAK 48

• Disruptive technologies (168)

• Once key business processes and activities have been identified,
information technologies must be applied to radically improve business
processes. To do this, Hammer and Champy (1993) suggest that
organizations think “inductively” about information technology.
Induction is the process of reasoning from the specific to the general,

 which means that managers must learn the power of new technologies
and think of innovative (using new methods or ideas) ways to alter the
way work is done. This is contrary to deductive thinking, where problems
are first identified and solutions are then formulated.

BY G.P.LEKHAK 49

• Requirements Management Tools

• Organizations and developers have always been looking for more
effective and creative ways to create and maintain requirements
documents. One method that has been developed is computer-based
requirements management tools. These tools make it easier for analyst
to keep requirements, current documents and to define links between
different parts of the overall specifications package. Requirements
management tools are typically designed to work with many of the
standards now available for requirements specification such as the
Unified Modeling Language 2.0, System modeling language, Business
process modeling notation etc.

• Requirements management tools is best to traditional, planning based
systems development approaches. They do not work well with agile
methodologies which tend to employ different approaches to
requirements gathering.

BY G.P.LEKHAK 50

• Requirements Determination Using Agile Methodologies

• Three techniques are presented in this section. The first is continual user
involvement in the development process, a technique that works
especially well with small and dedicated development teams.

• The second approach is a JAD-like process called Agile Usage-Centered
Design.

• The third approach is the Planning Game, which was developed as part
of eXtreme Programming.

• (1) Continual User Involvement

• In Chapter 1, we read about the criticisms of the traditional waterfall
SDLC. One of those criticisms was that the waterfall SDLC allowed users
to be involved in the development process only in the early stages of
analysis. Once requirements had been gathered from them, the users
were not involved again in the process until the system was being
installed and they were asked to sign off on it. Typically, by the time the

 users saw the system again, it was nothing like what they had imagined.
The system most likely did not adequately address user needs.

BY G.P.LEKHAK 51

• One approach to the problem of limited user involvement is to involve
the users continually, throughout the entire analysis and design process.
Such an approach works best when development can follow the
analysis–design–code–test cycle favored by the Agile Methodologies
(Figure 6-9), because the user can provide information on requirements
and then watch and evaluate as those requirements are designed, coded,
and tested. This iterative process can continue through several cycles,
until most of the major functionality of the system has been developed.
Extensive involvement users in the analysis and design process is a key
part of many Agile approaches, but it was also a key part of Rapid
Application Development (see Chapter 1).

BY G.P.LEKHAK 52

BY G.P.LEKHAK 53

• Continual user involvement was a key aspect of the success of Boeing’s
Wire Design and Wire Install system for the 757 aircraft (Bedoll, 2003).
The system was intended to support engineers who customize plane
configurations for customers, allowing them to analyze all 50,000 wires
that can possibly be installed on a 757. A previous attempt at building a
similar system took over three years, and the resulting system was never
used. The second attempt, relying on Agile Methodologies, resulted

 in a system that was in production after only six weeks. One of the keys
to success was a user liaison (communication between people who work
with each other) who spent half of his time with the small development
team and half with the other end users. In addition to following the
analysis–design–code–test cycle, the team also had weekly production
releases. The user liaison was involved every step of the way. Obviously,
for such a requirements determination to succeed, the user who works
with the development team must be very knowledgeable, but he or she
must also be in a position to give up his or her normal business
responsibilities in order to become heavily involved in the system’s
development.

BY G.P.LEKHAK 54

• Agile Usage-Centered Design

• Continual user involvement in systems development is an excellent way
to ensure that requirements are captured accurately and immediately
implemented in system design. However, such constant interaction
works best when the development team is small, as was the case in the
Boeing example. Also, it is not always possible to have continual access to
users for the duration of a development project. Thus, Agile developers
have come up with other means for effectively involving users in the
requirements determination process. One such method is called Agile
Usage-Centered Design, originally developed by Larry Constantine (2002)
and adapted for Agile Methodologies by Jeff Patton (2002).

BY G.P.LEKHAK 55

 The Planning Game From eXtreme Programming

• You read about eXtreme Programming in Chapter 1, and you know that it
is an approach to software development put together by Kent Beck (Beck
and Andres, 2004). You also know that it is distinguished by its short
cycles, its incremental planning approach, its focus on automated tests
written by programmers and customers to monitor the process of
development, and its reliance on an evolutionary approach to
development that lasts throughout the lifetime of the system. One of the
key emphases of eXtreme Programming is its use of two-person
programming teams and having a customer on-site during the
development process. The relevant parts of eXtreme Programming that
relate to requirements determination are (1) how planning, analysis,
design, and construction are all fused together into a single phase of
activity and (2) its unique way of capturing and presenting system
requirements and design specifications. All phases of the life cycle
converge into a series of activities based on the basic processes of
coding, testing, listening, and designing.

BY G.P.LEKHAK 56

• System Process Requirements (182)

• Introduction

• In this topic, our focus will be on one tool that is used to coherently
represent the information gathered as part of requirements
determination—data flow diagrams. Data flow diagrams enable you to
model how data flow through an information system, the relationships
among the data flows, and how data come to be stored at specific

 locations. Data flow diagrams also show the processes that change or
transform data. Because data flow diagrams concentrate on the
movement of data between processes, these diagrams are called process
models.

• Decision tables allow you to represent the conditional logic that is

 part of some data flow diagram processes.

BY G.P.LEKHAK 57

• Process Modeling

• Process modeling involves graphically representing the functions, or
processes, that capture, manipulate, store, and distribute data between
a system and its environment and between components within a system.

• A common form of a process model is a data flow diagram (DFD). DFDs,
the traditional process modeling technique of structured analysis and
design and one of the techniques most frequently used today for process
modeling.

• Modeling a system’s Process for structured Analysis: As Figure 7-1
shows, the analysis phase of the systems development life cycle has two

 subphases : requirements determination and requirements structuring.
The analysis team enters the requirements structuring phase with an
abundance of information gathered during the requirements
determination phase. During requirements structuring, you and the
other team members must organize the information into a meaningful
representation of the information system that currently exists and of the

 requirements desired in a replacement system.

BY G.P.LEKHAK 58

BY G.P.LEKHAK 59

Figure 7-1
Systems development life cycle with the analysis phase highlighted

• deliverables and outcomes: In structured analysis, the primary
deliverables from process modeling are a set of coherent, interrelated
DFDs. Table 7-1 provides a more detailed list of the deliverables that
result when DFDs are used to study and document a system’s processes.
First, a context diagram shows the scope of the system, indicating which
elements are inside and which are outside the system. Second, DFDs of
the system specify which processes move and transform data, accepting
inputs and producing outputs. These diagrams are developed with
sufficient detail to understand the current system and to eventually
determine how to convert the current system into its replacement.
Finally, entries for all of the objects included in all of the diagrams are
included in the project dictionary or CASE repository.

BY G.P.LEKHAK 60

• Data Flow Diagramming Mechanics: DFDs are versatile diagramming
tools. With only four symbols, you can use DFDs to represent both
physical and logical information systems. DFDs are not as good as

 flowcharts for depicting (to represent or show something in a picture or

story) the details of physical systems.

• There are two different standard sets of DFD symbols (see Figure 7-2);
each set consists of four symbols that represent the same things: data
flows, data stores, processes, and sources/sinks (or external entities).

• A data store is data at rest. A data store may represent one of many
different physical locations for data; for example, a file folder, one or
more computer-based file(s), or a notebook. A data store might contain

 data about customers, students, customer orders, or supplier invoices.

• A process is the work or actions performed on data so that they are
transformed, stored, or distributed. When modeling the data processing
of a system, it does not matter whether a process is performed manually
or by a computer.

BY G.P.LEKHAK 61

BY G.P.LEKHAK 62

• Finally, a source/sink is the origin and/or destination of the data.
Sources/sinks are sometimes referred to as external entities because they
are outside the system. Once processed, data or information leave the
system and go to some other place. Sources and sinks are outside the
system we are studying.

• The symbols for each set of DFD conventions are presented in Figure 7-2. In
both conventions, a data flow is represented as an arrow. The arrow is
labeled with a meaningful name for the data in motion; for example,
Customer Order, Sales Receipt, or Paycheck. The name represents the
aggregation of all the individual elements of data moving as part of one
packet, that is, all the data moving together at the same time.

• Sources/Sinks are always outside the information system and define the
boundaries of the system. Data must originate outside a system from one

 or more sources, and the system must produce information to one or more
sinks (these are principles of open systems, and almost every information
system is an open system). If any data processing takes place inside the
source/sink, it is of no interest because this processing takes place outside
the system we are diagramming. A source/sink might consist of the
following:

BY G.P.LEKHAK 63

• Developing DFD

• The information system is represented as a DFD in Figure 7-4. The
highest-level view of this system, shown in the figure, is called a context
diagram. You will notice that this context diagram contains only one
process, no data stores, four data flows, and three sources/sinks. The
single process, labeled 0, represents the entire system; all context
diagrams have only one process, labeled 0. The sources/sinks represent

 the environmental boundaries of the system. Because the data stores of
the system are conceptually inside one process, data stores do not
appear on a context diagram. As you can see in Figure 7-5, we have
identified four separate processes. The main processes represent the
major functions of the system, and these major functions correspond to
actions such as the following:

 1. Capturing data from different sources (e.g., Process 1.0)

 2. Maintaining data stores (e.g., Processes 2.0 and 3.0)

 3. Producing and distributing data to different sinks (e.g., Process 4.0)

 4. High-level descriptions of data transformation operations (e.g., Process
1.0)

BY G.P.LEKHAK 64

BY G.P.LEKHAK 65

BY G.P.LEKHAK
66

• We see that the system begins with an order from a customer, as was
the case with the context diagram. In the first process, labeled 1.0, we
see that the customer order is processed. The result is four streams, or
flows, of data:

 (1) the food order is transmitted to the kitchen,

 (2) the customer order is transformed into a list of goods sold,

 (3) the customer order is transformed into inventory data, and

 (4) the process generates a receipt for the customer.

• Notice that the sources/sinks are the same in the context diagram and in
this diagram: the customer, the kitchen, and the restaurant’s manager.
This diagram is called a level-0 diagram because it represents the
primary individual processes in the system at the highest possible level.
Each process has a number that ends in .0 (corresponding to the level
number of the DFD).

BY G.P.LEKHAK 67

• Two of the data flows generated by the first process, Receive and
Transform Customer Food Order, go to external entities, so we no longer
have to worry about them. We are not concerned about what happens
outside our system. Let’s trace the flow of the data represented in the
other two data flows. First, the data labeled Goods Sold go to Process
2.0, Update Goods Sold File. The output for this process is labeled
Formatted Goods Sold Data. This output updates a data store labeled
Goods Sold File. If the customer order was for two cheeseburgers, one
order of fries, and a large soft drink, each of these categories of goods
sold in the data store would be incremented appropriately. The Daily
Goods Sold Amounts are then used as input to Process 4.0, Produce
Management Reports. Similarly, the remaining data flow generated by
Process 1.0, Inventory Data, serves as input for Process 3.0, Update
Inventory File. This process updates the Inventory File data store, based
on the inventory that would have been used to create the customer
order. For example, an order of two cheeseburgers would mean that
Hoosier Burger now has two fewer hamburger patties, two fewer burger
buns, and four fewer slices of American cheese.

BY G.P.LEKHAK 68

• The Daily Inventory Depletion Amounts are then used as input to Process
4.0. The data flow leaving Process 4.0, Management Reports, goes to the
sink Restaurant Manager.

• Figure 7-5 illustrates several important concepts about information
movement. Consider the data flow Inventory Data moving from Process
1.0 to Process 3.0. We know from this diagram that Process 1.0 produces
this data flow and that Process 3.0 receives it. However, we do not know
the timing of when this data flow is produced, how frequently it is
produced, or what volume of data is sent. Thus, this DFD hides many
physical characteristics of the system it describes. We do know,
however, that this data flow is needed by Process 3.0 and that Process
1.0 provides these needed data.

BY G.P.LEKHAK 69

• Also implied by the Inventory Data data flow is that whenever Process
1.0 produces this flow, Process 3.0 must be ready to accept it. Thus,
Processes 1.0 and 3.0 are coupled with each other. In contrast, consider
the link between Process 2.0 and Process 4.0. The output from Process
2.0, Formatted Goods Sold Data, is placed in a data store and, later, when
Process 4.0 needs such data, it reads Daily Goods Sold Amounts from this
data store. In this case, Processes 2.0 and 4.0 are decoupled by placing a
buffer, a data store, between them. Now, each of these processes can
work at their own pace, and Process 4.0 does not have to be ready to
accept input at any time. Further, the Goods Sold File becomes a data
resource that other processes could potentially draw upon for data.

BY G.P.LEKHAK 70

• Data Flow

• Diagramming

• Rules

BY G.P.LEKHAK 71

• Decomposition of DFDs

• In the earlier example of Hoosier Burger’s food-ordering system, we
started with a high-level context diagram. Upon thinking more about the
system, we saw that the larger system consisted of four processes. The
act of going from a single system to four component processes is called
(functional) decomposition. Functional decomposition is an iterative
process of breaking the description or perspective of a system down into
finer and finer detail. This process creates a set of hierarchically related

 charts in which one process on a given chart is explained in greater
detail on another chart. For the Hoosier Burger system, we broke down,
or decomposed, the larger system into four processes. Each resulting
process (or subsystem) is also a candidate for decomposition. Each
process may consist of several sub processes. Each sub process may also
be broken down into smaller units. Decomposition continues until you

 have reached the point at which no sub process can logically be broken
down any further. The lowest level of a DFD is called a primitive DFD.

BY G.P.LEKHAK 72

BY G.P.LEKHAK 73

BY G.P.LEKHAK 74

Note that each of the five
Processes in Figure 7-7 is
labeled as a sub process of

 Process 1.0: Process 1.1, Process 1.2, and so on. Also note that, just as with the

other DFDs we have looked at, each of the processes and data flows is named.
You will also notice that no sources or sinks are represented. Although you may
include sources and sinks, the context and level-0 diagrams show the sources
and sinks. The DFD in Figure 7-7 is called a level-1 diagram. If we should decide
to decompose Processes 2.0, 3.0, or 4.0 in a similar manner, the DFDs we would
create would also be level-1 diagrams. In general, a level-n diagram is a DFD
that is generated from n nested decompositions from a level-0 diagram.

BY G.P.LEKHAK 75

• Processes 2.0 and 3.0 perform similar functions in that they both use
data input to update data stores. Because updating a data store is a
singular logical function, neither of these processes needs to be
decomposed further. We can, however, decompose Process 4.0, Produce
Management Reports, into at least three sub processes:

 Access Goods Sold and Inventory Data, Aggregate Goods Sold and
Inventory Data, and Prepare Management Reports. The decomposition
of Process 4.0 is shown in the level-1 diagram of Figure 7-8.

BY G.P.LEKHAK 76

• Each level-1, -2, or -n DFD represents one process on a level-n-1 DFD;
each DFD should be on a separate page.

• No DFD should have more than about seven processes because too
many processes will make the diagram too crowded and difficult to
understand. Typically, process names begin with an action verb, such as
Receive, Calculate, Transform, Generate, or Produce. Process names
often are the same as the verbs used in many computer programming
languages. Example process names include Merge, Sort, Read, Write, and
Print.

 BY G.P.LEKHAK 77

• Balancing DFDs

• When you decompose a DFD from one level to the next, there is a
conservation principle at work. You must conserve inputs and outputs to
a process at the next level of decomposition. In other words, Process
1.0, which appears in a level-0 diagram, must have the same inputs and
outputs when decomposed into a level-1 diagram. This conservation of
inputs and outputs is called balancing.

BY G.P.LEKHAK 78

• Let’s look at an example of balancing a set of DFDs. Look back at Figure 7-4. This
is the context diagram for Hoosier Burger’s food-ordering system. Notice that
there is one input to the system, the customer order, which originates with the
customer. Notice also that there are three outputs: the customer receipt, the
food order intended for the kitchen, and management reports. Now look at
Figure 7-5. This is the level-0 diagram for the food-ordering system. Remember
that all data stores and flows to or from them are internal to the system. Notice
that the same single input to the system and the same three outputs
represented in the context diagram also appear at level 0. Further, no new
inputs to or outputs from the system have been introduced. Therefore, we can
say that the context diagram and level-0 DFDs are balanced.

BY G.P.LEKHAK 79

• Using Data flow Diagramming in the Analysis Process

• Learning the mechanics of drawing DFDs is important because DFDs have
proven to be essential tools for the structured analysis process. Beyond
the issue of drawing mechanically correct DFDs, there are other issues
related to process modeling with which an analyst must be concerned.
Such issues, including whether the DFDs are complete and consistent
across all levels, which covers guidelines for drawing DFDs. Another
issue to consider is how you can use DFDs as a useful tool for analysis.

• Guidelines for drawing DFDs

• 1. Completeness : The concept of DFD completeness refers to whether
you have included in your DFDs all of the components necessary for the
system you are modeling. If your DFD contains data flows that do not
lead anywhere or data stores, processes, or external entities that are not
connected to anything else, your DFD is not complete.

BY G.P.LEKHAK 80

• 2. Consistency : The concept of DFD consistency refers to whether or
not the depiction of the system shown at one level of a nested set of
DFDs is compatible with the depictions of the system shown at other
levels. A gross violation of consistency would be a level-1 diagram with
no level-0 diagram. Another example of inconsistency would be a data
flow that appears on a higher-level DFD but not on lower levels (also a
violation of balancing).

• 3. Timing: You may have noticed in some of the DFD examples we have
presented that DFDs do not do a very good job of representing time. On
a given DFD, there is no indication of whether a data flow occurs
constantly in real time, once per week, or once per year. There is also no
indication of when a system would run.

• 4. Iterative Development: The first DFD you draw will rarely capture
perfectly the system you are modeling. You should count on drawing the
same diagram over and over again, in an iterative fashion. With each
attempt, you will come closer to a good approximation of the system or
aspect of the system you are modeling. One rule of thumb is that it
should take you about three revisions for each DFD you draw.

BY G.P.LEKHAK 81

• 5. Primitive DFDs : One of the more difficult decisions you need to make

when drawing DFDs is when to stop decomposing processes. One rule is
to stop drawing when you have reached the lowest logical level;
however, it is not always easy to know what the lowest logical level is.

BY G.P.LEKHAK 82

• Modeling logic with decision Tables (203)

• A decision table is a diagram of process logic where the logic is reasonably
complicated. All of the possible choices and the conditions the choices
depend on are represented in tabular form, as illustrated in the decision
table in Figure 7-18. The decision table in Figure 7-18 models the logic of a
generic payroll system.

• The table has three parts: the condition stubs, the action stubs, and the
rules. The condition stubs contain the various conditions that apply to the
situation the table is modeling. In Figure 7-18, there are two condition stubs
for employee type and hours worked. Employee type has two values: “S,”
which stands for salaried, and “H,” which stands for hourly. Hours worked
has three values: less than 40, exactly 40, and more than 40. The action
stubs contain all the possible courses of action that result from combining
values of the condition stubs. There are four possible courses of action in
this table: Pay Base Salary, Calculate Hourly Wage, Calculate Overtime, and
Produce Absence Report. You can see that not all actions are triggered by all
combinations of conditions. Instead, specific combinations trigger specific
actions. The part of the table that links conditions to actions is the section
that contains the rules.

BY G.P.LEKHAK 83

BY G.P.LEKHAK 84

• To read the rules, start by reading the values of the conditions as
specified in the first column: Employee type is “S,” or salaried, and hours
worked is less than 40. When both of these conditions occur, the payroll
system is to pay the base salary.

• In the next column, the values are “H” and “<40,” meaning an hourly
worker who worked less than 40 hours. In such a situation, the payroll
system calculates the hourly wage and makes an entry in the Absence
Report. Rule 3 addresses the situation when a salaried employee works
exactly 40 hours. The system pays the base salary, as was the case for
rule 1. For an hourly worker who has worked exactly 40 hours, rule 4
calculates the hourly wage. Rule 5 pays the base salary for salaried

 employees who work more than 40 hours. Rule 5 has the same action as
rules 1 and 3 and governs behavior with regard to salaried employees.
The number of hours worked does not affect the outcome for rules 1, 3,
or 5. For these rules, hours worked is an indifferent condition in that its
value does not affect the action taken. Rule 6 calculates hourly pay and
overtime for an hourly worker who has worked more than 40 hours.

BY G.P.LEKHAK 85

• indifferent condition

• In a decision table, a condition whose value does not affect which actions
are taken for two or more rules.

BY G.P.LEKHAK 86

• Because of the indifferent condition for rules 1, 3, and 5, we can reduce
the number of rules by condensing rules 1, 3, and 5 into one rule, as
shown in Figure 7-19. The indifferent condition is represented with a
dash. Whereas we started with a decision table with six rules, we now
have a simpler table that conveys the same information with only four
rules.

• Decision Tree:????

BY G.P.LEKHAK 87

• System Data Requirements:(255)

• Introduction: In previous chapter , we learned how to model and analyze
data. we learned how to show data stores, or data at rest, in a data flow
diagram (DFD). DFDs, use cases, and various processing logic techniques
show how, where, and when data are used or changed in an information
system, but these techniques do not show the definition, structure, and
relationships within the data. Data modeling develops these missing, and
crucial, descriptive pieces of a system. The most common format used
for data modeling is entity-relationship (E-R) diagramming. A similar
format used with object-oriented analysis and design methods is class
diagramming, which is included in a special section at the end of this
chapter on the object-oriented development approach to data modeling.
Data models that use E-R and class diagram notations explain the
characteristics and structure of data independent of how the data may
be stored in computer memory. A data model is usually developed
iteratively, either from scratch or from a purchased data model for the
industry or business area to be supported. Information system (IS)
planners use this preliminary data model to develop an enterprise-wide
data model with very broad categories of data and little detail. BY G.P.LEKHAK 88

• Conceptual Data Modeling

• A conceptual data model is a representation of organizational data. The
purpose of a conceptual data model is to show as many rules about the
meaning and interrelationships among data as are possible. Conceptual
data modeling is typically done in parallel with other requirements
analysis and structuring steps during systems analysis .On larger systems
development teams, a subset of the project team concentrates on data
modeling while other team members focus attention on process or
logic modeling. Analysts develop (or use from prior systems
development) a conceptual data model for the current system and then
build or refine a purchased conceptual data model that supports the
scope and requirements for the proposed or enhanced system. The work
of all team members is coordinated and shared through the project

 dictionary or repository. This repository is often maintained by a
common Computer- Aided Software Engineering (CASE) or data modeling
software tool.

BY G.P.LEKHAK 89

• The Conceptual Data Modeling process: The process of conceptual data
modeling begins with developing a conceptual data model for the system
being replaced, if a system already exists. This is essential for planning
the conversion of the current files or database into the database of the
new system. Further, this is a good, but not a perfect, starting point for
your understanding of the data requirements of the new system. Then, a
new conceptual data model is built (or a standard one is purchased) that
includes all of the data requirements for the new system.

• Deliverables and outcomes: Most organizations today do conceptual
data modeling using E-R modeling, which uses a special notation to
represent as much meaning about data as possible. Because of the
rapidly increasing interest in object-oriented methods, class diagrams
using unified modeling language (UML) drawing tools such as IBM’s
Rational products or Microsoft Visio are also popular.

 1. The primary deliverable from the conceptual data modeling step

 within the analysis phase is an E-R diagram.

BY G.P.LEKHAK 90

 2. The other deliverable from conceptual data modeling is a full set of

entries about data objects that will be stored in the project dictionary,
repository, or data modeling software.The repository is the mechanism
to link data, process and logic models of an information system.

• Gathering Information For Conceptual Data Modeling: Requirements
determination methods must include questions and investigations that

 take a data, not only a process and logic, focus. For example, during
interviews with potential system users—during Joint Application Design
(JAD) sessions or through requirements interviews—you must ask
specific questions in order to gain the perspective on data that you need
to develop or tailor a purchased data model.

• You typically do data modeling from a combination of perspectives. The
first perspective is generally called the top-down approach. This
perspective derives the business rules for a data model from an intimate
understanding of the nature of the business, rather than from any
specific information requirements in computer displays, reports, or
business forms. BY G.P.LEKHAK 91

BY G.P.LEKHAK 92

• You can also gather the information you need for data modeling by
reviewing specific business documents—computer displays, reports, and
business forms— handled within the system. This process of gaining an
understanding of data is often

• called a bottom-up approach. These items will appear as data flows on
DFDs and will show the data processed by the system and, hence,
probably the data that must be maintained in the system’s database.
Consider, for example, Figure 8-4, which shows a customer order form
used at Pine Valley Furniture (PVF). From this form, we determine that
the following data must be kept in the database:

BY G.P.LEKHAK 93

BY G.P.LEKHAK 94

• Introduction To E-R Modeling

• An entity-relationship data model (E-R model) is a detailed, logical
representation of the data for an organization or for a business area. The E-R
model is expressed in terms of entities in the business environment, the
relationships or associations among those entities, and the attributes or
properties of both the entities and their relationships.

• An E-R model is normally expressed as an entity-relationship diagram (E-R
diagram), which is a graphical representation of an E-R model.

• The basic E-R modeling notation uses three main constructs: data entities,
relationships and their associated attributes.

• An entity is a person, place, object, event, or concept in the user environment
about which the organization wishes to maintain data. An entity has its own
identity, which distinguishes it from other entities. There is an important
distinction between entity types and entity instances. An entity type is a
collection of entities that share common properties or characteristics. An entity
instance is a single occurrence of an entity type. we use a simple noun to name
an entity type. We use capital letters in naming an entity type and, in an E-R
diagram, the name is placed inside a rectangle representing the entity, as shown
in Figure 8-6a.

BY G.P.LEKHAK 95

• An entity instance (also known simply as an instance) is a single
occurrence of an entity type. An entity type is described just once in a
data model, whereas many instances of that entity type may be
represented by data stored in the database. For example, there is one
EMPLOYEE entity type in most organizations, but there may be

 hundreds (or even thousands) of instances of this entity type stored in
the database.

BY G.P.LEKHAK 96

• For example there is usually one EMPLOYEE type but there may be
hundreds of instances of this entity type stored in a database. Each entity
type has a set of attributes associated with it.

• For example: for an entity STUDENT we have such attributes like:
STUDENT NO, NAME, ADDRESS, PHONE NO. Every entity must have an
attribute or set of attributes that distinguishes one instance from other
instances of the same type

BY G.P.LEKHAK 97

• Naming and Defining Entity Types: Clearly naming and defining data,
such as entity types, are important tasks during requirements
determination and structuring. When naming and defining entity types,
you should use the following guidelines:

• An entity type name is a singular noun (such as CUSTOMER, STUDENT, or

 AUTOMOBILE).

• An entity type name should be descriptive and specific to the
organization. For example, a PURCHASE ORDER for orders placed with
suppliers is distinct from CUSTOMER ORDER for orders placed by
customers. Both of these entity types cannot be named ORDER.

• An entity type name should be concise (short and clear). For example, in
a university database, use REGISTRATION for the event of a student
registering for a class rather than STUDENT REGISTRATION FOR CLASS.

• Event entity types should be named for the result of the event, not the
activity or process of the event. For example, the event of a project
manager assigning an employee to work on a project results in an
ASSIGNMENT.

BY G.P.LEKHAK 98

• Attributes (263): Each entity type has a set of attributes associated

 with it. An attribute is a property or characteristic of an entity.

 Following are some typical entity types and associated attributes:

• STUDENT: Student_ID, Student_Name, Home_Address, Phone_Number,

 Major

• AUTOMOBILE: Vehicle_ID, Color, Weight, Horsepower

• EMPLOYEE: Employee_ID, Employee_Name, Payroll_Address, Skill

• We use an initial capital letter, followed by lowercase letters, and nouns in
naming an attribute; underscores may or may not be used to separate
words. In E-R diagrams, we represent an attribute by placing its name inside
the rectangle for the associated entity.

• Types of Attributes

• Atomic vs composite,

• Single valued vs multi valued,

• stored vs derived,

• NULL value and

• Key attributes

BY G.P.LEKHAK 99

1. Atomic vs composite: An attribute that cannot be divided into smaller
independent attributes is known as atomic attribute. For example,
assume Student is an entity and its attributes are Name, Age, DOB,
Address and Phone no. Here the Stu_id, DOB attributes of Student
(entity) cannot further divide. So Stu_Id, and DOB are atomic attribute.

BY G.P.LEKHAK 100

BY G.P.LEKHAK 101

BY G.P.LEKHAK 102

BY G.P.LEKHAK 103

BY G.P.LEKHAK 104

BY G.P.LEKHAK 105

BY G.P.LEKHAK 106

Conceptual Data Modeling And The E-R Model

BY G.P.LEKHAK 107

BY G.P.LEKHAK 108

BY G.P.LEKHAK 109

BY G.P.LEKHAK 110

BY G.P.LEKHAK 111

BY G.P.LEKHAK 112

BY G.P.LEKHAK 113

BY G.P.LEKHAK 114

BY G.P.LEKHAK 115

BY G.P.LEKHAK 116

• Representing Supertypes And Subtypes (274)

• Often two or more entity types seem very similar (maybe they have
almost the same name), but there are a few differences. That is, these
entity types share common properties but also have one or more
distinct attributes or relationships. To address this situation, the E-R
model has been extended to include supertype/subtype relationships.

• A subtype is a sub grouping of the entities in an entity type that is
meaningful to the organization. For example, STUDENT is an entity type
in a university. Two subtypes of STUDENT are GRADUATE STUDENT and
UNDERGRADUATE STUDENT. A supertype is a generic entity type that
has a relationship with one or more subtypes.

• Business Rules: Conceptual data modeling is a step-by-step process for
documenting information requirements, and it is concerned with both
the structure of data and with rules about the integrity of those data.
Business rules are specifications that preserve the integrity of the
logical data model. Four basic types of business rules are as follows:

BY G.P.LEKHAK 117

 1. Entity integrity: Each instance of an entity type must have a unique
identifier that is not null.

 2. Referential integrity constraints: Rules concerning the relationships
between entity types.

 3. Domains: Constraints on valid values for attributes.

 4. Triggering operations: Other business rules that protect the validity of
attribute values.

• Domains: A domain is the set of all data types and ranges of values that
attributes may assume.

• triggering operations: A triggering operation (also called a trigger) is an
assertion or rule that governs the validity of data manipulation
operations such as insert, update, and delete. The scope of triggering
operations may be limited to attributes within one entity or it may
extend to attributes in two or more entities.

BY G.P.LEKHAK 118

• Role of Packaged Conceptual Data Models: There are two principal
types of packaged data models: universal data models applicable to
nearly any business or organization and industry-specific data models.

• Universal Data Models

• Numerous core subject areas are common to many (or even most)
organizations, such as customers, products, accounts, documents, and
projects. Although they differ in detail, the underlying data structures are
often quite similar for these subjects. Further, there are core business
functions such as purchasing, accounting, receiving, and project
management that follow common patterns. Universal data models are
templates for one or more of these subject areas and/or functions. All of
the expected components of data models are generally included:
entities, relationships, attributes, primary and foreign keys, and even
sample data.

BY G.P.LEKHAK 119

• Industry-Specific Data Models

• Industry-specific data models are generic data models that are designed
to be used by organizations within specific industries. Data models are
available for nearly every major industry group, including health care,
telecommunications, discrete manufacturing, process manufacturing,
banking, insurance, and higher education. These models are based on
the premise that data model patterns for organizations are very similar
within a particular industry (“a bank is a bank”). However, the data
models for one industry (such as banking) are quite different from those
for another (such as hospitals).

• END Of Unit Three

BY G.P.LEKHAK 120

BY G.P.LEKHAK 121

