

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

1 Digital Logic BCA

Unit-3

Combinational Logic Design

For more notes visit:

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

2 Digital Logic BCA

Unit-3

Combinational Logic Design

Logic Gates

- A logic gate is an electronic device that produces a result based on one or more input

values.

- In reality, gates consist of one to six transistors, but digital designers think of them as a

single unit.

- Integrated circuits contain collections of gates suited to a particular purpose.

Logic gate can be categories as follows:

1. Basic Gate

a. NOT gate

A NOT gate accepts one input value and produces one output value.

Fig: Various representations of a NOT gate

By definition, if the input value for a NOT gate is 0, the output value is 1, and if the

input value is 1, the output is 0.

b. AND gate

An AND gate accepts two input signals. If the two input values for an AND gate are

both 1, the output is 1; otherwise, the output is 0.

Fig: Various representations of a AND gate

c. OR gate

If the two input values are both 0, the output value is 0; otherwise, the output is 1.

Fig: Various representations of a OR gate

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

3 Digital Logic BCA

2. Universal Gate

a. NAND gate

NAND gate is the combination of NOT gate and AND gate. If the two input values

for an NAND gate are both 1, the output is 0; otherwise, the output is 1.

Fig: Various representations of a NAND gate

b. NOR gate

NOR gate is the combination of NOT gate and OR gate. If the two input values for

NOR gate are both 0, the output value is 1; otherwise, the output is 0.

Fig: Various representations of a NOR gate

3. Derived/Extended Gate

a. Exclusive-OR gate (XOR)

An XOR gate produces 0 if its two inputs are the same, and a 1 otherwise.

Fig: Various representations of a XOR gate

b. Exclusive-NOR gate (X-NOR)

X-NOR is the complement of X-OR. An X-NOR gate produces 1 if its two inputs are

the same, and a 0 otherwise.

= 𝐴𝐵′ + 𝐴′𝐵

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

4 Digital Logic BCA

Fig: Various representations of a X-NOR gate

Buffer Gate

The buffer gate returns the same output as same as that of input.

Universal Gate Realization

A universal gate is a gate which can implement any Boolean function without need to use any

other gate type. The NAND and NOR gates are universal gates.

1. NAND gate as a Universal Gate

To prove that any Boolean function can be implemented using only NAND gates, we

will show that the AND, OR, and NOT operations can be performed using only these

gates.

Fig: Three Circuits Constructed Using Only NAND Gates

Thus, the NAND gate is a universal gate since it can implement the AND, OR and NOT

functions.

 = 𝐴⨀𝐵

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

5 Digital Logic BCA

2. NOR gate as a Universal Gate

To prove that any Boolean function can be implemented using only NOR gates, we

will show that the AND, OR, and NOT operations can be performed using only these

gates.

Fig: Three Circuits Constructed Using Only NOR Gates

Thus, the NOR gate is a universal gate since it can implement the AND, OR and NOT

functions.

Gates with More Inputs

- Gates can be designed to accept three or more input values

- A three-input AND gate, for example, produces an output of 1 only if all input values are 1.

Fig: Various representations of a three input AND gate

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

6 Digital Logic BCA

Implementation of Boolean function using gates

𝐹1 = 𝑥𝑦𝑧′

𝐹2 = 𝑥 + 𝑦′𝑧

𝐹3 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧 + 𝑥𝑦′

Q. Draw a logic gates that implements the following:

 a. F = AB + C D' + B' C

 b. F = (A + B) (B' + C) (C' + D + E)

Soln:

a.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

7 Digital Logic BCA

b.

Boolean Algebra

- Boolean algebra is algebra for the manipulation of objects that can take on only two

values, typically true and false.

- It is common to interpret the digital value 0 as false and the digital value 1 as true.

- A two-valued Boolean algebra is defined on a set of 2 elements B = {0, 1} with 3 binary

operators OR (+), AND (•), and NOT (').

Basic Theorem and Properties of Boolean Algebra

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

8 Digital Logic BCA

Duality Principle

It states that “Every algebraic expression deducible from the postulates of Boolean algebra

remains valid if the operators and identity elements are interchanged”. In a two-valued

Boolean algebra, the identity elements and the elements of the set B are the same: 1 and 0. If

the dual of an algebraic expression is desired, we simply interchange OR and AND operators

and replace 1's by 0's and 0's by 1's.

E.g. 𝑋 ∙ 𝑌 + 𝑍′ = (𝑋′ + 𝑌′) ∙ 𝑍

De-Morgans Theorem

De Morgan’s theorem is used to convert OR type of expression into AND type and vice-

versa.It is further divided into two different types;

1st law:

It state that the total complement of sum is equal to the product of individual complement.

i.e. (A+B)’=A’ ٠B’

Proof:

Input Output

A B (A+B)’ A’ ٠B’

0 0 1 1

0 1 0 0

1 0 0 0

1 1 0 0

2nd law:

It state that the total complement of the product is equal to the sum of individual complement.

i.e. (A٠B)’ =A’+B’

Proof:

Input Output

A B (A٠B)’ A’+B’

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

Boolean Function

A binary variable can take a value of 0 or, 1. A Boolean function is an expression formed

with binary variables, the two binary operators OR and AND, unary operator NOT,

parenthesis and an equal sign. For a given value of variables, the function either can 0 or 1.

E.g.

𝐹1 = 𝑥𝑦𝑧′

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

9 Digital Logic BCA

𝐹2 = 𝑥 + 𝑦′𝑧

𝐹3 = 𝑥′𝑦′𝑧 + 𝑥′𝑦𝑧 + 𝑥𝑦′

𝐹4 = 𝑥𝑦′ + 𝑥′𝑧

Truth Table of Boolean functions:

A truth table shows the relationship, in tabular form, between the input values and

the result of a specific Boolean operator or function on the input variables.

Here, F3 and F4 are same. Two functions of 𝑛 binary variables are said to be equal if they

have same values for all possible 2n combinations of the 𝑛 variables.

Algaberic Manipulation

When a Boolean function is implemented with logic gates, each literal in the function

designates an input to a gate and each term is implemented with a gate. The minimization of

the number of literals and the number of terms results is a circuit with less equipment.

Q. Simplify the following Boolean functions to a minimum number of literals.

1. 𝑥(𝑥′ + 𝑦)

= 𝑥𝑥′ + 𝑥𝑦

= 0 + 𝑥𝑦

= 𝑥𝑦

2. 𝑥 + 𝑥′𝑦

= (𝑥 + 𝑥′)(𝑥 + 𝑦)

= 1(𝑥 + 𝑦)

= 𝑥 + 𝑦

3. (𝑥 + 𝑦)(𝑥 + 𝑦′)

= 𝑥 + 𝑥𝑦 + 𝑥𝑦′ + 𝑦𝑦′
= 𝑥(1 + 𝑦 + 𝑦′)

= 𝑥

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

10 Digital Logic BCA

4. 𝑥𝑦 + 𝑥′𝑧 + 𝑦𝑧

= 𝑥𝑦 + 𝑥′𝑧 + 𝑦𝑧(𝑥 + 𝑥′)

= 𝑥𝑦 + 𝑥′𝑧 + 𝑥𝑦𝑧 + 𝑥′𝑦𝑧

= 𝑥𝑦(1 + 𝑧) + 𝑥′𝑧(1 + 𝑦)

= 𝑥𝑦 + 𝑥′𝑧

Q. Prove that: (𝒙 + 𝒚)(𝒙̅ + 𝒚) = 𝒚

Soln:

Note: To prove the equality of two Boolean expressions, you can also create the truth tables

for each and compare. If the truth tables are identical, the expressions are equal.

Q. Prove the Boolean expression: 𝑨𝑩 + 𝑨𝑩′𝑪 + 𝑨′𝑩𝑪 = 𝑨𝑩 + 𝑨𝑪 + 𝑩𝑪

Soln:

𝐴𝐵 + 𝐴𝐵′𝐶 + 𝐴′𝐵𝐶

= 𝐴(𝐵 + 𝐵′𝐶) + 𝐴′𝐵𝐶

= 𝐴(𝐵 + 𝐶) + 𝐴′𝐵𝐶 [∴ 𝐴 + 𝐴′𝐵 = 𝐴 + 𝐵]

= 𝐴𝐵 + 𝐴𝐶 + 𝐴′𝐵𝐶

= 𝐴𝐵 + (𝐴 + 𝐴′𝐵)𝐶

= 𝐴𝐵 + (𝐴 + 𝐵)𝐶

= 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶

Q. Minimize the expression: 𝑨𝑩 + 𝑨𝑪̅ + 𝑩𝑪 using theorem and properties of Boolean

Algebra.

Soln:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

11 Digital Logic BCA

Q. Prove that: 𝑨𝑩̅𝑪̅̅ ̅̅ ̅̅ + 𝑨𝑪𝑫̅̅ ̅̅ ̅̅ + 𝑩𝑪̅
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= 𝑨𝑩̅𝑪𝑫

Soln:

Complement of a function

The complement of a function 𝐹 is 𝐹′ and is obtained from an interchange of 0’s for 1’s and

1’s for 0’s in the value of 𝐹. The complement of a function may be derived algebraically

through De Morgan’s theorem.

Generalized theorems for finding complement:

Q. Find the Complement of the functions 𝑭𝟏 = 𝒙′𝒚𝒛′ + 𝒙′𝒚′𝒛 and 𝑭𝟐 = 𝒙(𝒚′𝒛′ + 𝒚𝒛).

Soln:

By applying DeMorgan’s theorem as many times as necessary, the complements are obtained

as follows:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

12 Digital Logic BCA

Different forms of Boolean Algebra

1. Sum of Product (SOP)

This is an expression in which each term is a product term and all the product terms are

summed together.

a) Minimal SOP

An expression in which each product term consist of minimum numbers of variables.

E.g. XY+X’Y+XY’

b) Expanded SOP

An expression in which each product term consist of maximum numbers of variables.

E.g. XYZ+X’YZ+WXYZ

2. Product of Sum (POS)

This is an expression in which several sum terms are multiplied together.

a) Minimal POS

In this an expression in which there are minimum number of sum terms.

E.g. (X+Y) (X’+Y) (X+Y’)

b) Expanded POS

In this an expression in which there are maximum number of variables.

E.g. (X+Y+Z)٠(X’+Y’+Z’)٠(W+X+Y+Z)

Minterms or standard product

- Each row of a truth table can be associated with a minterm, which is a product (AND) of

all variables in the function, in direct or complemented form.

- A function with n variables has 2n minterms.

- A minterm has the property that it is equal to 1 on exactly one row of the truth table.

Maxterms or standard sums

- Each row of a truth table is also associated with a maxterm, which is a sum (OR) of all

the variables in the function, in direct or complemented form.

- A function with n variables has 2n maxterms

- A maxterm has the property that it is equal to 0 on exactly one row of the truth table.

Note: Each maxterm is the complement of its corresponding minterm and vice versa.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

13 Digital Logic BCA

Expressing Boolean function by sum of minterms

A boolean function may be expressed algebraically from a given truth table by forming a

minterm for each combination of the variables which produces a 1 in the function and then

taking the OR of all those terms.

Finding Complement of Boolean function by sum of minterms

The complement of a Boolean function can be obtained from the truth table by forming a

minterm of each combination that produces a 0 in the function and then ORing those terms.

Expressing Boolean Function by product of maxterms

A boolean function may be expressed algebraically from a given truth table by forming a

maxterm for each combination of the variables which produces a 0 in the function and then

taking the AND of all those terms.

The Complement of f1 is written as:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

14 Digital Logic BCA

Canonical and Standard forms

- Boolean functions expressed as a sum of minterms or product of maxterms are said to be

in canonical form.

- In an expression in canonical form, every variable appears in every term.

- The two canonical forms of Boolean algebra are basic forms that one obtain from reading

a function from the truth table. These forms are very seldom the ones with least number

of literals, because each minterm or maxterm must contain, by definition, all the

variables either complemented or uncomplemented.

- Another way to express Boolean functions is in standard form. In this configuration, the

terms that form the function may contain one, two or any number of literal.

- There are two types of standard forms: the sum of products and product of sums.

Sum of products: 𝐹1 = 𝑦′ + 𝑥𝑦 + 𝑥′𝑦𝑧′
Product of sums: 𝐹2 = 𝑥(𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧′ + 𝑤)

Expressing Boolean function as a sum of minterms and product of maxterms using

Boolean algebra:

- To express the Boolean function as a sum of minterms, expand the Boolean function into

a sum of products. Each term is then inspected to see if it contains all the variables. If it

misses one or more variables, it is ANDed with an expression such as x + x', where x is

one of the missing variables.

- To express the Boolean function as a product of maxterms, expand the Boolean function

into a product of sums. This may be done by using the distributive law, x + yz = (x + y)(x

+ z). Then any missing variable x in each OR term is ORed with xx'.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

15 Digital Logic BCA

Q. Express the Boolean function 𝑭 = 𝑨 + 𝑩′𝑪 in a sum of minterms.

Soln:

The function has three variables, the first term 𝐴 is missing two variables 𝐵 and 𝐶.

Inclusion of variable 𝐵: 𝐴 = 𝐴(𝐵 + 𝐵′) = 𝐴𝐵 + 𝐴𝐵′
Inclusion of variable of 𝐶: 𝐴 = 𝐴𝐵(𝐶 + 𝐶′) + 𝐴𝐵′(𝐶 + 𝐶′)

 = 𝐴𝐵𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵′𝐶′

The second term 𝐵′𝐶 is missing one variable 𝐴.

Inclusion of variable 𝐴: 𝐵′𝐶 = 𝐵′𝐶(𝐴 + 𝐴′) = 𝐴𝐵′𝐶 + 𝐴′𝐵′𝐶

Combining all terms

𝐹 = 𝐴 + 𝐵′𝐶

 = 𝐴𝐵𝐶 + 𝐴𝐵𝐶′ + 𝑨𝑩′𝑪 + 𝐴𝐵′𝐶′ + 𝑨𝑩′𝑪 + 𝐴′𝐵′𝐶

𝐹 = 𝐴′𝐵′𝐶 + 𝐴𝐵′𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵𝐶

 = 𝑚1 + 𝑚4 + 𝑚5 + 𝑚6 + 𝑚7

𝐹(𝐴, 𝐵, 𝐶) = ∑(1, 4, 5,6 ,7)

Q. Express the Boolean function 𝑭 = 𝒙𝒚 + 𝒙′𝒛 in a product of maxterm form.

Soln:

Converting the function into OR terms using distributive law:

Including missing with each term:

Combining and avoiding the repeated terms:

Conversion between canonical forms

𝒎𝒋
′ = 𝑴𝒋

Consider a function

𝐹(𝐴, 𝐵, 𝐶) = ∑(1, 4, 5, 6,7)

Taking the complement of 𝐹

𝐹′(𝐴, 𝐵, 𝐶) = ∑(0, 2, 3) = 𝑚0 + 𝑚2 + 𝑚3

Taking the complement of 𝐹′

𝐹 = (𝑚0 + 𝑚2 + 𝑚3)′ = 𝑚0
′ ∙ 𝑚2

′ ∙ 𝑚3
′ = 𝑀0𝑀2𝑀3 = ∏(0, 2, 3)

Similarly,

𝐹(𝑥, 𝑦, 𝑧) = ∑(1, 3, 6,7) ⟷ 𝐹(𝑥, 𝑦, 𝑧) = ∏(0, 2, 4,5)

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

16 Digital Logic BCA

Karnaugh Map (K-Map)

- Karnaugh map or K-map is a map of a function used in a technique used for

minimization or simplification of a Boolean expression.

- Booleans expression can be simplified using Boolean algebraic theorems but there are no

specific rules to make the most simplified expression. However, K-map can easily

minimize the terms of a Boolean function.

- Unlike an algebraic method, K-map is a pictorial method and it does not need any Boolean

algebraic theorems.

- K-map is basically a diagram made up of squares. Each of these squares represents a min-

term of the variables. If n = number of variables then the number of squares in its K-map

will be 2n. K-map is made using the truth table.

- Karnaugh map can produce Sum of product (SOP) or product of Sum(POS) expression

considering which of the two (0,1) outputs are being grouped in it. The grouping of 0’s

result in Product of Sum expression & the grouping of 1’s result in Sum of Product

expression.

Rules of minimization in K-Map

1. While grouping, you can make groups of 2n number where n=0, 1, 2, 3…

2. You can either make groups of 1’s or 0’s but not both.

3. Grouping of 1’s lead to Sum of Product form and Grouping of 0’s lead to Product of Sum

form.

4. While grouping, the groups of 1’s should not contain any 0 and the group of 0’s should not

contain any 1.

5. The function output for 0’s grouping should be complemented as 𝐹′.

Rules for grouping 1’s (Sum of Product form):

 Groups may not include any cell containing a zero.

 Groups may be horizontal or vertical, but not diagonal.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

17 Digital Logic BCA

 Groups must contain 1, 2, 4, 8, or in general 2n cells. That is if n = 1, a group will contain

two 1's since 21 = 2. If n = 2, a group will contain four 1's since 22 = 4.

 Each group should be as large as possible.

 Each cell containing a one must be in at least one group.

 Groups may overlap.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

18 Digital Logic BCA

 Groups may wrap around the table. The leftmost cell in a row may be grouped with the

rightmost cell and the top cell in a column may be grouped with the bottom cell.

 There should be as few groups as possible, as long as this does not contradict any of the

previous rules.

Two Variable Map

There are four minterms for two variables; hence the map consists of fours squares, one of

each minterm.

Fig: Two variable map

Q. Simplify the Boolean function 𝑭 = 𝒙′𝒚 + 𝒙𝒚′ + 𝒙𝒚 using K-Map.

Soln:

K-map for given function:

So, after simplification, 𝐹 = 𝑋 + 𝑌

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

19 Digital Logic BCA

Three Variable Map
- There are eight minterms for three variables, i.e. the map consist of eight squares.

- Minterms are not arranged in binary sequence but in a sequence similar to gray

code/reflected code.

Fig: Three variable map

Q. Simplify the Boolean function, 𝑭 = 𝑿′𝒀𝒁 + 𝑿𝒀′𝒁′ + 𝑿𝒀𝒁 + 𝑿𝒀𝒁′ using K-Map.

Soln:

K-map for given function:

After simplification, 𝐹 = 𝑌𝑍 + 𝑋𝑍′

Q. Simplify the Boolean function, 𝑭 = 𝑨′𝑪 + 𝑨′𝑩 + 𝑨𝑩′𝑪 + 𝑩𝑪 using K-Map.

Soln:

𝐹 = 𝐴′𝐶 + 𝐴′𝐵 + 𝐴𝐵′𝐶 + 𝐵𝐶 = 𝑨′𝑩𝑪 + 𝐴′𝐵′𝐶 + 𝑨′𝑩𝑪 + 𝐴′𝐵𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵𝐶 + 𝑨′𝑩𝑪

K-map for given function:

After simplification, 𝐹 = 𝐶 + 𝐴′𝐵

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

20 Digital Logic BCA

Q. Simplify the Boolean function: 𝑭(𝑿, 𝒀, 𝒁) = ∑(𝟎, 𝟐, 𝟒, 𝟓, 𝟔) using three variable K-map.

Soln:

K-map for given function:

After simplification, 𝐹 = 𝑍′ + 𝑋𝑌′

Four Variable Map

The map for Boolean function of four binary variables has 16 minterms and the squares

assigned to each.

Fig: Four variable map

- The rows and columns are numbered in a reflected code sequence, with only one digit

changing value between two adjacent rows and columns.

- The minterm corresponding to each square can be obtained from the concatenation of the

row number with the column number.

Q. Simplify the Boolean function 𝑭 = 𝑨′𝑩′𝑪′ + 𝑩′𝑪𝑫′ + 𝑨′𝑩𝑪𝑫′ + 𝑨𝑩′𝑪′ using K-map.

Soln:

𝐹 = 𝐴′𝐵′𝐶′ + 𝐵′𝐶𝐷′ + 𝐴′𝐵𝐶𝐷′ + 𝐴𝐵′𝐶
 = 𝐴′𝐵′𝐶′(𝐷 + 𝐷′) + 𝐵′𝐶𝐷(𝐴 + 𝐴′) + 𝐴′𝐵𝐶𝐷′ + 𝐴𝐵′𝐶′(𝐷 + 𝐷′)
 = 𝐴′𝐵′𝐶′𝐷 + 𝐴′𝐵′𝐶′𝐷′ + 𝐴𝐵′𝐶𝐷 + 𝐴′ 𝐵′𝐶𝐷 + 𝐴′𝐵𝐶𝐷′ + 𝐴𝐵′𝐶′𝐷 + 𝐴𝐵′𝐶′𝐷′

K-map for given function:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

21 Digital Logic BCA

After simplification, 𝐹 = 𝐵′𝐷′ + 𝐵′𝐶′ + 𝐴′𝐶𝐷′

Q. Simplify the Boolean function 𝑭(𝑾, 𝑿, 𝒀, 𝒁) = ∑(𝟎, 𝟏, 𝟐, 𝟒, 𝟓, 𝟔, 𝟖, 𝟗, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒).

Soln:

K-map for given function:

After simplification, 𝐹 = 𝑌′ + 𝑊′𝑍′ + 𝑋𝑍′

Product of sum simplification

- All previous examples are in sum-of-products form.

- To obtain the product-of-sum form:

 Simplify 𝐹′ in the form of sum of products. [If we mark the empty squares by 0’s

and combine them into valid rectangles, we obtained a simplified expression of

the complement of the function, i.e. of 𝐹′]

 Apply DeMorgan's theorem 𝐹 = (𝐹′) ′
 𝑭′: sum of products ⇒ 𝑭 : product of sums

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

22 Digital Logic BCA

Q. Simplify the Boolean function: 𝑭 = ∑(𝟎, 𝟏, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎) in (a) sum of product (SOP)

and (b) product of sum (POS).

Soln:

(a) Sum of products simplification (b) Product of sums simplification

 𝐹 = 𝐵′𝐷′ + 𝐵′𝐶′ + 𝐴′𝐶′𝐷 𝐹′ = 𝐴𝐵 + 𝐶𝐷 + 𝐵𝐷′
 So, 𝐹 = (𝐴′ + 𝐵′)(𝐶′ + 𝐷′)(𝐵′ + 𝐷)

Q. Simply the Boolean function 𝑭(𝑨, 𝑩, 𝑪, 𝑫) = ∏(𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟏𝟎, 𝟏𝟏) in POS.

Soln:

K-map for given function:

Don’t Care Conditions

- There are certain situations where a function may not be completely specified, meaning

there may be some input combination that are undefined for the function.

- Real circuits don’t always need to have an output defined for every possible input.

- The unused combinations is known as don’t care conditions and can be used on the map

to provide further simplification of the boolean expression.

- It should be realized that a don’t care minterm is a combination of variables whose logical

value is not specified. It cannot be marked with a 1 or, 0 in the map as it is not specified

From Map,

𝐹′ = 𝐴′𝐵′ + 𝐵′𝐶 + 𝐴′𝐶′𝐷′

So, 𝐹 = (𝐴 + 𝐵)(𝐵 + 𝐶′)(𝐴 + 𝐶 + 𝐷)

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

23 Digital Logic BCA

as 0 or 1. To distinguish the don’t care condition from 1’s and 0’s, an X is used. Thus, an

X inside a square in the map indicates that we don’t care whether the value of 0 or 1 is

assigned to 𝐹 for the particular minterms.

Q. Simplify 𝑭(𝒘, 𝒙, 𝒚, 𝒛) = ∑(𝟏, 𝟑, 𝟕, 𝟏𝟏, 𝟏𝟓) which has the don’t care conditions

𝒅(𝒘, 𝒙, 𝒚, 𝒛) = ∑(𝟎, 𝟐, 𝟓).

Soln:

Q. 𝑭(𝑨, 𝑩, 𝑪, 𝑫) = ∏(𝟎, 𝟏, 𝟑, 𝟕, 𝟖, 𝟏𝟐) and ∏ 𝒅(𝟓, 𝟏𝟎, 𝟏𝟑, 𝟏𝟒). Obtain SOP and POS.

Soln:

For POS: For SOP:

𝐹 = (𝐴′𝐷 + 𝐴𝐷′ + 𝐵′𝐶′𝐷′)′ 𝐹 = 𝐶𝐷′ + 𝐴𝐷 + 𝐴′𝐵𝐶′
 = (𝐴 + 𝐷′)(𝐴′ + 𝐷)(𝐵 + 𝐶 + 𝐷)

0

0

0

X

0

0

X

X

0

X

1

1

X

1

X

1

X

1

1

X

𝐴𝐵
𝐶𝐷

𝐴′𝐵′

𝐴′𝐵

𝐴𝐵

𝐴𝐵′

𝐶′𝐷′ 𝐶′𝐷 𝐶𝐷 𝐶𝐷′ 𝐴𝐵
𝐶𝐷

𝐴′𝐵′

𝐴′𝐵

𝐴𝐵

𝐴𝐵′

𝐶′𝐷′ 𝐶′𝐷 𝐶𝐷 𝐶𝐷′

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

24 Digital Logic BCA

Combinational Logic

Combinational circuit is a circuit which consist of logic gates whose outputs at any instant of

time are determined directly from the present combination of inputs without regard to

previous input. The combinational circuit do not use any memory.

- There will be 2𝑛 combination of input variable for 𝑛 inputs.

- A combinational circuit can have 𝑛 number of inputs and 𝑚 number of outputs.

- For e.g. adders, subtractors, decoders, encoders etc.

Fig: Block diagram of combinational circuit

Combinational logic circuit design procedure:

1. The problem is stated.

2. The number of available input variables and required output variables is determined.

3. The input and output variables are assigned letter symbols.

4. The truth table that defines the required relationships between inputs and outputs is

derived.

5. The simplified Boolean function for each output is obtained.

6. The logic diagram is drawn.

Adders

Adders are the combinational circuits which is used to add two or more than two bits at a

time.

Types of adders:

- Half Adder

- Full Adder

1. Half Adder:

A combinational circuit that performs the addition of bits is called half adder. This circuit

needs two binary inputs and two binary outputs. The input variables designate the

augend(𝐴) and addend(𝐵) bits; the output variables produce the sum(𝑆) and carry(𝐶).

Fig: Block diagram

Truth table to identify the function of half adder:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

25 Digital Logic BCA

K-map:

From k-map the logical expression for sum and carry is:

𝐶 = 𝐴𝐵

𝑆 = 𝐴̅𝐵 + 𝐴𝐵̅ = 𝐴⨁𝐵

Logic diagram:

Q. Design a half adder using only NAND gates.

Soln:

Input variables: A & B, Output variables: sum(𝑆) and carry(𝐶)

𝑆 = 𝐴̅𝐵 + 𝐴𝐵̅

𝐶 = 𝐴𝐵

Logic diagram of half adder using NAND gates only:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

26 Digital Logic BCA

Q. Design a half adder logic circuit using NOR gates only.

Soln:

Input variables: A & B, Output variables: sum(𝑆) and carry(𝐶)

𝑆 = 𝐴̅𝐵 + 𝐴𝐵̅

𝐶 = 𝐴𝐵

Logic diagram of half adder using NOR gates only:

2. Full Adder:

A combinational circuit that performs the addition of three bits at a time is called full

adder. It consists of three inputs and two outputs, two inputs are the bits to be added, the

third input represents the carry from the previous position.

Fig: Block diagram

Truth table for full adder:

- The sum(S) output is equal to 1 when

only one input is equal to 1 or when all

three inputs are equal to 1.

- The carry output (𝐶𝑜𝑢𝑡) has a carry 1 if

two or three inputs are equal to 1.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

27 Digital Logic BCA

Simplified expression using k-map in SOP can be obtained as;

𝑆𝑢𝑚(𝑆) = 𝐴̅𝐵̅𝐶𝑖𝑛 + 𝐴̅𝐵𝐶𝑖̅𝑛 + 𝐴𝐵̅𝐶𝑖̅𝑛 + 𝐴𝐵𝐶𝑖𝑛

𝐶𝑜𝑢𝑡 = 𝐴𝐵 + 𝐴𝐶𝑖𝑛 + 𝐵𝐶𝑖𝑛

Logic Diagram:

For carry For sum

Fig: SOP implementation of full-adder

Note: It can also be implemented in POS form. (Try yourself)

Implementation of a full-adder with two half-adders and an OR gate:

Logic expression for sum:

(𝐴⨁𝐵)⨁𝐶𝑖𝑛 = (𝐴̅𝐵 + 𝐴𝐵̅)⨁𝐶𝑖𝑛 = (𝐴̅𝐵 + 𝐴𝐵̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)𝐶𝑖𝑛 + (𝐴̅𝐵 + 𝐴𝐵̅)𝐶𝑖̅𝑛

 = (𝐴 + 𝐵̅)(𝐴̅ + 𝐵)𝐶𝑖𝑛 + 𝐴̅𝐵𝐶𝑖̅𝑛 + 𝐴𝐵̅𝐶𝑖̅𝑛

 = 𝐴̅𝐵̅𝐶𝑖𝑛 + 𝐴𝐵𝐶𝑖𝑛 + 𝐴̅𝐵𝐶𝑖̅𝑛 + 𝐴𝐵̅𝐶𝑖̅𝑛

Logic expression for carry:

(𝐴⨁𝐵)𝐶𝑖𝑛 + 𝐴𝐵 = (𝐴̅𝐵 + 𝐴𝐵̅)𝐶𝑖𝑛 + 𝐴𝐵 = 𝐴̅𝐵𝐶𝑖𝑛 + 𝐴𝐵̅𝐶𝑖𝑛 + 𝐴𝐵

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

28 Digital Logic BCA

Simplification of carry:

∴ 𝐶𝑜𝑢𝑡 = 𝐴𝐵 + 𝐴𝐶𝑖𝑛 + 𝐵𝐶𝑖𝑛

Subtractors

Subtractor is a combinational logic circuit which is used to subtract two or more than two bits

at a time, and provides difference and borrow as an output.

Types of Subtractors:

- Half subtractor

- Full subtractor

1. Half Subtractor:

A half-subtractor is a combinational logic circuit that subtract two bits at a time and

produces their difference.

It has two inputs minuend (A) & subtrahend (B) and two outputs difference and borrow.

The difference is a result of subtraction and borrow is used to indicate borrow from next

most significant bit. The borrow bit is present only when 𝐴 < 𝐵.

Truth table:

K-map:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

29 Digital Logic BCA

Logic Diagram:

Fig: Implementation of half-subtractor

2. Full Subtractor:

A combinational logic circuit used to subtract three binary digits at a time is called full

subtractor.

This circuit has three input and two outputs. The three inputs are 𝐴, 𝐵 𝑎𝑛𝑑 𝐵𝑖𝑛, denote the

minuend, subtrahend and previous borrow respectively. The two outputs, 𝐷 𝑎𝑛𝑑 𝐵𝑜𝑢𝑡

represent the difference and output borrow, respectively.

Truth table for full subtractor:

Simplified expression of D and Bout using k-map in SOP can be obtained as;

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

30 Digital Logic BCA

Logic circuit for full subtractor:

For D For Bout

Fig: SOP implementation of full-subtractor

Note: It can also be implemented in POS form. (Try yourself)

Implementation of full subtractor using two half subtractor and one OR gate:

𝐷 = (𝐴⨁𝐵)⨁𝐵𝑖𝑛 = (𝐴̅𝐵 + 𝐴𝐵̅)⨁𝐵𝑖𝑛 = (𝐴̅𝐵 + 𝐴𝐵̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)𝐵𝑖𝑛 + (𝐴̅𝐵 + 𝐴𝐵̅)𝐵̅𝑖𝑛

 = {(𝐴 + 𝐵̅)(𝐴̅ + 𝐵)}𝐵𝑖𝑛 + 𝐴̅𝐵𝐵̅𝑖𝑛 + 𝐴𝐵̅𝐵̅𝑖𝑛

 = 𝐴̅𝐵̅𝐵𝑖𝑛 + 𝐴𝐵𝐵𝑖𝑛 + 𝐴̅𝐵𝐵̅𝑖𝑛 + 𝐴𝐵̅𝐵̅𝑖𝑛

𝐵𝑜𝑢𝑡 = (𝐴⨁𝐵̅̅ ̅̅ ̅̅ ̅)𝐵𝑖𝑛 + 𝐴̅𝐵 = (𝐴̅𝐵 + 𝐴𝐵̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)𝐵𝑖𝑛 + 𝐴̅𝐵 = {(𝐴 + 𝐵̅)(𝐴̅ + 𝐵)}𝐵𝑖𝑛 + 𝐴̅𝐵

 = 𝐴̅𝐵̅𝐵𝑖𝑛 + 𝐴𝐵𝐵𝑖𝑛 + 𝐴̅𝐵

Using k-map:

∴ 𝐵𝑜𝑢𝑡 = 𝐴̅𝐵𝑖𝑛 + 𝐴̅𝐵 + 𝐵𝐵𝑖𝑛

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

31 Digital Logic BCA

Code Conversion

- The availability of large variety of codes for the same discrete elements of information

results in the use of different codes by the different system.

- A conversion circuit must be inserted between the two systems if each use different codes

for same information.

- Thus a code converter is a circuit that makes the two systems compatible even though

each uses a different binary information.

BCD to excess-3 Code Conversion:

BCD Excess-3 circuit will convert numbers from their binary representation to their excess-3

representation. Since each code uses four bits to represent a decimal digit, there must be four

input variables and four outputs variables. Let the input four binary variables are 𝐴, 𝐵, 𝐶 & 𝐷

and the four output variables are 𝑊, 𝑋, 𝑌 & 𝑍.

Truth table:

K-maps for BCD to excess-3 code converter:

Note: Four binary variables may

have 16 bit combinations, and

only 10 of which are listed in

truth table i.e. from 0 to 9. The

rest six bit combinations not

listed for input variables are

don’t care combinations.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

32 Digital Logic BCA

The Boolean functions for the outputs lines of the circuit are derived from k-maps

which are:

𝑊 = 𝐴 + 𝐵𝐶 + 𝐵𝐷 = 𝐴 + 𝐵(𝐶 + 𝐷)

𝑋 = 𝐵′𝐶 + 𝐵′𝐷 + 𝐵𝐶′𝐷′ = 𝐵′(𝐶 + 𝐷) + 𝐵(𝐶 + 𝐷)′

𝑌 = 𝐶𝐷 + 𝐶′𝐷′ = 𝐶𝐷 + (𝐶 + 𝐷)′

𝑍 = 𝐷′

Logic diagram for BCD to excess-3 converter:

BCD to Seven-segment Decoder

A BCD to seven-segment decoder is a combinational circuit that accepts a decimal digit in

BCD and generates the appropriate outputs for the selection of segments in a display

indicator used for displaying the decimal digit. The seven output of the decoder (a,b,c,d,e,f,g)

select the corresponding segments in the display as shown in figure a. The numeric

designation chosen to represent the decimal digit is shown in figure b.

Fig(a):Segment designation Fig(b):Numerical designation for display

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

33 Digital Logic BCA

Truth table:

K-map:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

34 Digital Logic BCA

Logic Diagram:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

35 Digital Logic BCA

Parity Generator and Checker

Parity Generator:

A parity generator is a combinational logic circuit that generates the parity bit in the

transmitter.

- A parity bit is used for the purpose of detecting errors during transmission of binary

information. It is an extra bit included with a binary message to make the number of 1’s

either odd or even.

- Types of parity: Even parity & Odd parity.

- In Even parity, added parity bit will make the total number of 1’s an even amount.

- In Odd parity, added parity bit will make the total number of 1’s an odd amount.

3-bit even parity generator truth table:

3-bit even parity generator circuit:

Parity checker:

A circuit that checks the parity in the receiver is called parity checker. The parity checker

circuit checks for possible errors in the transmission.

- Since the information transmitted with even parity, the received must have an even

number of 1’s. If it has odd number of 1’s, it indicates that there is an error occurred

during transmission.

3-bit even parity checker truth table;

Solving the truth table for all the

cases where 𝑃 is 1 using SOP

method:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

36 Digital Logic BCA

The output of the parity checker is denoted by 𝑃𝐸𝐶 (Parity Error Checker). If there is error,

that is, if it has odd number of 1’s, it will indicate 1. If no then 𝑃𝐸𝐶 will indicate 0.

3-bit even parity checker circuit:

(Here truth

table’s 𝑃 = 𝐷)

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

37 Digital Logic BCA

Combinational Logic with MSI and LSI

Binary Adder

This circuit sums up two binary numbers 𝐴 𝑎𝑛𝑑 𝐵 of n-bits using full-adders to add each bit

pair and carry from previous bit position.

Binary Parallel Adder:

A binary parallel adder is a digital circuit that produces the arithmetic sum of two binary

numbers in parallel. It consists of full adders connected in cascade, with the output carry from

one full adder connected to the input carry of the next full adder. An 𝑛 bit parallel adder

requires 𝑛 full adders.

4-bit binary parallel adder:

Fig: 4-bit binary parallel adder

A 4-bit binary parallel adder consists of 4-full adder. The augend bits are 𝐴4, 𝐴3, 𝐴2, 𝐴1 and

addend bits are 𝐵1, 𝐵2, 𝐵3, 𝐵4. This parallel adder produces their sum as 𝐶4𝑆3𝑆2𝑆1𝑆0 where

𝐶4 is the final carry. The carries are connected in chain through the full-adders. The input

carry to the first full adder is 𝐶1 and the output carry from MSB position of full adder is 𝐶4.

Q. Design a BCD-to-excess-3 code converter using a 4-bit full adders MSI circuit.

Soln:

𝐸𝑥𝑐𝑒𝑠𝑠 − 3 𝑐𝑜𝑑𝑒 = 𝐵𝐶𝐷 𝑐𝑜𝑑𝑒 + (0011)2

Augend bits = 𝑋4𝑋3𝑋2𝑋1 (Input bits)

Addend bits = 𝑌4𝑌3𝑌2𝑌1 = 0011

Excess-3 code = 𝑆4𝑆3𝑆2𝑆1 (output)

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

38 Digital Logic BCA

Decimal adder/BCD adder:

BCD adder is a combinational digital circuit that adds two BCD digits in parallel and

produces sum which is also BCD.

- In BCD adder, each input digit does not exceed 9, so the output sum can’t be greater than

9 + 9 + 1 = 19, the 1 in the sum being an input carry.

- Suppose we apply two BCD digits to a 4-bit binary adder. The adder will form the sum in

binary and produce a result which may range from 0 to 19.

Truth table for BCD adder is:

- In examining the content of the table, it is apparent that when the binary sum is equal to

or less than 1001, the corresponding BCD number is identical, and therefore no

conversion is needed.

- When the binary sum is greater than 1001, we obtain a non- valid BCD representation.

The addition of binary 0110 (6 in decimal) to the binary sum converts it to the correct

BCD representation and also produces an output carry.

- It is obvious from the table that a correction is needed when the binary sum has an output

carry 𝑘 = 1.

- The other six combination from 1010 to 1111 that need a correction have a 1 in position

𝑍8. To distinguish them from binary 1000 and 1001, which also have a 1 in position 𝑍8,

we specify further that either 𝑍4 or 𝑍2 must have 1.

- The condition for a correction and an output carry can be expressed by the Boolean

function: 𝑪 = 𝑲 + 𝒁𝟖𝒁𝟒 + 𝒁𝟖𝒁𝟐

- When output carry C = 0, nothing is added to the binary sum.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

39 Digital Logic BCA

- When output carry C = 1, binary 0110 is added to the binary sum through the bottom 4-

bit binary adder to convert the binary sum into BCD sum. (In fig. below)

Fig: BCD adder

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

40 Digital Logic BCA

Magnitude Comparator

A magnitude comparator is a combinational circuit that compares two numbers 𝐴 & 𝐵 and

determines their relative magnitudes. The outcome of the comparison is specified by three

binary variables that indicate whether 𝐴 > 𝐵, 𝐴 = 𝐵, 𝑜𝑟 𝐴 < 𝐵.

4-bit magnitude comparator:

4-bit magnitude comparator is a combinational logic circuit that compares two binary

numbers each of 4-bits.

Consider two numbers 𝐴 & 𝐵 with four digits each.

𝐴 = 𝐴3𝐴2𝐴1𝐴0

𝐵 = 𝐵3𝐵2𝐵1𝐵0

Verification of (𝑨 = 𝑩):

- The equality relation of each pair of bits can be expressed:

𝑥𝑖 = 𝐴𝑖𝐵𝑖 + 𝐴̅𝑖𝐵̅𝑖 , 𝑖 = 0, 1, 2, 3

Where 𝑥𝑖 = 1 only if 𝐴𝑖 = 𝐵𝑖 and 𝑥𝑖 = 0 only if 𝐴𝑖 ≠ 𝐵𝑖.

- For equality condition to exist, all 𝑥𝑖 variables must be equal to 1. 𝐴 & 𝐵 will be equal if

𝑥3𝑥2𝑥1𝑥0 = 1.

∴ (𝑨 = 𝑩) = 𝒙𝟑𝒙𝟐𝒙𝟏𝒙𝟎

Verification of (𝑨 > 𝑩):

- If 𝐴3 > 𝐵3 then 𝐴 > 𝐵, it means 𝐴3 = 1 & 𝐵3 = 0. Therefore 𝐴 is greater than 𝐵 if

𝑨𝟑𝑩̅𝟑 = 𝟏.

- If 𝐴3 = 𝐵3(𝑖. 𝑒 𝑥3 = 1) and 𝐴2 > 𝐵2 then 𝐴 > 𝐵. Therefore 𝐴 is greater than 𝐵 if

𝒙𝟑𝑨𝟐𝑩̅𝟐 = 𝟏.

- If 𝐴3 = 𝐵3(𝑖. 𝑒 𝑥3 = 1) & 𝐴2 = 𝐵2(𝑖. 𝑒 𝑥2 = 1) and 𝐴1 > 𝐵1 then 𝐴 > 𝐵. Therefore 𝐴 is

greater than 𝐵 if 𝒙𝟑𝒙𝟐𝑨𝟏𝑩̅𝟏 = 𝟏.

- If 𝐴3 = 𝐵3(𝑖. 𝑒 𝑥3 = 1) & 𝐴2 = 𝐵2(𝑖. 𝑒 𝑥2 = 1) & 𝐴1 = 𝐵1(𝑖. 𝑒 𝑥1 = 1) and 𝐴0 > 𝐵0

then 𝐴 > 𝐵. Therefore 𝐴 is greater than 𝐵 if 𝒙𝟑𝒙𝟐𝒙𝟏𝑨𝟎𝑩̅𝟎 = 𝟏.

∴ (𝑨 > 𝑩) = 𝑨𝟑𝑩̅𝟑 + 𝒙𝟑𝑨𝟐𝑩̅𝟐 + 𝒙𝟑𝒙𝟐𝑨𝟏𝑩̅𝟏 + 𝒙𝟑𝒙𝟐𝒙𝟏𝑨𝟎𝑩̅𝟎

In the same manner we can derive the expression for (𝑨 < 𝑩).

∴ (𝑨 > 𝑩) = 𝑨̅𝟑𝑩𝟑 + 𝒙𝟑𝑨̅𝟐𝑩𝟐 + 𝒙𝟑𝒙𝟐𝑨̅𝟏𝑩𝟏 + 𝒙𝟑𝒙𝟐𝒙𝟏𝑨̅𝟎𝑩𝟎

Note: Out of these three outputs only one

output will be 1 and other two outputs will

be 0 at a time.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

41 Digital Logic BCA

Logic Diagram:

Decoders

A decoder is a combinational circuit that converts binary information from 𝑛 input lines to a

maximum of 2𝑛 unique output lines.

- If 𝑛-bit decoded information has unused or don’t care combinations, the decoder output

will have less than 2𝑛 outputs.

- The decoders presented here are called 𝑛 − 𝑡𝑜 − 𝑚 line decoders where 𝑚 ≤ 2𝑛. Their

purpose is to generate the 2𝑛 (or less) minterms of 𝑛 input variables.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

42 Digital Logic BCA

3-to-8 line decoder:

The three inputs are decoded into eight outputs, each output representing one of the minterms

of the 3-input variables.

A particular application of this decoder would be a binary-to-octal conversion. The input

variable may represent a binary number and the outputs will then represent the eight digits in

the octal number system

Three inputs: 𝑋, 𝑌 & 𝑍

Eight outputs: 𝐷0 − 𝐷7

Fig: 3-to-8 line decoder

Truth table:

From the truth table it is observed that the output variables are mutually exclusive because

only one output can be equal to 1 at any one time. The output line whose value is equal to 1

represents the minterm equivalent of the binary number presently available in the input lines.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

43 Digital Logic BCA

BCD-to-Decimal Decoder

The decoder which convert binary decimal code into decimal values is called BCD to decimal

decoder. The BCD code uses 4-bits and therefore there can be 24 input combinations. This

produces 16-different output signals but the decimal digits are from 0 to 9. Hence six input

combinations are not used in decimal system. Therefore we can use don’t care to represent 10

to 15 and use K-map to simplify the circuit.

Simplified expression for different outputs are:

Logic diagram of BCD-to-decimal decoder:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

44 Digital Logic BCA

Fig: BCD to Decimal decoder

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

45 Digital Logic BCA

Q. Implement a full-adder circuit with a decoder and two OR gates.

Soln:

The truth table for full adder:

From the truth table

𝑆(𝐴, 𝐵, 𝐶𝑖𝑛) = ∑(1, 2, 4, 7)

𝐶(𝐴, 𝐵, 𝐶𝑖𝑛) = ∑(3, 5, 6, 7)

Since there are three inputs and a total of eight minterms. So we need 3-to-8 line decoder.

The decoder generates the eight minterms for 𝐴, 𝐵 & 𝐶𝑖𝑛. The OR gate for output sum (𝑆)

forms the sum of minterms 1, 2, 4 & 7. The OR gate for the output carry (𝐶) forms the sum

of minterms 3, 5, 6 & 7.

Fig: Full adder implementation with decoder

Encoder

An encoder is a combinational circuit that performs the inverse operation from that of

decoder. It has 2𝑛 input lines and 𝑛 output lines.

The output lines generate the binary code corresponding to the input value.

Fig: Block diagram of encoder

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

46 Digital Logic BCA

E.g. Octal to binary encoder which has 8 inputs and 3 outputs.

Truth table for octal to binary encoder:

Boolean function of output variables:

𝑋 = 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7

𝑋 = 𝐷2 + 𝐷3 + 𝐷6 + 𝐷7

𝑋 = 𝐷1 + 𝐷3 + 𝐷5 + 𝐷7

Logic circuit:

Limitation: Only one input can be enabled at a time. If two inputs are enabled at the same

time, then output is undefined.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

47 Digital Logic BCA

Q. Design a 3 to 8 line decoder using two 2 to 4 line decoder and explain it.

Soln:

Fig: 3 to 8 decoder using two 2 to 4 decoder

The figure shows two 2 × 4 decoder with enable input (E) connected to form a 3 × 8

decoder. When 𝐸 = 0, the top decoder is enabled and the other is disabled. The bottom

decoder outputs are all 0’s and the top four outputs generate minterms 000 to 001. When 𝐸 =

1, the enable conditions are reversed. The bottom decoder outputs generate minterms 100 to

111 while the outputs of the top decoder are all 0’s.

Q. Design a 2-to-4 line decoder using NAND gates.

Soln:

Truth table:

Inputs Outputs

A B 𝐷0 𝐷1 𝐷2 𝐷3

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

Note: Similar method for 3-to-8 line decoder in which 3-lines of input are present and 8

output lines.

2 × 4

Decoder

2 × 4

Decoder

X

Y

E

𝐷0 − 𝐷3

𝐷4 − 𝐷7

For the NAND decoder only one output can be

LOW and equal to logic ‘0’ at any given time

with all other outputs being HIGH at logic ‘1’.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

48 Digital Logic BCA

Q. Using a decoder and external gates, design the combinational circuit defined by the

following three Boolean functions:

𝑭𝟏 = 𝒙′𝒚′𝒛 + 𝒙𝒛′

𝑭𝟐 = 𝒙′𝒚𝒛′ + 𝒙𝒚′

𝑭𝟑 = 𝒙𝒚𝒛′ + 𝒙𝒚

Soln:

Truth table:

Multiplexer (MUX)

- A multiplexer is a combinational circuit that selects binary information from one of many

input lines and directs it to a single output line.

- Multiplexing is the process of transmitting a large number of information over a single

line.

- The selection of a particular input lines is controlled by a set of selection lines. Normally

there are 2𝑛 input lines and 𝑛 selection lines whose bit combinations determine which

input is selected.

- A multiplexer is also called a data selector, since it selects one of many inputs and steers

the binary information to the output line.

Logic Diagram

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

49 Digital Logic BCA

4-to-1 line Multiplexer:

Q. Design a 8-to-1 line multiplexer using lower order multiplexers and explain it.

Soln:

The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data inputs of

upper 4x1 Multiplexer are I0 to I3 and the data inputs of lower 4x1 Multiplexer are I4 to I7.

Therefore, each 4x1 Multiplexer produces an output based on the values of selection lines,

s1 & s0.

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is

present in second stage. The other selection line, s2 is applied to 2x1 Multiplexer.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

50 Digital Logic BCA

 If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I0 to I3 based

on the values of selection lines s1 & s0.

 If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I4 to I7 based

on the values of selection lines s1 & s0.

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer performs

as one 8x1 Multiplexer.

Q. Implement the Boolean function 𝑭(𝑨, 𝑩, 𝑪) = ∑(𝟏, 𝟑, 𝟓, 𝟔) with multiplexer.

Soln:

The multiplexer can be implemented with 4 to 1 multiplexer.

Note: It is possible to generate n+1 variables with 2𝑛 to 1 mutiplexer.

Now, truth table for the given function is:

Now the implementation table is

Multiplexer implementation:

 If the minterms in a column are not circled, then

apply 0 to the corresponding multiplexer unit.

 If the 2 minterms are circled, then apply 1 to the

corresponding multiplexer unit.

 If the bottom minterm is circled, and top is not circled

then apply 𝐴 to the corresponding multiplexer unit.

 If the top minterm is circled, and bottom is not circled

then apply 𝐴′ to the corresponding multiplexer unit.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

51 Digital Logic BCA

Q. Implement the Boolean function 𝑭(𝑨, 𝑩, 𝑪, 𝑫) = ∑(𝟎, 𝟏, 𝟑, 𝟒, 𝟖, 𝟗, 𝟏𝟓) by multiplexer.

Soln:

This function can be implemented with 8 to 1 MUX.

The truth table for the function is

Minterm A B C D F

0 0 0 0 0 1

1 0 0 0 1 1

2 0 0 1 0 0

3 0 0 1 1 1

4 0 1 0 0 1

5 0 1 0 1 0

6 0 1 1 0 0

7 0 1 1 1 0

8 1 0 0 0 1

9 1 0 0 1 1

10 1 0 1 0 0

11 1 0 1 1 0

12 1 1 0 0 0

13 1 1 0 1 0

14 1 1 1 0 0

15 1 1 1 1 1

Now the implementation table and multiplexer implementation are given below:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

52 Digital Logic BCA

Demultiplexer (DEMUX)

- A decoder with an enable input can function as a de-multiplexer.

- A de-multiplexer is a circuit that receives information on a single line and transmit this

information on one of 2𝑛 possible output lines. The selection for particular output line is

controlled by the bit values of 𝑛 selection lines.

Fig: A 2-to-4 line decoder with enable (E) input

The decoder of fig can function as a de-multiplexer if the 𝐸 line is taken as a data input line

and lines A and B are taken as the selection lines.

1 to 4 DEMUX:

The 1:4 Demux consists of 1 data input bit, 2 control bits and 4 output bits. I is the input bit,

Y0, Y1, Y2, Y3 are the four output bits and S0 and S1 are the control bits.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

53 Digital Logic BCA

1 to 8 De-Multiplexer using 1x4 De-Multiplexers and 1x2 De-Multiplexer:

The common selection lines, s1 & s0 are applied to both 1x4 De-Multiplexers. The outputs of

upper 1x4 De-Multiplexer are Y7 to Y4 and the outputs of lower 1x4 De-Multiplexer are Y3 to

Y0.

The other selection line, s2 is applied to 1x2 De-Multiplexer. If s2 is zero, then one of the four

outputs of lower 1x4 De-Multiplexer will be equal to input, I based on the values of selection

lines s1 & s0. Similarly, if s2 is one, then one of the four outputs of upper 1x4 De-Multiplexer

will be equal to input, I based on the values of selection lines s1 & s0.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

54 Digital Logic BCA

MUX-DEMUX Application Example

- This enables sharing a single communication line among a number of devices.

- At any time, only one source and one destination can use the communication line.

Read Only Memory (ROM)

- A read-only memory (ROM) is a device that includes both the decoder and the OR

gates within a single IC package. The connections between the outputs of the decoder

and the inputs of the OR gates can be specified for each particular configuration by

“programming” the ROM.

- A ROM is essentially a memory (or storage) device in which a fixed set of binary

information is stored.

- The binary information must first be specified by the user and is then embedded in the

unit to form the required interconnection pattern. ROM’s come with special internal links

that can be fused or broken. The desired interconnection for a particular application

requires that certain links be fused to form the required circuit paths. Once a pattern is

established for a ROM, it remain fixed even when power is turned off and then on again.

- A ROM consists of 𝑛 input lines and 𝑚 output lines. 

- Each bit combination of input variables is called an address.

- Each bit combination that comes out of the output lines is called a word. The number of

bits per word is equal to the number of output lines m.

- A ROM with n input lines has 2𝑛distinct addresses, so there are 2𝑛 distinct words which

are said to be stored in the unit.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

55 Digital Logic BCA

 Internally, the ROM is a combinational circuit with AND gates connected as a decoder

and a number of OR gates equal to the number of outputs in the unit.

Combinational Logic implementation of ROM:

When a combinational circuit is implemented by means of ROM the function must be

expressed in sum of min terms or better yet by a truth table.

Q. Implement the following combinational logic function with a 4X2 ROM.

Soln:

Truth table specifies a combinational circuit with 2 inputs and 2 outputs. The Boolean

function can be represented in SOP as;

Combinational-circuit implementation with a 4 x 2 ROM:

 ROM with AND-OR gates ROM with AND-OR-INVERT gates

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

56 Digital Logic BCA

Q. Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and

generates an output binary number equal to the square of the input number.

Soln:

First step is to derive the truth table for the combinational circuit

Output B0 is always equal to input A0; so there is no need to generate B0 with a ROM since it

is equal to an input variable. Moreover, output B1 is always 0, so this outputs is always

known.

Implementation by ROM:

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

57 Digital Logic BCA

Types of ROM:

1. Mask ROM

- Permanent programming done at fabrication time

- Fabrication take place at factory as per customer order

- Very expensive and therefore feasible only for large quantity orders

- Once the memory is programmed during the manufacturing process, the user cannot

alter the programs.

2. PROM (Programmable ROM)

- A blank chip which can be programmed only once using a special device called

programmer.

- Once it’s programmed its content cannot be modified or erased.

3. EPROM (Erasable Programmable ROM)

- Can be programmed multiple times.

- Its content can be erased by using UV (ultra violet) light.

- Exposure to the UV light will erase all contents.

4. EEPROM (Electrically Erasable Programmable ROM)

- Similar to EPROM but its contents can be electrically erased and re-written without

having to remove it from the computer.

Programmable Logic Array (PLA)

A combinational circuit may occasionally have don’t care conditions. When implemented

with a ROM, a don’t care condition becomes an address input that will never occur. The

words at the don’t care addresses need not be programmed and may be left in their original

state (all 0’s or all 1’s). The result is that not all the bit patterns available in the ROM are

used, which may be considered as waste of available equipment.

For example, a combinational circuit that converts a 12-bit card code to a 6-bit internal

alphanumeric code.

* It consists 12 inputs and 6 outputs. The size of the ROM must be 4096 × 6 (212 × 6).

* There are only 47 valid entries for the card code, all other input combinations are don’t

care. The remaining 4049 words of ROM are not used and are thus wasted.

So, Programmable Logic Array is a LSI component that can be used in economically as an

alternative to ROM where number of don’t-care conditions is excessive.

 PLA does not provide full decoding of the variables and does not generate all the

minterms as in the ROM.

Block diagram of PLA:

A block diagram is shown in fig. It consists 𝑛 inputs, 𝑚-outputs, 𝑘 product terms and 𝑚 sum

terms. The product terms constitute a group of 𝑘 AND gates and the sum terms constitute a

group of 𝑚 OR gates.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

58 Digital Logic BCA

 The number of programmed links is 𝟐𝒏 × 𝒌 + 𝒌 × 𝒎 + 𝒎, whereas that of a ROM is

𝟐𝒏 × 𝒎 .

Implementation of combinational circuit by PLA:

PLA program table:

PLA Logic Circuit:

Fig: PLA with 3 inputs, 3 product terms, and 2 outputs

Input side:

 1=uncomplemented in term

 0=complemented in term

 - = does not participate

Output side:

 1= term connected to output

 - = no connection to output

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

59 Digital Logic BCA

PLA program table consists of three columns:

- First column: lists the product terms numerically.

- Second column: specifies the required paths between inputs and AND gates.

- Third column: specifies the paths between the AND gates and the OR gates.

Under each output variable, we write a T (for true) if the output inverter is to be bypassed,

and C (for complement) if the function is to be complemented with the output inverter.

Note: PLA implements the functions in their sum of products form (standard form, not

necessarily canonical as with ROM). Each product term in the expression requires an AND

gate. It is necessary to simplify the function to a minimum number of product terms in order

to minimize the number of AND gates used.

Q. A combinational circuit is defined by the functions:

 𝑭𝟏(𝑨, 𝑩, 𝑪) = ∑(𝟑, 𝟓, 𝟔, 𝟕)

 𝑭𝟐(𝑨, 𝑩, 𝑪) = ∑(𝟎, 𝟐, 𝟒, 𝟕)

Implement the circuit with a PLA having three inputs, four product terms, and two outputs.

Soln:

First of all we have to write the function in minimize SOP form:

There are six product terms in 𝐹1 and 𝐹2, but only four product terms are allowed to use.

Now implement 𝐹1
′(𝐴, 𝐵, 𝐶)

𝐹1
′(𝐴, 𝐵, 𝐶) = ∑(0, 1, 2, 4)

𝐹2(𝐴, 𝐵, 𝐶) = ∑(0, 2, 4, 7)

From these equation it is clear that the minterms 0, 2 and 4 are common.

Now obtain the minimized expression by using them

Now four product terms are 𝐵′𝐶′, 𝐴′𝐶′, 𝐴′𝐵′ 𝑎𝑛𝑑 𝐴𝐵𝐶.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

60 Digital Logic BCA

𝐹1 = 𝐵′𝐶′ + 𝐴′𝐶′ + 𝐴′𝐵′

𝐹2 = 𝐵′𝐶′ + 𝐴𝐵𝐶 + 𝐴′𝐶′

Now, PLA program table:

Note that output 𝐹1 is the normal (or true) output even though a C is marked under it. This is

because 𝐹1
′ is generated prior to the output inverter. The inverter complements the function to

produce 𝐹1 in the

output.

Draw PLA circuit yourself.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

61 Digital Logic BCA

References:

M. Morris Mano, “Digital Logic & Computer Design”

