For more notes visit: https://collegenote.pythonanywhere.com/

Code Generation & Optimization

How the target codes are generated optimally from an intermediate form of programming language.

— o ——— T —— T T Tt ot i

Source . T Target

Intermediate Intermediate £
prozramt | Front-End code C.O d.e code Code program

— — > | Optimizer| — > | Generator | —>
\\ 1 /'
\ | ’
/
l A | ’
N]

Lexical error
Syntax error Symbol Table
Semantic error

Code produced by compiler must be correct and high quality. Source-to-target program transformation
should besemantics preserving and effective use of target machine resources. Heuristic techniques should
be used to generate good but suboptimal code, because generating optimal code is un-decidable.

Code Generator Design | ssues
The details of code generation are dependent on the target language and operating system. Issues such as
memory management, instruction selection, register allocation, evaluation order are in almost all code —
generation problems.

The issues to code generator design includes:

Input to the code generator: The input to the code generator is intermediate representation together with
the information in the symbol table. What type of input postfix, three-address, dag or tree.

Target Program: Which one is the out put of code generator: Absolute machine code (executable code),
Re-locatable machine code (object files for linker), Assembly language (facilitates debugging), Byte code
forms for interpreters (e.g. JVM)

Target Machine: Implementing code generation requires thorough understanding of the target machine
architecture and its instruction set.

Instruction Selection: Efficient and low cost instruction selection is important to obtain efficient code.
Register Allocation: Proper utilization of registers improve code efficiency

Choice of Evaluation order: The order of computation effect the efficiency of target code.

TheTarget Machine

Consider a hypothetical target computer is a byte-addressable machine (word = 4 bytes) and n general
propose registers, RO, R1, ..., Rn-1. It has two address instruction of the form:

op sour ce, destination

It has the following op-codes :
MOV (move content of source to destination),
ADD (add content of source to destination)

For more notes visit: https://collegenote.pythonanywhere.com/

SUB (subtract content of source from destination .)
MUL (multiply content of source with destinanation)

The source and destinatiofinstructions are specified by combining register and memory location with
address modes. The address mode together with assembly forms and associated cost are:

Addressing modes:

Mode Form Address Added Cost
Lb=olute M M 1
Register R R 0
Indexed c(R) ct+contents (R) 1
Indirect * P - (
register R contents (R) 0
Indirect . j
indexed *-(R) | contents(c+contents(R)) 1
Literal #c N/RA 1

Instruction Costs
* Machine is a simple, non-super-scalar processor with fixed instruction costs
» Realistic machines have deep pipelines, I-cache, D-cache, etc.
» Define the cost of instruction
=1 + costgource-mode) + cost{estination-mode)

Instruction operation

MOV RO,R1 Storecontent(RO) into registeR1 1

MOV ROM Storecontent(R0) into memory locatioM 2
MOV M,R0O Storecontent(M) into registeiR0 2

MOV 4(R0),M Storecontents(4+contents(R0)) intoM 3

MOV *4(R0),M Storecontents(contents(4+contents(R0))) intoM 3
MOV #1,R0 Store 1 intdR0 2

ADD 4(R0),*12(R1) Add contents(4+contents(R0)) to value at location
contents(12+contents(R1)) 3

Instruction Selection
Instruction selection is important to obtain efficient code. Suppose we translate three-address code

X:=y+z
10: MOV y,RO a:=a+l > MOV a,RO
ADD Z,RO ADD #1,RO
MOV RO, X MOV RO, a
General way of translation Cost=06

Better Best

a4 4

ADD #1,a INC a
Cost=3 Cost=2

Picking the shortest sequence of instructions is often a good approximation
of the optimal result

For more notes visit: https://collegenote.pythonanywhere.com/

Register Allocation and Assignment

Accessing values in registers 1s much faster than accessing
main memory. Register allocation denotes the selection of
which variables will go into registers. Register assignment
1s the determination of exactly which register to place a
given variable. The goal of these operations 1s generally to
minimize the total number of memory accesses required
by the program.

Finding an optimal register assignment in general 1s NP-
complete.

Register Allocation and Assignment

Example

t:=a*b t:=a*b

t:=t+a t:=t+a

t:=t/4 t:=t/4

fR1=t } | frRO—a.R1—t !
‘#_1_’_7 v

MOV a,R1 MOWV a, RO
MUL b,RI1 MOW RO ,R1
ADD a,R1 MUIL. b, R1
DIV 4d,R1 ADD RO ,R1
MOWV R1, t DIV d4d,R1

MOV R1, t

Choice of Evaluation Order

When instructions are independent, their evaluation orde:
can be changed

MOV a,R0
ADD b,RO
MOV RO, t1
tl:=a+b MOV c¢,R1
t2:=c+d | ADD d,R1
a+b- (c+d) *e L> £3:ze*t2 _> MOV e,RO
td:=t1-t3 MUL R1,RO MOV c,RO
MOV t1,R1 ADD d,RO
1'e01'de1'£ SUB RO,R1 MOV e,R1
MOV R1,t4 MUL RO,R1
t2:=c+d MOV a,RO
t3:=e*t2 ADD b,RO
t4:=t1-t3 MOV RO, t4

For more notes visit: https://collegenote.pythonanywhere.com/

Basic Blocks and Control Flow Graphs
Basic Blocks

A basic block 1s a sequence of consecutive instructions in which flow
of control enters by one entry point and exit to another point without
halt or branching except at the end.

MOV 1,RO
MOV n,R1
MOV 1,RO JMP L2
MOV n,R1l
JMP L2 [::> L1l: MUL 2,RO
L1l: MUL 2,R0 SUB 1 R1
SUB 1,R1
L2: JMPNZ R1,Ll
L2: JMPNZ R1,Ll1

Basic Blocks and Control Flow Graphs
Flow Graphs

A flow graph is a graphical depiction of a sequence of instructions with
control flow edges.

A flow graph can be defined at the intermediate code level or target code
level.

The nodes of flow graphs are the basic blocks and flow-of-control to
immediately follow node connected by directed arrow.

MOV 1,R0
MOV n,R1
MOV 1,RO JMP L2
MOV n,R1
JMP L2 L1l: MUL 2,RO
L1: MUL 2,RO0 SUB 1.R1
SUB 1,R1
L2: JMPNZ R1,L1 l

|L2: JMPNZ R1,L1

Basic Blocks Construction Algorithm

Input: A sequence of three-address statements

Output: A list of basic blocks with each three-address statement
in exactly one block

1. Determine the set of leaders, the first statements if basic blocks
a. The first statement 1s the leader
b. Any statement that 1s the target of a conditional or goto 1s a leader
c. Any statement that immediately follows conditional or goto is a leader
2. For each leader, its basic block consist of the leader and all
statements up to but not including the next leader or the end
of the program

Loops

A loop 1s a collection of basic blocks, such that
— All blocks in the collection are strongly connected

— The collection has a unique enfry. and the only way to reach a block in the loop
1s through the entry

Bl: MOV 1,R0O _
MOV n,R1 Strongly connected components: there is path
JMP L2 of length of one or more from one node to another

to make a cycle. Such as {B2,B3}. {B4}

BI:lLl1: MUL 2,R0

SUB 1,R1
Jr Entries: B3, B4
B3| 12: JMPNZ R1,L1
1} A loop that consist no other loop is called inner
B4:| L3: ADD 2,R2 loop
SUB 1,R0
JMPNZ RO,L3

|

For more notes visit: https://collegenote.pythonanywhere.com/

Equivalence of Basic Blocks

Two basic blocks are (semantically) equivalent if they
compute the same set of expressions

b =0
tl :=a + b
t2 = ¢ * £l a =¢c * a
a = t2 b =0
Transformation Q Q
a := c*a a := c*a
b :=0 b :=0

Blocks are equivalent, assuming t1 and £2 are dead: no longer used (no longer /ive)

Transformations on Basic Blocks

A code-improving transformation 1s a code optimization to improve
speed or reduce code size

Global transformations are performed across basic blocks

Local transformations are only performed on single basic blocks
Transformations must be safe and preserve the meaning of the code

A local transformation 1s safe if the transformed basic block 1s
guaranteed to be equivalent to its original form

Some local transformation are:
Common-Subexpression Elimination
Dead Code Elimination
Renaming Temporary Variables
Interchange of Statements
Algebraic Transformations

For more notes visit: https://collegenote.pythonanywhere.com/

Common-Subexpression Elimination

Remove redundant computations

Look at 224 and 4tb:

compute same
expression

a :=b + c
b :=a -d
c := b + c
d :=a -d
tl (= b * ¢
t2 := a - tl
t3 :=b * ¢
td = t2 + £3

=

)

Look at 15t and 3% :
b is redefine in 284
therefore different in
39 pot the same
expression

a :=b + ¢
b :=a-4d
c :=b + ¢
d :=b

tl := b * ¢
t2 := a - tl
t4 := t2 + tl

Dead Code Elimination

Remove unused statements

=)

Assuming a is dead (not used)

b :=a +1
a := b + c
goto L2

b :(=x + vy

Remove unreachable code

Renaming Temporary Variables

Temporary variables that are dead at the end of a block can be safely
renamed

The basic block 1s transforms into an equivalent block 1n which each
statement that defines a temporary defines a new temporary. Such a
basic block 1s called normal-form block or simple block.

tl := b + ¢ tl (= b + ¢

t2 := a - tl t2 (= a - tl
tl = t1 * 4 t3 = t1 * d
d := t2 + t1 d := t2 + t3

Normal-form block

Interchange of Statements

Independent statements can be reordered without effecting
the value of block to make its optimal use.

tl := b + ¢ tl := b + ¢

t2 = a - tl t3 = t1 * d
t3 = t1 * d t2 := a - tl
d := t2 + t3 d := t2 + t3

Note that normal-form blocks permit all statement interchanges
that are possible

For more notes visit: https://collegenote.pythonanywhere.com/

Algebraic Transformations

Change arithmetic operations to transform blocks to algebraic
equivalent forms

Simplify expression or replace expensive expressions by cheaper
ones.

tl (1= a - a tl := 0
t2 := b + tl t2 : b
t3 = t2 *%2

t3 = t2 * t2
In statement 3, Transforms to
usually require simple and
a function call equivalent statement

Next-Use Information

Next-use imformation 1s needed for dead-code elimination and register
assignment (if the name in a register 1s no longer needed. then the
register can be assigned to some other name)

Ifi:x=..andj y=x + zare two statements /i & j, then next-use of x
atiisj.
Next-use 1s computed by a backward scan of a basic block and
performing the following actions on statement
i1: X 1= y Op Z
— Add liveness/next-use info on x, y. and = to statement 7 (whatever in the
S}"lllbﬂ]. tab 13) All nontemporary variables and
- . . temporary that is used across
— Before going up to the previous statement (SCan UP): e plock are considered live.
= Set x info to “not live™ and “no next use”
+ Set y and z info to “live” and the next uses of y and z to /

Computing Next-Use
Step 1 Example
I: a :=b + ¢

a + b [[ive(a) = true. live(b) = true, /ive(t) = true,
nextuse(a) = none, nextfuse(b) = none, nextuse(t) = none |

-
o+
Il

Attach current live/next-use information

Because info 1s empty, assume variables are live

(Data flow analvsis Ch.10 can provide accurate information)
Step 2

i a :=b + e |liye(a)=true nextuse(a) =j

live(b) = true nextuse(b) =j
/ live(t) = false nextuse(t) = none
ji t := a + b [live(a)=true, live(b) = true. /ive(t) = true,
nextuse(a) = none, nextuse(b) = none. nextuse(t) = none]

Compute live/next-use information at j

Computing Next-Use

SIep3 i a := b + « [live(a)= true, live(b) = true. live(c) = false,
nextuse(a) = j, nextuse(b) =j, nextuse(c) = none |
Ji t = a + b [live(a)=true, live(b) = true, /ive(t) = true,
nextuse(a) = none, nextuse(b) = none. nextuse(t) = none |

Attach current live/next-use information to i

live(a) = false nextuse(a)=none
live(b) = true nextuse(b) =i
live(e) = true nextuse(c) =i
Step 4 / live(t) = false nextuse(t) =none
i: a := b + c [live(a)=true. live(b) = true, /ive(c) = false.
nextuse(a) = j. nextuse(b) = j. nextuse(c) = none |

ji t := a + b [live(a)=false. /ive(b) = false,. /ive(t) = false,
nextuse(a) = none, nextuse(b) = none, nextuse(t) = none]

Compute live/next-use information 7

10

For more notes visit: https://collegenote.pythonanywhere.com/

Code Generator

Generates target code for a sequence of three-address
statements using next-use mnformation

Uses new function getreg to assign registers to variables
Computed results are kept in registers as long as possible
which means:

— Result 1s needed in another computation

— Register 1s kept up to a procedure call or end of block

Checks if operands to three-address code are available 1n
registers

Code Generation Algorithm

For each statement x :=y op z

1. Set location L = getreg(y, z) // to store the result of y op =
2.1ty ¢ L then generate //L is address descriptor --wait!
MOV y’ L //to place copy of yin L

where v’ denotes one of the locations where the value of v 1s
available (choose register if possible)
3. Generate instruction
OP:z’'L
where =’ 1s one of the locations of z:
Update register/address descriptor of x to include L

4.If y and/or z has no next use and 1s stored in register, update
register descriptors to remove y and/or z

2

11

Register and Address Descriptors

A register descriptor Keeps track of what is currently stored
1n a register at a particular point in the code, e.g. a local
variable, argument, global variable, etc.

MOV a,RO “RO contains a”

An address descriptor Keeps track of the location where the
current value of the name can be found at run time, e.g. a
register, stack location, memory address, etc.

MOV a,RO

MOV RO,R1 “amR0 and R1”

The gefreg Algorithm

To compute getreg(y.z)

1.If y 1s stored in a register R and R only holds the value y, and y
has no next use, then return R:
Update address descriptor: value y no longer in R
2. Else, return a new empty register if available
3. Else, find an occupied register R;
Store contents (register spill) by generating
MOV RM
for every M in address descriptor of y;
Return register R
4. If not used in the block or no suitable register return a memory
location

12

For more notes visit: https://collegenote.pythonanywhere.com/

Example
Statement: d :=(a-b) + (a — c) + (a —)
Statements Code Generated | Register Descriptor | Address Descriptor
Registers empty
t :=a-b MOV a,RO RO contains t t in RO
SUB b,RO
u:=a-c MOV a,R1l RO confains t t in RO
SUB c,R1l R1 confains u u in R1
v i =t +u ADD R1,RO RO contains v u in R1
R1 contains u v in RO
d :=v +u ADD R1,RO0 RO confains d d in RO
MOV RO,d d in RO and memory

Peephole Optimization

Statement-by-statement code generation often produce redundant
instructions that can be optimize to save time and space requirement
of target program.
Examines a short sequence of target instructions in a window
(peephole) and replaces the instructions by a faster and/or shorter
sequence whenever possible.
Applied to intermediate code or target code
Typical optimizations:

— Redundant instruction elimination

— Flow-of-control optimizations

— Algebraic simplifications
Use of machine idioms

13

Eliminating Redundant Loads and Stores

Consider _ _
This type code is not generated by our
MOV RO ;& algorithin of page 25
MOV a,RO

The second instruction can be deleted because first ensures
value of a in RO, but only if it 1s not labeled with a target
label

— Peephole represents sequence of instructions with at most one
entry point

The first mnstruction can also be deleted if /ive(a) = false

Deleting Unreachable Code

An unlabeled instruction immediately following an
unconditional jump can be removed

if 0==0 goto L2 goto L2

e m IR

14

For more notes visit: https://collegenote.pythonanywhere.com/

Branch Chaining

Shorten chain of branches by modifying target labels

if a==0 goto L2 i1f a==0 goto L3

b =x + vy z b =x +y

L2: goto L3 L2: .LB

Remove redundant jumps as well

goto L1 if a < b goto L2
.) goto L3
Ll: 1if a < b got L2

goto L3

Other Peephole Optimizations

Reduction in strength: replace expensive arithmetic operations with
cheaper ones

a :=x "~ 2) a = x * x
b :=y / 8 b :=y > 3

Utilize machine idioms (use addressing mode inc)

a :=a+ 1 ' inc a

Algebraic simplifications

a :=a+ 0)
b :=Db * 1

15

For more notes visit: https://collegenote.pythonanywhere.com/

Run Time Stor age management

A compiler contains a block of storage from the operating system for the compiled program to
run in. This run time storage might be sub-divided to hold
1. The generated target code
2. data objects and
3. a counterpart of the control stack to keep track of procedure activation.
» The size of generated target code is fixed at compile time so it can be placed in a statically
determined area — low end of memory.
* Some of data objects may also be known at compile time so these too can be placed in to
statically determined area.
* The addresses of these data objects can be compiled into target code
* For the activation of procedure, when a call occurs, execution of an activation is interrupted
and information about the status of the machine such as value of program counter, machine
register is saved into stack until the control returns from call to the activation.
» Data objects whose life times are contained in that of an activation can be allocated on the
stack along with other information associated with the activation.
» Separate area of run time storage , called heap, holds other information.

The management of run time storage by sub-division is:

Code * The size of stack and heap may change during execution.
Static Data)

Stack e By convention, stack grows down and heap grows up

Heap

Information needed by a single execution of a procedure is managed using a contiguous block of
storage called an activation record:

An activation record is a collection of fields, starting from the field for temporaries as
Returned value —value returned after execution

actual parameter « used by the calling procedure to call procedure.

optional control link « points to the activation record of the caller.

optional access link < Non local data held in other activation record.

saved machine state— State of the machine just before procedure call

local data < Data that are local to an execution.

temporaries — Temporary values used for evaluation of expression

Since , run time allocation and de-allocation of activation records occurs as part of procedure
call-return sequences, following three address statements are in focus.

1. call

2. return

3. halt

4. action — a place holder for other statements

16

For more notes visit: https://collegenote.pythonanywhere.com/

Now , consider the following input to the code generator.
Three address code Activation record for C 64 bytes Activation record for p(88 b)

/*Code for procedure 0:
c*/
action 1 4
callp
action 2
halt

return address 0: return address

Array Buffer

/*code for procefure

p */ 56: | 84: |
action 3 j
return 60:

Using the static allocation,

A call statement in the intermediate code is implemented by two target machine instruction
MOV and GOTO

» The code constructed from procedure C and p above using arbitrary address 100 and 200
as:

Assume action takes cost of 20 bytes. — MOV and GOTO + 3 constants cost = 20 bytes

The target code for the input above will be as:

100: ACTION1

120: MOV #140,364 /* saves return address 140 */

132: ACTION2

160: HLT

/*Code for P */

200: ACTION3

220: GOTO *364 [*returns to address saved in location 364 */
/* 300-363 hold activation record for ¢ */

300: /* return address */

304: /*local data for ¢ */

/* 364-451 holds activation record for P */

364: /[*return address */

368: /* local data for p */

e« The MOV instruction at address 120 saves the return address 140 in machine status field

- the first word in activation record of p.

 The GOTO instruction at 132 transfers control to first instruction to the target code of
called procedure.

» *364 represents 140 when GOTO statement at address 220 is executed, control then
returns to 140.

17

