
Jagdish Bhatta

BSCCSIT.COM CSC 304 ARTIFICIAL INTELLIEGENCE

[Unit 1: Introduction]
Artificial Intelligence (CSC 355)

Jagdish Bhatta
Central Department of Computer Science & Information Technology

Tribhuvan University

Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Introduction

Intelligence

Scientists have proposed two major “consensus” definitions of intelligence:

(i) from Mainstream Science on Intelligence (1994);

A very general mental capability that, among other things, involves the ability to reason,
plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn
from experience. It is not merely book learning, a narrow academic skill, or test-taking
smarts. Rather, it reflects a broader and deeper capability for comprehending our
surroundings- making sense” of things, or “figuring out” what to do.

(ii) from Intelligence: Knowns and Unknowns (1995);

Individuals differ from one another in their ability to understand complex ideas, to adapt
effectively to the environment, to learn from experience, to engage in various forms of
reasoning, [and] to overcome obstacles by taking thought. Although these individual
differences can be substantial, they are never entirely consistent: a given person’s
intellectual performance will vary on different occasions, in different domains, as judged
by different criteria. Concepts of “intelligence” are attempts to clarify and organize this
complex set of phenomena.

Thus, intelligence is:
– the ability to reason
– the ability to understand
– the ability to create
– the ability to Learn from experience
– the ability to plan and execute complex tasks

What is Artificial Intelligence?

"Giving machines ability to perform tasks normally associated with human

intelligence."

AI is intelligence of machines and branch of computer science that aims to create it. AI
consists of design of intelligent agents, which is a program that perceives its environment
and takes action that maximizes its chance of success. With Ai it comes issues like
deduction, reasoning, problem solving, knowledge representation, planning, learning,
natural language processing, perceptron, etc.

 “Artificial Intelligence is the part of computer science concerned with designing
intelligence computer systems, that is, systems that exhibit the characteristics we associate
with intelligence in human behavior.”

Jagdish Bhatta 2 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Introduction

Different definitions of AI are given by different books/writers. These definitions can be
divided into two dimensions.

Systems that think like humans Systems that think rationally

“The exciting new effort to make computers
think…..machine with minds, in the full and literal
sense.” (Haugeland, 1985)

“[The automaton of] activities that we associate with
human thinking, activities such as decision-making,
problem solving, learning…..” (Bellman, 1978)

“The study of mental faculties through the use of
computational models.” (Charniak and
McDermott, 1985)

“The study of the computations that make it
possible to perceive, reason, and act.” (Winston,
1992)

Systems that act like humans Systems that act rationally
“ The art of creating machines that perform functions
that require intelligence when performed by people.”
(Kurzweil, 1990)

“The study of how to make computer do things at
which, at the moment, people are better.” (Rich and
Knight, 1991)

“Computational Intelligence is the study of the
design of intelligent agents.” (Poole et al., 1998)

“AI… is concerned with intelligent behavior in
artifacts.” (Nilsson, 1998)

Top dimension is concerned with thought processes and reasoning, where as bottom
dimension addresses the behavior.

The definition on the left measures the success in terms of fidelity of human performance,
whereas definitions on the right measure an ideal concept of intelligence, which is called
rationality.

Human-centered approaches must be an empirical science, involving hypothesis and
experimental confirmation. A rationalist approach involves a combination of mathematics
and engineering.

Acting Humanly: The Turing Test Approach

The Turing test, proposed by Alan Turing (1950) was designed to convince the people
that whether a particular machine can think or not. He suggested a test based on
indistinguishability from undeniably intelligent entities- human beings. The test involves
an interrogator who interacts with one human and one machine. Within a given time
the interrogator has to find out which of the two the human is, and which one the
machine.

Jagdish Bhatta 3 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Introduction

The computer passes the test if a human interrogator after posing some written questions,
cannot tell whether the written response come from human or not.

To pass a Turing test, a computer must have following capabilities:

 Natural Language Processing: Must be able to communicate successfully in

English
 Knowledge representation: To store what it knows and hears.
 Automated reasoning: Answer the Questions based on the stored information.
 Machine learning: Must be able to adapt in new circumstances.

Turing test avoid the physical interaction with human interrogator. Physical simulation of
human beings is not necessary for testing the intelligence.

The total Turing test includes video signals and manipulation capability so that the
interrogator can test the subject’s perceptual abilities and object manipulation ability. To
pass the total Turing test computer must have following additional capabilities:

 Computer Vision: To perceive objects
 Robotics: To manipulate objects and move

Thinking Humanly: Cognitive modeling approach

If we are going to say that a given program thinks like a human, we must have some way
of determining how humans think. We need to get inside the actual workings of human
minds. There are two ways to do this:

 – through introspection: catch our thoughts while they go by

– through psychological experiments.

Once we have precise theory of mind, it is possible to express the theory as a computer
program.

The field of cognitive science brings together computer models from AI and experimental
techniques from psychology to try to construct precise and testable theories of the
workings of the human mind.

Think rationally: The laws of thought approach

Aristotal was one of the first who attempt to codify the right thinking that is irrefutable
reasoning process. He gave Syllogisms that always yielded correct conclusion when
correct premises are given.

For example:

Ram is a man

Jagdish Bhatta 4 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Introduction

All men are mortal
 Ram is mortal

These law of thought were supposed to govern the operation of mind: This study initiated
the field of logic. The logicist tradition in AI hopes to create intelligent systems using logic
programming. However there are two obstacles to this approach. First, It is not easy to take
informal knowledge and state in the formal terms required by logical notation, particularly
when knowledge is not 100% certain. Second, solving problem principally is different
from doing it in practice. Even problems with certain dozens of fact may exhaust the
computational resources of any computer unless it has some guidance as which reasoning
step to try first.

Acting Rationally: The rational Agent approach:

Agent is something that acts.

Computer agent is expected to have following attributes:
 Autonomous control
 Perceiving their environment
 Persisting over a prolonged period of time
 Adapting to change
 And capable of taking on another’s goal

Rational behavior: doing the right thing.

The right thing: that which is expected to maximize goal achievement, given the available
information.

Rational Agent is one that acts so as to achieve the best outcome or, when there is
uncertainty, the best expected outcome.

In the “laws of thought” approach to AI, the emphasis was given to correct inferences.
Making correct inferences is sometimes part of being a rational agent, because one way to
act rationally is to reason logically to the conclusion and act on that conclusion. On the
other hand, there are also some ways of acting rationally that cannot be said to involve
inference. For Example, recoiling from a hot stove is a reflex action that usually more

successful than a slower action taken after careful deliberation.

Advantages:
 It is more general than laws of thought approach, because correct inference is just

one of several mechanisms for achieving rationality.
 It is more amenable to scientific development than are approaches based on human

behavior or human thought because the standard of rationality is clearly defined
and completely general.

Jagdish Bhatta 5 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Introduction

Characteristics of A.I. Programs

 Symbolic Reasoning: reasoning about objects represented by symbols, and their
properties and relationships, not just numerical calculations.

 Knowledge: General principles are stored in the program and used for reasoning
about novel situations.

 Search: a ``weak method'' for finding a solution to a problem when no direct
method exists. Problem: combinatoric explosion of possibilities.

 Flexible Control: Direction of processing can be changed by changing facts in the
environment.

Foundations of AI:

Philosophy:
Logic, reasoning, mind as a physical system, foundations of learning, language and
rationality.

 Where does knowledge come from?
 How does knowledge lead to action?
 How does mental mind arise from physical brain?
 Can formal rules be used to draw valid conclusions?

Mathematics:
Formal representation and proof algorithms, computation, undecidability, intractability,
probability.

 What are the formal rules to draw the valid conclusions?
 What can be computed?
 How do we reason with uncertain information?

Psychology:
Adaptation, phenomena of perception and motor control.

 How humans and animals think and act?

Economics:
Formal theory of rational decisions, game theory, operation research.

 How should we make decisions so as to maximize payoff?
 How should we do this when others may not go along?
 How should we do this when the payoff may be far in future?

Linguistics:
Knowledge representation, grammar

 How does language relate to thought?

Jagdish Bhatta 6 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Introduction

Neuroscience:
Physical substrate for mental activities

 How do brains process information?

Control theory:
Homeostatic systems, stability, optimal agent design

 How can artifacts operate under their own control?

Brief history of AI

– 1943: Warren Mc Culloch and Walter Pitts: a model of artificial boolean neurons to

perform computations.
– First steps toward connectionist computation and learning (Hebbian learning).
– Marvin Minsky and Dann Edmonds (1951) constructed the first neural network

computer

– 1950: Alan Turing’s “Computing Machinery and Intelligence”

– First complete vision of AI.

The birth of AI (1956):

- Dartmouth Workshop bringing together top minds on automata theory, neural nets and
the study of intelligence.

– Allen Newell and Herbert Simon: The logic theorist (first nonnumeric thinking
program used for theorem proving)

– For the next 20 years the field was dominated by these participants.

Great expectations (1952-1969):

– Newell and Simon introduced the General Problem Solver.
– Imitation of human problem-solving

– Arthur Samuel (1952-) investigated game playing (checkers) with great success.
– John McCarthy(1958-) :

– Inventor of Lisp (second-oldest high-level language)
– Logic oriented, Advice Taker (separation between knowledge and reasoning)

– Marvin Minsky (1958 -)

– Introduction of microworlds that appear to require intelligence to solve: e.g. blocks-
world.

– Anti-logic orientation, society of the mind.

Jagdish Bhatta 7 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Introduction

Collapse in AI research (1966 - 1973):

– Progress was slower than expected.
– Unrealistic predictions.

– Some systems lacked scalability.
– Combinatorial explosion in search.

– Fundamental limitations on techniques and representations.
– Minsky and Papert (1969) Perceptrons.

AI revival through knowledge-based systems (1969-1970):

– General-purpose vs. domain specific
- E.g. the DENDRAL project (Buchanan et al. 1969)

First successful knowledge intensive system.

– Expert systems
- MYCIN to diagnose blood infections (Feigenbaum et al.)

- Introduction of uncertainty in reasoning.

– Increase in knowledge representation research.
- Logic, frames, semantic nets, …

AI becomes an industry (1980 - present):

– R1 at DEC (McDermott, 1982)
– Fifth generation project in Japan (1981)
– American response …

 Puts an end to the AI winter.

Connectionist revival (1986 - present): (Return of Neural Network):

– Parallel distributed processing (RumelHart and McClelland, 1986); backprop.

AI becomes a science (1987 - present):

– In speech recognition: hidden markov models
– In neural networks
– In uncertain reasoning and expert systems: Bayesian network formalism

The emergence of intelligent agents (1995 - present):

– The whole agent problem:
“How does an agent act/behave embedded in real environments with continuous
sensory inputs”

Jagdish Bhatta 8 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Introduction

Applications of AI: (Describe these application areas yourself)

 Autonomous planning and scheduling

 Game playing

 Autonomous Control

 Expert Systems

 Logistics Planning

 Robotics

 Language understanding and problem solving

 Speech Recognition

 Computer Vision

Knowledge:

Knowledge is a theoretical or practical understanding of a subject or a domain. Knowledge
is also the sum of what is currently known.

Knowledge is “the sum of what is known: the body of truth, information, and principles
acquired by mankind.” Or, "Knowledge is what I know, Information is what we know."

There are many other definitions such as:

- Knowledge is "information combined with experience, context, interpretation, and
reflection. It is a high-value form of information that is ready to apply to decisions and
actions." (T. Davenport et al., 1998)

- Knowledge is “human expertise stored in a person’s mind, gained through experience,
and interaction with the person’s environment." (Sunasee and Sewery, 2002)

- Knowledge is “information evaluated and organized by the human mind so that it can be
used purposefully, e.g., conclusions or explanations." (Rousa, 2002)

Knowledge consists of information that has been:
– interpreted,
– categorised,
– applied, experienced and revised.

Jagdish Bhatta 9 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Introduction

In general, knowledge is more than just data, it consist of: facts, ideas, beliefs, heuristics,
associations, rules, abstractions, relationships, customs.

Research literature classifies knowledge as follows:

Classification-based Knowledge » Ability to classify information
Decision-oriented Knowledge » Choosing the best option
Descriptive knowledge » State of some world (heuristic)
Procedural knowledge » How to do something
Reasoning knowledge » What conclusion is valid in what situation?
Assimilative knowledge » What its impact is?

Knowledge is important in AI for making intelligent machines. Key issues confronting the
designer of AI system are:

Knowledge acquisition: Gathering the knowledge from the problem domain to solve the
AI problem.

Knowledge representation: Expressing the identified knowledge into some knowledge
representation language such as propositional logic, predicate logic etc.

Knowledge manipulation: Large volume of knowledge has no meaning until up to it is
processed to deduce the hidden aspects of it. Knowledge is manipulated to draw
conclusions from knowledgebase.

Importance of Knowledge:

Learning:

It is concerned with design and development of algorithms that allow computers to evolve

behaviors based on empirical data such as from sensor data. A major focus of learning is to

automatically learn to recognize complex patterns and make intelligent decision based on

data.

A complete program is said to learn from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E.

Jagdish Bhatta 10 Downloaded from: http://CSITauthority.blogspot.com

[Unit 2: Agents]

Artificial Intelligence (CSC 355)

Jagdish Bhatta

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Agents

Intelligent Agents

An Intelligent Agent perceives it environment via sensors and acts rationally upon that
environment with its effectors (actuators). Hence, an agent gets percepts one at a time, and
maps this percept sequence to actions.

Properties of the agent

– Autonomous
– Interacts with other agents plus the environment
– Reactive to the environment
– Pro-active (goal- directed)

What do you mean, sensors/percepts and effectors/actions?

For Humans

– Sensors: Eyes (vision), ears (hearing), skin (touch), tongue (gestation), nose
(olfaction), neuromuscular system (proprioception)

– Percepts:
• At the lowest level – electrical signals from these sensors
• After preprocessing – objects in the visual field (location, textures,

colors, …), auditory streams (pitch, loudness, direction), …
– Effectors: limbs, digits, eyes, tongue, …..
– Actions: lift a finger, turn left, walk, run, carry an object, …

The Point: percepts and actions need to be carefully defined, possibly at different levels of
abstraction

Jagdish Bhatta 12 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Agents

A more specific example: Automated taxi driving system

• Percepts: Video, sonar, speedometer, odometer, engine sensors, keyboard input,
microphone, GPS, …

• Actions: Steer, accelerate, brake, horn, speak/display, …
• Goals: Maintain safety, reach destination, maximize profits (fuel, tire wear), obey

laws, provide passenger comfort, …
• Environment: Urban streets, freeways, traffic, pedestrians, weather, customers, …

[Different aspects of driving may require different types of agent programs!]

Challenge!!

Compare Software with an agent
Compare Human with an agent

Percept: The Agents perceptual inputs at any given instant.
Percept Sequence: The complete history of everything the agent has ever perceived.

The agent function is mathematical concept that maps percept sequence to actions.

The agent function will internally be represented by the agent program.

The agent program is concrete implementation of agent function it runs on the physical
architecture to produce f.

The vacuum-cleaner world: Example of Agent

Environment: square A and B
Percepts: [location and content] E.g. [A, Dirty]

Actions: left, right, suck, and no-op

f :P* A

Jagdish Bhatta 13 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Agents

The concept of rationality

A rational agent is one that does the right thing.

– Every entry in the table is filled out correctly.

What is the right thing?

– Right action is the one that will cause the agent to be most successful.

Therefore we need some way to measure success of an agent. Performance measures are
the criterion for success of an agent behavior.

E.g., performance measure of a vacuum-cleaner agent could be amount of dirt cleaned up,
amount of time taken, amount of electricity consumed, amount of noise generated, etc.

It is better to design Performance measure according to what is wanted in the environment

instead of how the agents should behave.

It is not easy task to choose the performance measure of an agent. For example if the
performance measure for automated vacuum cleaner is “The amount of dirt cleaned within
a certain time” Then a rational agent can maximize this performance by cleaning up the
dirt , then dumping it all on the floor, then cleaning it up again , and so on. Therefore
“How clean the floor is” is better choice for performance measure of vacuum cleaner.

What is rational at a given time depends on four things:

– Performance measure,
– Prior environment knowledge,
– Actions,
– Percept sequence to date (sensors).
–

Definition: A rational agent chooses whichever action maximizes the expected value of the

performance measure given the percept sequence to date and prior environment

knowledge.

Percept sequence Action
[A,Clean] Right
[A, Dirty] Suck
[B, Clean] Left
[B, Dirty] Suck
 ………. ……

Jagdish Bhatta 14 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Agents

Environments

To design a rational agent we must specify its task environment. Task environment means:
PEAS description of the environment:

– Performance
– Environment
– Actuators
– Sensors

Example: Fully automated taxi:

 PEAS description of the environment:

Performance: Safety, destination, profits, legality, comfort

Environment: Streets/freeways, other traffic, pedestrians, weather,, …

Actuators: Steering, accelerating, brake, horn, speaker/display,…

Sensors: Video, sonar, speedometer, engine sensors, keyboard, GPS, …

Agent Types:

Refer Book: AI by Russel and Norvig

Jagdish Bhatta 15 Downloaded from: http://CSITauthority.blogspot.com

[Unit 3: Problem Solving]

Artificial Intelligence (CSC 355)

Jagdish Bhatta

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Problem Solving

Problem Solving:

Problem solving, particularly in artificial intelligence, may be characterized as a systematic
search through a range of possible actions in order to reach some predefined goal or
solution. Problem-solving methods divide into special purpose and general purpose. A
special-purpose method is tailor-made for a particular problem and often exploits very
specific features of the situation in which the problem is embedded. In contrast, a general-
purpose method is applicable to a wide variety of problems. One general-purpose
technique used in AI is means-end analysis—a step-by-step, or incremental, reduction of
the difference between the current state and the final goal.

Four general steps in problem solving:

– Goal formulation
– What are the successful world states

– Problem formulation
– What actions and states to consider given the goal

– Search
– Determine the possible sequence of actions that lead to the states of

known values and then choosing the best sequence.
– Execute

– Give the solution perform the actions.

Problem formulation:

A problem is defined by:

– An initial state: State from which agent start
– Successor function: Description of possible actions available to the agent.
– Goal test: Determine whether the given state is goal state or not
– Path cost: Sum of cost of each path from initial state to the given state.

A solution is a sequence of actions from initial to goal state. Optimal solution has the
lowest path cost.

State Space representation

The state space is commonly defined as a directed graph in which each node is a state and
each arc represents the application of an operator transforming a state to a successor state.

A solution is a path from the initial state to a goal state.

State Space representation of Vacuum World Problem:

Jagdish Bhatta 17 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Problem Solving

 States?? two locations with or without dirt: 2 x 22=8 states.
 Initial state?? Any state can be initial
 Actions?? {Left, Right, Suck}
 Goal test?? Check whether squares are clean.
 Path cost?? Number of actions to reach goal.

For following topics refer Russell and Norvig’s Chapter 3 from pages 87-96.

Problem Types: Toy Problems & Real World Problems (Discussed in class) .
 Well Defined Problems (Discussed in class).

Water Leakage Problem:

Jagdish Bhatta 18 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Problem Solving

If
 hall _wet and kitchen_dry
then
 leak_in_bathroom
If
 hall_wet and bathroom_dry
then
 problem_in_kitchen
If
 window_closed or no_rain
then
 no_water_from_outside

Production System:

A production system (or production rule system) is a computer program typically used
to provide some form of artificial intelligence, which consists primarily of a set of rules
about behavior. These rules, termed productions, are a basic representation found useful
in automated planning, expert systems and action selection. A production system provides
the mechanism necessary to execute productions in order to achieve some goal for the
system.

Productions consist of two parts: a sensory precondition (or "IF" statement) and an action
(or "THEN"). If a production's precondition matches the current state of the world, then the
production is said to be triggered. If a production's action is executed, it is said to have
fired. A production system also contains a database, sometimes called worcking memory,
which maintains data about current state or knowledge, and a rule interpreter. The rule
interpreter must provide a mechanism for prioritizing productions when more than one is
triggered.

The underlying idea of production systems is to represent knowledge in the form of
condition-action pairs called production rules:

If the condition C is satisfied then the action A is appropriate.

Types of production rules

Situation-action rules

If it is raining then open the umbrella.
Inference rules

If Cesar is a man then Cesar is a person

Jagdish Bhatta 19 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Problem Solving

Production system is also called ruled-based system

Architecture of Production System:

Short Term Memory:
- Contains the description of the current state.

Set of Production Rules:
- Set of condition-action pairs and defines a single chunk of problem solving

knowledge.
Interpreter:

- A mechanism to examine the short term memory and to determine which rules
to fire (According to some strategies such as DFS, BFS, Priority, first-
encounter etc)

The execution of a production system can be defined as a series of recognize-act cycles:
Match –memory contain matched against condition of production rules, this produces a
subset of production called conflict set. Conflict resolution –one of the production in the
conflict set is then selected, Apply the rule.

Consider an example:

Problem: Sorting a string composed of letters a, b & c.
Short Term Memory: cbaca
Production Set:

Jagdish Bhatta 20 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Problem Solving

Interpreter: Choose one rule according to some strategy.

Production System: The water jug problem

Problem:

There are two jugs, a 4-gallon one and a 3-gallon one. Neither jug has any measuring
markers on it. There is a pump that can be used to fill the jugs with water.
How can you get exactly n (0, 1, 2, 3, 4) gallons of water into one of the two jugs ?

Solution Paradigm:

- build a simple production system for solving this problem.
- represent the problem by using the state space paradigm.

State = (x, y); where: x represents the number of gallons in the 4-gallon jug; y represents
the number of gallons in the 3-gallon jug. x ε{0, 1, 2, 3, 4} and y ε{0, 1, 2, 3}.

The initial state represents the initial content of the two jugs.

For instance, it may be (2, 3), meaning that the 4-gallon jug contains 2 gallons of water and
the 3-gallon jug contains three gallons of water.

The goal state is the desired content of the two jugs.

The left hand side of a production rule indicates the state in which the rule is applicable
and the right hand side indicates the state resulting after the application of the rule.

Jagdish Bhatta 21 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Problem Solving

For instance;

(x, y) such that x < 4 →(4, y) represents the production
If the 4-gallon jug is not full then fill it from the pump.

Jagdish Bhatta 22 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Problem Solving

The Water Jug Problem: Representation

Constraint Satisfaction Problem:

A Constraint Satisfaction Problem is characterized by:

 a set of variables {x1, x2, .., xn},
 for each variable xi a domain Di with the possible values for that variable, and
 a set of constraints, i.e. relations, that are assumed to hold between the values of

the variables. [These relations can be given intentionally, i.e. as a formula, or
extensionally, i.e. as a set, or procedurally, i.e. with an appropriate generating or
recognizing function.] We will only consider constraints involving one or two
variables.

The constraint satisfaction problem is to find, for each i from 1 to n, a value in Di for xi so
that all constraints are satisfied. Means that, we must find a value for each of the variables
that satisfies all of the constraints.

A CS problem can easily be stated as a sentence in first order logic, of the form:

 (exist x1)..(exist xn) (D1(x1) & .. Dn(xn) => C1..Cm)

A CS problem is usually represented as an undirected graph, called Constraint Graph
where the nodes are the variables and the edges are the binary constraints. Unary
cconstraints can be disposed of by just redefining the domains to contain only the values

Jagdish Bhatta 23 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Problem Solving

that satisfy all the unary constraints. Higher order constraints are represented by hyperarcs.
In the following we restrict our attention to the case of unary and binary constraints.

Formally, a constraint satisfaction problem is defined as a triple , where X is a
set of variables, D is a domain of values, and C is a set of constraints. Every constraint is in
turn a pair , where t is a tuple of variables and R is a set of tuples of values; all these
tuples having the same number of elements; as a result R is a relation. An evaluation of the
variables is a function from variables to values, . Such an evaluation satisfies
a constraint if . A solution is an
evaluation that satisfies all constraints.

Constraints

 A constraint is a relation between a local collection of variables.
 The constraint restricts the values that these variables can simultaneously have.
 For example, all-diff(X1, X2, X3). This constraint says that X1, X2, and X3 must

take on different values. Say that {1,2,3} is the set of values for each of these
variables then:

X1=1, X2=2, X3=3 OK X1=1, X2=1,X3=3 NO

The constraints are the key component in expressing a problem as a CSP.

 The constraints are determined by how the variables and the set of values are
chosen.

 Each constraint consists of;
1. A set of variables it is over.
2. A specification of the sets of assignments to those variables that satisfy the

constraint.
 The idea is that we break the problem up into a set of distinct conditions each of

which have to be satisfied for the problem to be solved.

Example: In N-Queens: Place N queens on an N x N chess board so that queen can
attack any other queen.

 No queen can attack any other queen.
 Given any two queens Qi and Qj they cannot attack each other.
 Now we translate each of these individual conditions into a separate constraint.

o Qi cannot attack Qj(i ≠j)
 Qi is a queen to be placed in column i, Qj is a queen to be placed in

column j.
 The value of Qi and Qj are the rows the queens are to be placed in.

 Note the translation is dependent on the representation we chose.
 Queens can attack each other,

1. Vertically, if they are in the same column---this is impossible as Qi and Qj
are placed in different columns.

2. Horizontally, if they are in the same row---we need the constraint Qi≠Qj.

Jagdish Bhatta 24 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Problem Solving

3. Along a diagonal, they cannot be the same number of columns apart as they
are rows apart: we need the constraint |i-j| ≠|Qi-Qj| (| | is absolute value)

 Representing the Constraints;
1. Between every pair of variables (Qi,Qj) (i ≠j), we have a constraint Cij.
2. For each Cij, an assignment of values to the variables Qi= A and Qj= B,

satisfies this constraint if and only if;
A ≠B

| A-B| ≠|i-j|
 Solutions:

o A solution to the N-Queens problem will be any assignment of values to the
variables Q1,…,QN that satisfies all of the constraints.

o Constraints can be over any collection of variables. In N-Queens we only need
binary constraints---constraints over pairs of variables.

More Examples: Map Coloring Problem (Discussed in class)

Refer Russell and Norvig’s Chapter 5 from pages 165-169. Also have a brief look on
page 172-173 for forward checking that we have discussed in class.

Jagdish Bhatta 25 Downloaded from: http://CSITauthority.blogspot.com

[Unit 4: Searching]

Artificial Intelligence (CSC 355)

Jagdish Bhatta

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Searching

A search problem

Figure below contains a representation of a map. The nodes represent cities, and the links
represent direct road connections between cities. The number associated to a link
represents the length of the corresponding road.

The search problem is to find a path from a city S to a city G

S

A

D

B

E

C

F

G

3

4 4

5 5

42

4
3

Figure : A graph representation of a map

This problem will be used to illustrate some search methods.

Search problems are part of a large number of real world applications:

- VLSI layout
- Path planning
- Robot navigation etc.

There are two broad classes of search methods:

 - uninformed (or blind) search methods;
 - heuristically informed search methods.

In the case of the uninformed search methods, the order in which potential solution
paths are considered is arbitrary, using no domain-specific information to judge where the
solution is likely to lie.

In the case of the heuristically informed search methods, one uses domain-dependent
(heuristic) information in order to search the space more efficiently.

Measuring problem Solving Performance

We will evaluate the performance of a search algorithm in four ways

• Completeness: An algorithm is said to be complete if it definitely finds solution
to the problem, if exist.

• Time Complexity: How long (worst or average case) does it take to find a

solution? Usually measured in terms of the number of nodes expanded

Jagdish Bhatta 27 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

• Space Complexity: How much space is used by the algorithm? Usually

measured in terms of the maximum number of nodes in memory at a
time

• Optimality/Admissibility: If a solution is found, is it guaranteed to be an

optimal one? For example, is it the one with minimum cost?

Time and space complexity are measured in terms of
 b -- maximum branching factor (number of successor of any node) of the search tree
d -- depth of the least-cost solution
m -- maximum length of any path in the space

Breadth First Search

All nodes are expended at a given depth in the search tree before any nodes at the next
level are expanded until the goal reached.

Expand shallowest unexpanded node. fringe is implemented as a FIFO queue

Constraint: Do not generate as child node if the node is already parent to avoid more loop.

BFS Evaluation:

 Completeness:
– Does it always find a solution if one exists?

– YES
– If shallowest goal node is at some finite depth d and If b is finite

 Time complexity:

– Assume a state space where every state has b successors.

S

A D

B
E

C
F

G

D A

E E B B

A CECFBFD

Jagdish Bhatta 28 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

– root has b successors, each node at the next level has again b
successors (total b2), …

– Assume solution is at depth d

– Worst case; expand all except the last node at depth d

– Total no. of nodes generated:
 b + b2 + b3 + ………………….. bd + (bd+1 –b) = O(bd+1)

 Space complexity:

– Each node that is generated must remain in memory
– Total no. of nodes in memory:

1+ b + b2 + b3 + ………………….. bd + (bd+1 –b) = O(bd+1)

Optimal (i.e., admissible):
– if all paths have the same cost. Otherwise, not optimal but finds solution

with shortest path length (shallowest solution). If each path does not have
same path cost shallowest solution may not be optimal

Two lessons:

– Memory requirements are a bigger problem than its execution time.
– Exponential complexity search problems cannot be solved by uninformed

search methods for any but the smallest instances.

DEPTH2 NODES TIME MEMORY
2 1100 0.11 seconds 1 megabyte
4 111100 11 seconds 106 megabytes
6 107 19 minutes 10 gigabytes
8 109 31 hours 1 terabyte
10 1011 129 days 101 terabytes
12 1013 35 years 10 petabytes
14 1015 3523 years 1 exabyte

Depth First Search

Looks for the goal node among all the children of the current node before using the sibling
of this node i.e. expand deepest unexpanded node.
Fringe is implemented as a LIFO queue (=stack)

Jagdish Bhatta 29 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

DFS Evaluation:

 Completeness;

– Does it always find a solution if one exists?

– NO
– If search space is infinite and search space contains loops then DFS

may not find solution.

 Time complexity;
– Let m is the maximum depth of the search tree. In the worst case Solution

may exist at depth m.
– root has b successors, each node at the next level has again b successors

(total b2), …
– Worst case; expand all except the last node at depth m

– Total no. of nodes generated:
 b + b2 + b3 + ………………….. bm = O(bm)

 Space complexity:
– It needs to store only a single path from the root node to a leaf node, along

with remaining unexpanded sibling nodes for each node on the path.
– Total no. of nodes in memory:

1+ b + b + b + ………………….. b m times = O(bm)

Optimal (i.e., admissible):
– DFS expand deepest node first, if expands entire let sub-tree even if right

sub-tree contains goal nodes at levels 2 or 3. Thus we can say DFS may not
always give optimal solution.

S

A

B

C

G

E

FD

Jagdish Bhatta 30 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Uniform Cost Search:

Uniform-cost search (UCS) is modified version of BFS to make optimal. It is basically a
tree search algorithm used for traversing or searching a weighted tree, tree structure, or
graph. The search begins at the root node. The search continues by visiting the next node
which has the least total cost from the root. Nodes are visited in this manner until a goal
state is reached.

Typically, the search algorithm involves expanding nodes by adding all unexpanded
neighboring nodes that are connected by directed paths to a priority queue. In the queue,
each node is associated with its total path cost from the root, where the least-cost paths are
given highest priority. The node at the head of the queue is subsequently expanded, adding
the next set of connected nodes with the total path cost from the root to the respective
node. The uniform-cost search is complete and optimal if the cost of each step exceeds
some positive bound ε.

Does not care about the number of steps, only care about total cost.

•Complete? Yes, if step cost ≥ε (small positive number).
•Time? Maximum as of BFS
•Space? Maximum as of BFS.
•Optimal? Yes

Consider an example:

Jagdish Bhatta 31 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

4

1

341315

11

73612 161810

A

B C

D E F H

I J G1 K L M N G2

Note: Heurisitic

estimates are not

used in this search!

Paths from root

are generated.

4 11

A

B C

11

19

Since B has the least cost,

we expand it.

4

34

11

A

C

F H
1415

Node H has the least cost thus far, so we expand it.

4 11

A

B

4

C

11

A

0

Start with

root node

A.

1315

D E 17

B

19

1315

D E 17

Of our 3 choices, C

has the least cost so

we’ll expand it.

4

34

11

A

C

F
15

B

19

1315

D E 17

1

N

H

7

G215
21

We have a goal, G2 but

need to expand other

branches to see if there is

another goal with less

distance.

4

34

11

A

C

F

B

19

1315

E 17

1

N

H

7

G2
15 21

36

L M
21 18

Note: Both

nodes F and N

have a cost of

15, we chose to

expand the

leftmost node

first. We

continue

expanding until

all remaining

paths are

greater than 21,

the cost of G2

Jagdish Bhatta 32 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Depth Limited Search:

The problem of unbounded trees can be solve by supplying depth-first search with a
determined depth limit (nodes at depth are treated as they have no successors) –Depth
limited search. Depth-limited search is an algorithm to explore the vertices of a graph. It
is a modification of depth-first search and is used for example in the iterative deepening
depth-first search algorithm.

Like the normal depth-first search, depth-limited search is an uninformed search. It works
exactly like depth-first search, but avoids its drawbacks regarding completeness by
imposing a maximum limit on the depth of the search. Even if the search could still expand
a vertex beyond that depth, it will not do so and thereby it will not follow infinitely deep
paths or get stuck in cycles. Therefore depth-limited search will find a solution if it is
within the depth limit, which guarantees at least completeness on all graphs.

It solves the infinite-path problem of DFS. Yet it introduces another source of problem if
we are unable to find good guess of l. Let d is the depth of shallowest solution.

 If l < d then incompleteness results.
 If l > d then not optimal.

 Time complexity: O(bl)
 Space complexity: O (bl)

Iterative Deepening Depth First Search:

In this strategy, depth-limited search is run repeatedly, increasing the depth limit with each
iteration until it reaches d, the depth of the shallowest goal state. On each iteration, IDDFS
visits the nodes in the search tree in the same order as depth-first search, but the
cumulative order in which nodes are first visited, assuming no pruning, is effectively
breadth-first.

IDDFS combines depth-first search's space-efficiency and breadth-first search's
completeness (when the branching factor is finite). It is optimal when the path cost is a
non-decreasing function of the depth of the node.

The technique of iterative deepening is based on this idea. Iterative deepening is depth-first
search to a fixed depth in the tree being searched. If no solution is found up to this depth
then the depth to be searched is increased and the whole `bounded' depth-first search begun
again.

IIt works by setting a depth of search -say, depth 1- and doing depth-first search to that
depth. If a solution is found then the process stops -otherwise, increase the depth by, say, 1
and repeat until a solution is found. Note that every time we start up a new bounded depth
search we start from scratch - i.e. we throw away any results from the previous search.

Jagdish Bhatta 33 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Now iterative deepening is a popular method of search. We explain why this is so.

Depth-first search can be implemented to be much cheaper than breadth-first search in
terms of memory usage -but it is not guaranteed to find a solution even where one is
guaranteed.

On the other hand, breadth-first search can be guaranteed to terminate if there is a winning
state to be found and will always find the `quickest' solution (in terms of how many steps
need to be taken from the root node). It is, however, a very expensive method in terms of
memory usage.

Iterative deepening is liked because it is an effective compromise between the two other
methods of search. It is a form of depth-first search with a lower bound on how deep the
search can go. Iterative deepening terminates if there is a solution. It can produce the same
solution that breadth-first search would produce but does not require the same memory
usage (as for breadth-first search).

Note that depth-first search achieves its efficiency by generating the next node to explore
only when this needed. The breadth-first search algorithm has to grow all the search paths
available until a solution is found -and this takes up memory. Iterative deepening achieves
its memory saving in the same way that depth-first search does -at the expense of redoing
some computations again and again (a time cost rather than a memory one). In the search
illustrated, we had to visit node d three times in all!

 Complete (like BFS)
 Has linear memory requirements (like DFS)
 Classical time-space tradeoff.
 This is the preferred method for large state spaces, where the solution path length is

unknown.

The overall idea goes as follows until the goal node is not found i.e. the depth limit is
increased gradually.

Jagdish Bhatta 34 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Iterative Deepening search evaluation:

 Completeness:
– YES (no infinite paths)

 Time complexity:
– Algorithm seems costly due to repeated generation of certain states.
– Node generation:

 level d : once
 level d-1: 2
 level d-2: 3
 …
 level 2: d-1
 level 1: d

– Total no. of nodes generated:
d.b +(d-1). b2 + (d-2). b3 + …………………..+1. bd = O(bd)

Space complexity:
– It needs to store only a single path from the root node to a leaf node, along

with remaining unexpanded sibling nodes for each node on the path.
– Total no. of nodes in memory:

1+ b + b + b + ………………….. b d times = O(bd)
 Optimality:

– YES if path cost is non-decreasing function of the depth of the node.

Notice that BFS generates some nodes at depth d+1, whereas IDS does not. The

result is that IDS is actually faster than BFS, despite the repeated generation of

node.

Example: Number of nodes generated for b=10 and d=5 solution at far right

N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123450

N(BFS) = 10 + 100 + 1000 + 10000 + 100000 + 999990 = 1111100

Bidirectional Search:

This is a search algorithm which replaces a single search graph, which is likely to with two
smaller graphs -- one starting from the initial state and one starting from the goal state. It
then, expands nodes from the start and goal state simultaneously. Check at each stage if the
nodes of one have been generated by the other, i.e, they meet in the middle. If so, the path
concatenation is the solution.

Jagdish Bhatta 35 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

 Completeness: yes
 Optimality: yes (If done with correct strategy- e.g. breadth first)
 Time complexity: O(bd/2)
 Space complexity: O(bd/2)

Problems: generate predecessors; many goal states; efficient check for node already
visited by other half of the search; and, what kind of search.

Drawbacks of uniformed search :

 Criterion to choose next node to expand depends only on a global criterion: level.
 Does not exploit the structure of the problem.
 One may prefer to use a more flexible rule, that takes advantage of what is being

discovered on the way, and hunches about what can be a good move.
 Very often, we can select which rule to apply by comparing the current state and

the desired state

Jagdish Bhatta 36 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Heuristic Search:

Heuristic Search Uses domain-dependent (heuristic) information in order to search the
space more efficiently.

Ways of using heuristic information:

 • Deciding which node to expand next, instead of doing the expansion in a strictly

breadth-first or depth-first order;

 • In the course of expanding a node, deciding which successor or successors to generate,

instead of blindly generating all possible successors at one time;

 • Deciding that certain nodes should be discarded, or pruned, from the search space.

Heuristic Searches - Why Use?

 It may be too resource intensive (both time and space) to use a blind search
 Even if a blind search will work we may want a more efficient search method

Informed Search uses domain specific information to improve the search pattern

– Define a heuristic function, h(n), that estimates the "goodness" of a node n.
– Specifically, h(n) = estimated cost (or distance) of minimal cost path from n

to a goal state.
– The heuristic function is an estimate, based on domain-specific information

that is computable from the current state description, of how close we are to
a goal.

Best-First Search

Idea: use an evaluation function f(n) that gives an indication of which node to expand next
for each node.

– usually gives an estimate to the goal.
– the node with the lowest value is expanded first.

A key component of f(n) is a heuristic function, h(n),which is a additional knowledge of
the problem.

There is a whole family of best-first search strategies, each with a different evaluation
function.

Typically, strategies use estimates of the cost of reaching the goal and try to minimize it.

Special cases: based on the evaluation function.

– Greedy best-first search
– A*search

Jagdish Bhatta 37 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Greedy Best First Search

The best-first search part of the name means that it uses an evaluation function to select
which node is to be expanded next. The node with the lowest evaluation is selected for
expansion because that is the best node, since it supposedly has the closest path to the goal
(if the heuristic is good). Unlike A* which uses both the link costs and a heuristic of the
cost to the goal, greedy best-first search uses only the heuristic, and not any link costs. A
disadvantage of this approach is that if the heuristic is not accurate, it can go down paths
with high link cost since there might be a low heuristic for the connecting node.

Evaluation function f(n) = h(n) (heuristic) = estimate of cost from n to goal.

e.g., hSLD(n) = straight-line distance from n to goal

Greedy best-first search expands the node that appears to be closest to goal. The greedy
best-first search algorithm is O(bm) in terms of space and time complexity. (Where b is the
average branching factor (the average number of successors from a state), and m is the
maximum depth of the search tree.)

Example: Given following graph of cities, starting at Arad city, problem is to reach to
the Bucharest.

Solution using greedy best first can be as below:

Jagdish Bhatta 38 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

A* Search : A Better Best-First Strategy

Greedy Best-first search

 minimizes estimated cost h(n) from current node n to goal;
 is informed but (almost always) suboptimal and incomplete.

Admissible Heuristic:

A heuristic function is said to be admissible if it is no more than the lowest-cost path to
the goal. In other words, a heuristic is admissible if it never overestimates the cost of
reaching the goal. An admissible heuristic is also known as an optimistic heuristic.

An admissible heuristic is used to estimate the cost of reaching the goal state in an
informed search algorithm. In order for a heuristic to be admissible to the search problem,
the estimated cost must always be lower than the actual cost of reaching the goal state. The
search algorithm uses the admissible heuristic to find an estimated optimal path to the goal

Jagdish Bhatta 39 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

state from the current node. For example, in A* search the evaluation function (where n is
the current node) is: f(n) = g(n) + h(n)

where;

f(n) = the evaluation function.
g(n) = the cost from the start node to the current node
h(n) = estimated cost from current node to goal.

h(n) is calculated using the heuristic function. With a non-admissible heuristic, the A*

algorithm would overlook the optimal solution to a search problem due to an

overestimation in f(n).

It is obvious that the SLD heuristic function is admissible as we can never find a shorter

distance between any two towns.

Formulating admissible heuristics:

 n is a node
 h is a heuristic
 h(n) is cost indicated by h to reach a goal from n
 C(n) is the actual cost to reach a goal from n
 h is admissible if

For Example: 8-puzzle

Figure shows 8-puzzle start state and goal state. The
solution is 26 steps long.

h1(n) = number of misplaced tiles
h2(n) = sum of the distance of the tiles from their goal position (notdiagonal).
h1(S) = ? 8
h2(S) = ? 3+1+2+2+2+3+3+2 = 18
hn(S) = max{h1(S), h2(S)}= 18

Consistency (Monotonicity)

A heuristic is said to be consistent if for any node N and any successor N’ of N , estimated
cost to reach to the goal from node N is less than the sum of step cost from N to N’ and
estimated cost from node N’ to goal node.
i.e h(n) ≤ c(n, n’) + h(n’)
 Where;
 h(n) = Estimated cost to reach to the goal node from node n

c(n, n’) = actual cost from n to n’

Jagdish Bhatta 40 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

A* Search:

A* is a best first, informed graph search algorithm. A* is different from other best first search
algorithms in that it uses a heuristic function h(x) as well as the path cost to the node g(x), in
computing the cost f(x) = h(x) + g(x) for the node. The h(x) part of the f(x) function must be an
admissible heuristic; that is, it must not overestimate the distance to the goal. Thus, for an
application like routing, h(x) might represent the straight-line distance to the goal, since
that is physically the smallest possible distance between any two points or nodes.

It finds a minimal cost-path joining the start node and a goal node for node n.
Evaluation function: f(n) = g(n) + h(n)

Where,

g(n) = cost so far to reach n from root
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

 combines the two by minimizing f(n) = g(n) + h(n);
 is informed and, under reasonable assumptions, optimal and complete.

As A* traverses the graph, it follows a path of the lowest known path, keeping a sorted
priority queue of alternate path segments along the way. If, at any point, a segment of the
path being traversed has a higher cost than another encountered path segment, it abandons
the higher-cost path segment and traverses the lower-cost path segment instead. This
process continues until the goal is reached.

A* Search Example:

Jagdish Bhatta 41 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Admissibility and Optimality:

A* is admissible and considers fewer nodes than any other admissible search algorithm
with the same heuristic. This is because A* uses an "optimistic" estimate of the cost of a
path through every node that it considers—optimistic in that the true cost of a path through
that node to the goal will be at least as great as the estimate. But, critically, as far as A*
"knows", that optimistic estimate might be achievable.

Jagdish Bhatta 42 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Here is the main idea of the proof:

When A* terminates its search, it has found a path whose actual cost is lower than the
estimated cost of any path through any open node. But since those estimates are optimistic,
A* can safely ignore those nodes. In other words, A* will never overlook the possibility of
a lower-cost path and so is admissible.

Suppose, now that some other search algorithm B terminates its search with a path whose
actual cost is not less than the estimated cost of a path through some open node. Based on
the heuristic information it has, Algorithm B cannot rule out the possibility that a path
through that node has a lower cost. So while B might consider fewer nodes than A*, it
cannot be admissible. Accordingly, A* considers the fewest nodes of any admissible
search algorithm.

This is only true if both:

 A* uses an admissible heuristic. Otherwise, A* is not guaranteed to expand fewer
nodes than another search algorithm with the same heuristic.

 A* solves only one search problem rather than a series of similar search problems.
Otherwise, A* is not guaranteed to expand fewer nodes than incremental heuristic
search algorithms

Thus, if estimated distance h(n) never exceed the true distance h*(n) between the current
node to goal node, the A* algorithm will always find a shortest path -This is known as the
admissibility of A* algorithm and h(n) is a admissible heuristic.

IF 0 =< h (n) =< h*(n), and costs of all arcs are positive
THEN A* is guaranteed to find a solution path of minimal cost if any solution path exists.

Theorem: A* is optimal if h(n) is admissible.

Suppose suboptimal goal G2 in the queue.
Let n be an unexpanded node on a shortest path to optimal
goal G and C* be the cost of optimal goal node.

f(G2) = h (G2) + g(G2)
f(G2) = g(G2), since h(G2)=0
f(G2) > C* …………..(1)

 Again, since h(n) is admissible, It does not overestimates the cost of completing the
solution path.

f(n) = g(n) + h(n) ≤C* ……………(2)

Now from (1) and (2)
f(n) ≤ C* < f(G2)

Jagdish Bhatta 43 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Since f(G2) > f(n), A* will never select G2 for expansion. Thus A* gives us optimal
solution when heuristic function is admissible.

Theorem: If h(n) is consistent , then the values of f(n) along the path are non-

decreasing.

Suppose n’ is successor of n, then

g(n’) = g(n) + C(n, a, n’)
We know that,

f(n’) = g(n’) + h(n’)
f(n’) = g(n) + C(n, a, n’) + h(n’) …………….(1)

A heuristic is consistent if
h(n) ≤ C(n, a, n’) + h(n’)……………………(2)

Now from (1) and (2)
 f(n’) = g(n) + C(n, a, n’) + h(n’) ≥ g(n) + h(n) = f(n)

 f(n’) ≥ f(n)
f(n) is non-decreasing along any path.

One more example: Maze Traversal (for A* Search)

Problem: To get from square A3 to square E2, one step at a time, avoiding obstacles
(black squares).

Operators: (in order)

• go_left(n)
• go_down(n)
• go_right(n)

Each operator costs 1.
Heuristic: Manhattan distance

Start Position: A3
Goal: E2

Jagdish Bhatta 44 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

 .
 .

Jagdish Bhatta 45 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Hill Climbing Search:

Hill climbing can be used to solve problems that have many solutions, some of which are
better than others. It starts with a random (potentially poor) solution, and iteratively
makes small changes to the solution, each time improving it a little. When the
algorithm cannot see any improvement anymore, it terminates. Ideally, at that point
the current solution is close to optimal, but it is not guaranteed that hill climbing will ever
come close to the optimal solution.

For example, hill climbing can be applied to the traveling salesman problem. It is easy to
find a solution that visits all the cities but will be very poor compared to the optimal
solution. The algorithm starts with such a solution and makes small improvements to it,
such as switching the order in which two cities are visited. Eventually, a much better route
is obtained. In hill climbing the basic idea is to always head towards a state which is better
than the current one. So, if you are at town A and you can get to town B and town C (and
your target is town D) then you should make a move IF town B or C appear nearer to town
D than town A does.

The hill climbing can be described as follows:

1. Start with current-state = initial-state.
2. Until current-state = goal-state OR there is no change in current-state do:

 Get the successors of the current state and use the evaluation function to
assign a score to each successor.

 If one of the successors has a better score than the current-state then set the
new current-state to be the successor with the best score.

Hill climbing terminates when there are no successors of the current state which are better
than the current state itself.

Hill climbing is depth-first search with a heuristic measurement that orders choices as

nodes are expanded. It always selects the most promising successor of the node last

expanded.

For instance, consider that the most promising successor of a node is the one that has the
shortest straight-line distance to the goal node G. In figure below, the straight line
distances between each city and goal G is indicated in square brackets, i.e. the heuristic.

S

A

D

B

E

C

F

G

3

4 4

5 5

42

4
3

[8]

[8.5] [6]

[6] [3]

[3]

[10]

Jagdish Bhatta 46 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

The hill climbing search from S to G proceeds as follows:
S

A

A

G

E

FB

88.5

8.5 6

6 3

D

Exercise:
Apply the hill climbing algorithm to find a path from S to G, considering that the most
promising successor of a node is its closest neighbor.

S

A

D

B

E

C

F

G
3

4 4

5 5

42

4

3

Note:
The difference between the hill climbing search method and the best first search method is
the following one:

 the best first search method selects for expansion the most promising leaf node of
the current search tree;

 the hill climbing search method selects for expansion the most promising successor
of the node last expanded.

Problems with Hill Climbing
:

– Gets stuck at local minima when we reach a position where there are no
better neighbors, it is not a guarantee that we have found the best solution.
Ridge is a sequence of local maxima.

– Another type of problem we may find with hill climbing searches is finding
a plateau. This is an area where the search space is flat so that all neighbors
return the same evaluation

Jagdish Bhatta 47 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Simulated Annealing:

It is motivated by the physical annealing process in which material is heated and slowly
cooled into a uniform structure. Compared to hill climbing the main difference is that SA
allows downwards steps. Simulated annealing also differs from hill climbing in that a
move is selected at random and then decides whether to accept it. If the move is better than
its current position then simulated annealing will always take it. If the move is worse (i.e.
lesser quality) then it will be accepted based on some probability. The probability of
accepting a worse state is given by the equation

P = exponential(-c /t) > r

Where

 c = the change in the evaluation function
 t = the current value
 r = a random number between 0 and 1

The probability of accepting a worse state is a function of both the current value and the
change in the cost function. The most common way of implementing an SA algorithm is to
implement hill climbing with an accept function and modify it for SA

By analogy with this physical process, each step of the SA algorithm replaces the current
solution by a random "nearby" solution, chosen with a probability that depends on the
difference between the corresponding function values and on a global parameter T (called
the temperature), that is gradually decreased during the process. The dependency is such
that the current solution changes almost randomly when T is large, but increasingly
"downhill" as T goes to zero. The allowance for "uphill" moves saves the method from
becoming stuck at local optima—which are the bane of greedier methods.

Game Search:

Games are a form of multi-agent environment

– What do other agents do and how do they affect our success?
– Cooperative vs. competitive multi-agent environments.
– Competitive multi-agent environments give rise to adversarial search often

known as games
Games – adversary

– Solution is strategy (strategy specifies move for every possible opponent reply).
– Time limits force an approximate solution
– Evaluation function: evaluate ―goodness‖ of game position
– Examples: chess, checkers, Othello, backgammon

Difference between the search space of a game and the search space of a problem: In the
first case it represents the moves of two (or more) players, whereas in the latter case it
represents the "moves" of a single problem-solving agent.

Jagdish Bhatta 48 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

An exemplary game: Tic-tac-toe

There are two players denoted by X and O. They are alternatively writing their letter in one
of the 9 cells of a 3 by 3 board. The winner is the one who succeeds in writing three letters
in line.

The game begins with an empty board. It ends in a win for one player and a loss for the
other, or possibly in a draw.

A complete tree is a representation of all the possible plays of the game. The root node is
the initial state, in which it is the first player's turn to move (the player X).
The successors of the initial state are the states the player can reach in one move, their
successors are the states resulting from the other player's possible replies, and so on.

Terminal states are those representing a win for X, loss for X, or a draw.

Each path from the root node to a terminal node gives a different complete play of the
game. Figure given below shows the initial search space of Tic-Tac-Toe.

Fig: Partial game tree for Tic-Tac-Toe

Jagdish Bhatta 49 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

A game can be formally defined as a kind of search problem as below:
 Initial state: It includes the board position and identifies the playesr to move.
 Successor function: It gives a list of (move, state) pairs each indicating a legal

move and resulting state.
 Terminal test: This determines when the game is over. States where the game is

ended are called terminal states.
 Utility function: It gives numerical value of terminal states. E.g. win (+1), loose (-

1) and draw (0). Some games have a wider variety of possible outcomes eg.
ranging from +92 to -192.

The Minimax Algorithm:

Let us assign the following values for the game: 1 for win by X, 0 for draw, -1 for loss by
X.

Given the values of the terminal nodes (win for X (1), loss for X (-1), or draw (0)), the
values of the non-terminal nodes are computed as follows:

 the value of a node where it is the turn of player X to move is the maximum of the
values of its successors (because X tries to maximize its outcome);

 the value of a node where it is the turn of player O to move is the minimum of the
values of its successors (because O tries to minimize the outcome of X).

Figure below shows how the values of the nodes of the search tree are computed from the
values of the leaves of the tree. The values of the leaves of the tree are given by the rules of
the game:

 1 if there are three X in a row, column or diagonal;
 -1 if there are three O in a row, column or diagonal;
 0 otherwise

O O OO

X XX X

X

X

O

X

X O

O O

X X

O

O X

X X O

X O

X O X

X

X O

O X

X O

O O OO

X XX X

X

X

O

X O

O O

X

O

O

X X O

X O

X O

X

X O

O X

X O

O O O

X XX

X

X

O

X O

O

X

O

O

X X

X O

X

X

O

XO

X O

X

X to move

1(win for X) 0(draw)

O to move

X to move

O

X O

X O

X

O

X

O

X O

X

O

X

O

X O

X

O

X

X O

X

...... ...

O to move
(Min)

(Max)

(Min)

(Max)

1(win for X)

0(draw)

0(draw)

0(draw)0(draw)

0(draw)1(win for X) 1(win for X)

1(win for X)

1(win for X)

Jagdish Bhatta 50 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

An Example:

Consider the following game tree (drawn from the point of view of the Maximizing
player):

3 75 3 41 5

Min b

d e f

h i j k l m n

29 7

g

o p r

c

Ma x a

Show what moves should be chosen by the two players, assuming that both are using the
mini-max procedure.

Solution:

Figure 3.16: The mini-max path for the game tree

Alpha-Beta Pruning:

The problem with minimax search is that the number if game states it has examine is
exponential in the number of moves. Unfortunately, we can’t eliminate the exponent, but
we can effectively cut it in half. The idea is to compute the correct minimax decision
without looking at every node in the game tree, which is the concept behind pruning. Here
idea is to eliminate large parts of the tree from consideration. The particular technique for
pruning that we will discuss here is ―Alpha-Beta Pruning‖. When this approach is applied
to a standard minimax tree, it returns the same move as minimax would, but prunes away
branches that cannot possibly influence the final decision. Alpha-beta pruning can be

3 75 3 41 5

Min b

d e f

h i j k l m n

29 7

g

o p r

c

Ma x a

5 4

4

7 9

7

7

Jagdish Bhatta 51 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

applied to trees of any depth, and it is often possible to prune entire sub-trees rather than
just leaves.

Alpha-beta pruning is a technique for evaluating nodes of a game tree that eliminates
unnecessary evaluations. It uses two parameters, alpha and beta.

Alpha: is the value of the best (i.e. highest value) choice we have found so far at any
choice point along the path for MAX.

Beta: is the value of the best (i.e. lowest-value) choice we have found so far at any choice
point along the path for MIN.

Alpha-beta search updates the values of alpha and beta as it goes along and prunes the
remaining branches at a node as soon as the value of the current node is known to be worse
than the current alpha or beta for MAX or MIN respectively.

An alpha cutoff:

To apply this technique, one uses a parameter called alpha that represents a lower bound
for the achievement of the Max player at a given node.

Let us consider that the current board situation corresponds to the node A in the following
figure.

Figure 3.17: Illustration of the alpha cut-off.

The minimax method uses a depth-first search strategy in evaluating the descendants of a
node. It will therefore estimate first the value of the node B. Let us suppose that this value
has been evaluated to 15, either by using a static evaluation function, or by backing up
from descendants omitted in the figure. If Max will move to B then it is guaranteed to
achieve 15. Therefore 15 is a lower bound for the achievement of the Max player (it may
still be possible to achieve more, depending on the values of the other descendants of A).

A

B C

D E

Max

Min Min

Max Max

f(B) = 15

f(D) = 10

f(C) 10 = 15

 = 15

Jagdish Bhatta 52 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

Therefore, the value of at node B is 15. This value is transmitted upward to the node A
and will be used for evaluating the other possible moves from A.

To evaluate the node C, its left-most child D has to be evaluated first. Let us assume that
the value of D is 10 (this value has been obtained either by applying a static evaluation
function directly to D, or by backing up values from descendants omitted in the figure).
Because this value is less than the value of , the best move for Max is to node B,
independent of the value of node E that need not be evaluated. Indeed, if the value of E is
greater than 10, Min will move to D which has the value 10 for Max. Otherwise, if the
value of E is less than 10, Min will move to E which has a value less than 10. So, if Max
moves to C, the best it can get is 10, which is less than the value = 15 that would be
gotten if Max would move to B. Therefore, the best move for Max is to B, independent of
the value of E. The elimination of the node E is an alpha cutoff.

One should notice that E may itself have a huge subtree. Therefore, the elimination of E
means, in fact, the elimination of this subtree.

A beta cutoff:

To apply this technique, one uses a parameter called beta that represents an upper bound
for the achievement of the Max player at a given node.

In the above tree, the Max player moved to the node B. Now it is the turn of the Min player
to decide where to move:

Figure 3.18: Illustration of the beta cut-off.

Jagdish Bhatta 53 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Searching

The Min player also evaluates its descendants in a depth-first order.

Let us assume that the value of F has been evaluated to 15. From the point of view of Min,
this is an upper bound for the achievement of Min (it may still be possible to make Min
achieve less, depending of the values of the other descendants of B). Therefore the value of
 at the node F is 15. This value is transmitted upward to the node B and will be used for
evaluating the other possible moves from B.

To evaluate the node G, its left-most child H is evaluated first. Let us assume that the value
of H is 25 (this value has been obtained either by applying a static evaluation function
directly to H, or by backing up values from descendants omitted in the figure). Because
this value is greater than the value of , the best move for Min is to node F, independent of
the value of node I that need not be evaluated. Indeed, if the value of I is v ≥ 25, then Max
(in G) will move to I. Otherwise, if the value of I is less than 25, Max will move to H. So
in both cases, the value obtained by Max is at least 25 which is greater than (the best
value obtained by Max if Min moves to F).

Therefore, the best move for Min is at F, independent of the value of I. The elimination of
the node I is a beta cutoff.

One should notice that by applying alpha and beta cut-off, one obtains the same results as
in the case of mini-max, but (in general) with less effort. This means that, in a given
amount of time, one could search deeper in the game tree than in the case of mini-max.

Jagdish Bhatta 54 Downloaded from: http://CSITauthority.blogspot.com

[Unit-5: Knowledge Representation]

Introduction to Artificial Intelligence (CSC-355)

Jagdish Bhatta

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Knowledge Representation

Knowledge:

Knowledge is a theoretical or practical understanding of a subject or a domain. Knowledge is
also the sum of what is currently known.

Knowledge is ―the sum of what is known: the body of truth, information, and principles
acquired by mankind.‖ Or, "Knowledge is what I know, Information is what we know."

There are many other definitions such as:

- Knowledge is "information combined with experience, context, interpretation, and
reflection. It is a high-value form of information that is ready to apply to decisions and
actions." (T. Davenport et al., 1998)

- Knowledge is ―human expertise stored in a person‘s mind, gained through experience, and
interaction with the person‘s environment." (Sunasee and Sewery, 2002)

- Knowledge is ―information evaluated and organized by the human mind so that it can be
used purposefully, e.g., conclusions or explanations." (Rousa, 2002)

Knowledge consists of information that has been:
– interpreted,
– categorised,
– applied, experienced and revised.

In general, knowledge is more than just data, it consist of: facts, ideas, beliefs, heuristics,
associations, rules, abstractions, relationships, customs.

Research literature classifies knowledge as follows:

Classification-based Knowledge » Ability to classify information
Decision-oriented Knowledge » Choosing the best option
Descriptive knowledge » State of some world (heuristic)
Procedural knowledge » How to do something
Reasoning knowledge » What conclusion is valid in what situation?
Assimilative knowledge » What its impact is?

Knowledge Representation

Knowledge representation (KR) is the study of how knowledge about the world can be
represented and what kinds of reasoning can be done with that knowledge. Knowledge
Representation is the method used to encode knowledge in Intelligent Systems.

Jagdish Bhatta 56 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Since knowledge is used to achieve intelligent behavior, the fundamental goal of knowledge
representation is to represent knowledge in a manner as to facilitate inferencing (i.e. drawing
conclusions) from knowledge. A successful representation of some knowledge must, then, be
in a form that is understandable by humans, and must cause the system using the knowledge
to behave as if it knows it.

Some issues that arise in knowledge representation from an AI perspective are:

 How do people represent knowledge?
 What is the nature of knowledge and how do we represent it?
 Should a representation scheme deal with a particular domain or should it be general

purpose?
 How expressive is a representation scheme or formal language?
 Should the scheme be declarative or procedural?

 Fig: Two entities in Knowledge Representaion

For example: English or natural language is an obvious way of representing and handling
facts. Logic enables us to consider the following fact: spot is a dog as dog(spot) We could
then infer that all dogs have tails with: : dog(x) hasatail(x) We can then deduce:

hasatail(Spot)

Using an appropriate backward mapping function the English sentence Spot has a tail can be

generated.

Properties for Knowledge Representation Systems

The following properties should be possessed by a knowledge representation system.

Representational Adequacy
- the ability to represent the required knowledge;

Inferential Adequacy
- the ability to manipulate the knowledge represented to produce new

knowledge corresponding to that inferred from the original;
Inferential Efficiency

Jagdish Bhatta 57 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

- the ability to direct the inferential mechanisms into the most productive
directions by storing appropriate guides;

Acquisitional Efficiency
- the ability to acquire new knowledge using automatic methods wherever

possible rather than reliance on human intervention.

Formal logic-connectives:

In logic, a logical connective (also called a logical operator) is a symbol or word used to
connect two or more sentences (of either a formal or a natural language) in a grammatically
valid way, such that the compound sentence produced has a truth value dependent on the
respective truth values of the original sentences.

Each logical connective can be expressed as a function, called a truth function. For this
reason, logical connectives are sometimes called truth-functional connectives.

Commonly used logical connectives include:

 Negation (not) (¬ or ~)
 Conjunction (and) (, &, or ·)
 Disjunction (or) (or ∨)
 Material implication (if...then) (, or)
 Biconditional (if and only if) (iff) (xnor) (, , or =)

For example, the meaning of the statements it is raining and I am indoors is transformed
when the two are combined with logical connectives:

 It is raining and I am indoors (P Q)
 If it is raining, then I am indoors (P Q)
 It is raining if I am indoors (Q P)
 It is raining if and only if I am indoors (P Q)
 It is not raining (¬P)

For statement P = It is raining and Q = I am indoors.

Truth Table:

A proposition in general contains a number of variables. For example (P Q) contains
variables P and Q each of which represents an arbitrary proposition. Thus a proposition takes
different values depending on the values of the constituent variables. This relationship of the
value of a proposition and those of its constituent variables can be represented by a table. It
tabulates the value of a proposition for all possible values of its variables and it is called a
truth table.

For example the following table shows the relationship between the values of P, Q and P Q:

Jagdish Bhatta 58 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Logic:

Logic is a formal language for representing knowledge such that conclusions can be drawn.
Logic makes statements about the world which are true (or false) if the state of affairs it
represents is the case (or not the case). Compared to natural languages (expressive but
context sensitive) and programming languages (good for concrete data structures but not
expressive) logic combines the advantages of natural languages and formal languages. Logic
is concise, unambiguous, expressive, context insensitive, effective for inferences.

It has syntax, semantics, and proof theory.

Syntax: Describe possible configurations that constitute sentences.

Semantics: Determines what fact in the world, the sentence refers to i.e. the interpretation.
Each sentence make claim about the world (meaning of sentence).Semantic property include
truth and falsity.

Syntax is concerned with the rules used for constructing, or transforming the symbols and
words of a language, as contrasted with the semantics of a language which is concerned with
its meaning.

Proof theory (Inference method): set of rules for generating new sentences that are
necessarily true given that the old sentences are true.

We will consider two kinds of logic: propositional logic and first-order logic or more
precisely first-order predicate calculus. Propositional logic is of limited expressiveness but
is useful to introduce many of the concepts of logic's syntax, semantics and inference
procedures.

Entailment:

Entailment means that one thing follows from another:

KB |= α

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

E.g., x + y =4 entails 4=x + y

OR
P Q (P Q)
F F F
F T T
T F T
T T T

Jagdish Bhatta 59 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics.

We can determine whether S |= P by finding Truth Table for S and P, if any row of Truth
Table where all formulae in S is true.

Example:

Therefore {P, P→Q} |= Q. Here, only row where both P and P→Q are True, Q is also True.
Here, S= (P, P→Q} and P= {Q}.

Models

Logicians typically think in terms of models, in place of ―possible world‖, which are
formally structured worlds with respect to which truth can be evaluated.

m is a model of a sentence if is true in m.
 M() is the set of all models of .

Tautology:

A formula of propositional logic is a tautology if the formula itself is always true regardless
of which valuation is used for the propositional variables.

There are infinitely many tautologies. Examples include:

 ("A or not A"), the law of the excluded middle. This formula has only one
propositional variable, A. Any valuation for this formula must, by definition, assign A
one of the truth values true or false, and assign A the other truth value.

 ("if A implies B then not-B implies not-A", and vice
versa), which expresses the law of contraposition.

 ("if A implies B and B implies C, then
A implies C"), which is the principle known as syllogism.

The definition of tautology can be extended to sentences in predicate logic, which may
contain quantifiers, unlike sentences of propositional logic. In propositional logic, there is no
distinction between a tautology and a logically valid formula. In the context of predicate
logic, many authors define a tautology to be a sentence that can be obtained by taking a
tautology of propositional logic and uniformly replacing each propositional variable by a

Jagdish Bhatta 60 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

first-order formula (one formula per propositional variable). The set of such formulas is a
proper subset of the set of logically valid sentences of predicate logic (which are the
sentences that are true in every model).

There are also propositions that are always false such as (P P). Such a proposition is
called a contradiction.

A proposition that is neither a tautology nor a contradiction is called a contingency.
For example (P Q) is a contingency.

Validity:

The term validity in logic (also logical validity) is largely synonymous with logical truth,
however the term is used in different contexts. Validity is a property of formulae, statements
and arguments. A logically valid argument is one where the conclusion follows from the
premises. An invalid argument is where the conclusion does not follow from the
premises. A formula of a formal language is a valid formula if and only if it is true under
every possible interpretation of the language.

Saying that an argument is valid is equivalent to saying that it is logically impossible that the
premises of the argument are true and the conclusion false. A less precise but intuitively clear
way of putting this is to say that in a valid argument IF the premises are true, then the
conclusion must be true.

An argument that is not valid is said to be ―invalid‖.

An example of a valid argument is given by the following well-known syllogism:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

What makes this a valid argument is not that it has true premises and a true conclusion, but
the logical necessity of the conclusion, given the two premises.

The following argument is of the same logical form but with false premises and a false
conclusion, and it is equally valid:

All women are cats.
All cats are men.
Therefore, all women are men.

This argument has false premises and a false conclusion. This brings out the hypothetical
character of validity. What the validity of these arguments amounts to, is that it assures us the
conclusion must be true IF the premises are true.

Jagdish Bhatta 61 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Thus, an argument is valid if the premises and conclusion follow a logical form.
This essentially means that the conclusion logically follows from the premises. An argument
is valid if and only if the truth of its premises entails the truth of its conclusion. It would be
self-contradictory to affirm the premises and deny the conclusion

Deductive Reasoning:

Deductive reasoning, also called Deductive logic, is reasoning which constructs or
evaluates deductive arguments. Deductive arguments are attempts to show that a conclusion
necessarily follows from a set of premises. A deductive argument is valid if the conclusion
does follow necessarily from the premises, i.e., if the conclusion must be true provided
that the premises are true. A deductive argument is sound if it is valid AND its premises
are true. Deductive arguments are valid or invalid, sound or unsound, but are never false or
true.

An example of a deductive argument:

1. All men are mortal
2. Socrates is a man
3. Therefore, Socrates is mortal

The first premise states that all objects classified as 'men' have the attribute 'mortal'. The
second premise states that 'Socrates' is classified as a man- a member of the set 'men'. The
conclusion states that 'Socrates' must be mortal because he inherits this attribute from his
classification as a man.

Deductive arguments are generally evaluated in terms of their validity and soundness. An
argument is valid if it is impossible both for its premises to be true and its conclusion to be
false. An argument can be valid even though the premises are false.

This is an example of a valid argument. The first premise is false, yet the conclusion is still
valid.

All fire-breathing rabbits live on Mars
All humans are fire-breathing rabbits
Therefore, all humans live on Mars

This argument is valid but not sound In order for a deductive argument to be sound, the
deduction must be valid and the premise must all be true.

Let‘s take one of the above examples.

1. All monkeys are primates
2. All primates are mammals
3. All monkeys are mammals

Jagdish Bhatta 62 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

This is a sound argument because it is actually true in the real world. The premises are true
and so is the conclusion. They logically follow from one another to form a concrete argument
that can‘t be denied. Where validity doesn‘t have to do with the actual truthfulness of an
argument, soundness does.

A theory of deductive reasoning known as categorical or term logic was developed by
Aristotle, but was superseded by propositional (sentential) logic and predicate logic.

Deductive reasoning can be contrasted with inductive reasoning. In cases of inductive
reasoning, it is possible for the conclusion to be false even though the premises are true and
the argument's form is cogent.

Well Formed Formula: (wff)

It is a syntactic object that can be given a semantic meaning. A formal language can be
considered to be identical to the set containing all and only its wffs.

A key use of wffs is in propositional logic and predicate logics such as first-order logic. In
those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?",
once any free variables in φ have been instantiated. In formal logic, proofs can be represented
by sequences of wffs with certain properties, and the final wff in the sequence is what is
proven.

The well-formed formulas of propositional calculus are expressions such as
Their definition begins with the arbitrary choice of a set V of propositional

variables. The alphabet consists of the letters in V along with the symbols for the
propositional connectives and parentheses "(" and ")", all of which are assumed to not be in
V. The wffs will be certain expressions (that is, strings of symbols) over this alphabet.

The well-formed formulas are inductively defined as follows:

 Each propositional variable is, on its own, a wff.
 If φ is a wff, then φ is a wff.
 If φ and ψ are wffs, and • is any binary connective, then (φ • ψ) is a wff. Here • could

be ∨, ∧, →, or ↔.

The WFF for predicate calculus is defined to be the smallest set containing the set of atomic
WFFs such that the following holds:

1. is a WFF when is a WFF
2. and are WFFs when and are WFFs;
3. is a WFF when x is a variable and is a WFF;
4. is a WFF when is a variable and is a WFF (alternatively, could be

defined as an abbreviation for).

Jagdish Bhatta 63 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

If a formula has no occurrences of or , for any variable , then it is called quantifier-

free. An existential formula is a string of existential quantification followed by a quantifier-
free formula.

Propositional Logic:

Propositional logic represents knowledge/ information in terms of propositions. Prepositions
are facts and non-facts that can be true or false. Propositions are expressed using ordinary
declarative sentences. Propositional logic is the simplest logic.

Syntax:

The syntax of propositional logic defines the allowable sentences. The atomic sentences- the
indivisible syntactic elements- consist of single proposition symbol. Each such symbol stands
for a proposition that can be true or false. We use the symbols like P1, P2 to represent
sentences.

The complex sentences are constructed from simpler sentences using logical connectives.
There are five connectives in common use:

 (negation), ^ (conjunction), (disjunction), (implication), (biconditional)

The order of precedence in propositional logic is from (highest to lowest): , ^ , , , .

Propositional logic is defined as:

If S is a sentence, S is a sentence (negation)
If S1 and S2 are sentences, S1 ^ S2 is a sentence (conjunction)
If S1 and S2 are sentences, S1 S2 is a sentence (disjunction)
If S1 and S2 are sentences, S1 S2 is a sentence (implication)
If S1 and S2 are sentences, S1 S2 is a sentence (biconditional)

Formal grammar for propositional logic can be given as below:

Sentence AutomicSentence | ComplexSentence
AutomicSentence True | False | Symbol
Symbol P | Q | R …………
ComplexSentence Sentence

| (Sentence ^ Sentence)
| (Sentence Sentence)
| (Sentence Sentence)
| (Sentence Sentence)

Semantics:

Each model specifies true/false for each proposition symbol

Jagdish Bhatta 64 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Rules for evaluating truth with respect to a model:
S is true if, S is false
S1 ^ S2 is true if, S1 is true and S2 is true
S1 S2 is true if, S1 is true or S2 is true
S1 S2 is true if, S1 is false or S2 is true
S1 S2 is true if, S1 S2 is true and S2 S1 is true

Truth Table showing the evaluation of semantics of complex sentences:

P Q P PQ PQ PQ PQ
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Logical equivalence:

Two sentences and ß are logically equivalent (ß) iff true they are true inn same set of
models or Two sentences and ß are logically equivalent (ß) iff |= ß and ß |= .

Validity:

A sentence is valid if it is true in all models,

e.g., True, AA, A A, (A (A B)) B

Valid sentences are also known as tautologies. Every valid sentence is logically equivalent to
True

Jagdish Bhatta 65 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

A sentence is satisfiable if it is true in some model

– e.g., A B, C

A sentence is unsatisfiable if it is true in no models

– e.g., AA

Validity and satisfiablity are related concepts

– is valid iff is unsatisfiable
– is satisfiable iff is not valid

Satisfiability is connected to inference via the following:
– KB |= if and only if (KB) is unsatisfiable

Inference rules in Propositional Logic

Modus Ponens

And-elimination

Monotonicity: the set of entailed sentences can only increase as information is added to the
knowledge base.

For any sentence and if KB |= then KB |= .

Resolution

Unit resolution rule:

Unit resolution rule takes a clause – a disjunction of literals – and a literal and produces a
new clause. Single literal is also called unit clause.

Where li and m are complementary literals

Satisfiability:

Generalized resolution rule:

Jagdish Bhatta 66 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Generalized resolution rule takes two clauses of any length and produces a new clause as
below.

 For example:

Resolution Uses CNF (Conjunctive normal form)

– Conjunction of disjunctions of literals (clauses)

The resolution rule is sound:

– Only entailed sentences are derived
Resolution is complete in the sense that it can always be used to either confirm or refute a
sentence (it can not be used to enumerate true sentences.)

Conversion to CNF:

A sentence that is expressed as a conjunction of disjunctions of literals is said to be in
conjunctive normal form (CNF). A sentence in CNF that contains only k literals per clause is
said to be in k-CNF.

Algorithm:

Eliminate ↔rewriting P↔Q as (P→Q)∧(Q→P)

Eliminate →rewriting P→Q as ￢P∨Q

Use De Morgan‘s laws to push ￢ inwards:

- rewrite ￢(P∧Q) as ￢P∨￢Q

- rewrite ￢(P∨Q) as ￢P∧￢Q

Eliminate double negations: rewrite ￢￢P as P

Use the distributive laws to get CNF:
- rewrite (P∧Q)∨R as (P∨R)∧(Q∨R)

 Flatten nested clauses:
- (P∧Q) ∧ R as P∧Q ∧ R

- (P∨Q)∨R as P∨Q∨R

Example: Let‘s illustrate the conversion to CNF by using an example.

B (A C)

Jagdish Bhatta 67 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

• Eliminate , replacing ß with (ß)(ß).
– (B (A C)) ((A C) B)

 Eliminate , replacing ß with ß.

– (B A C) ((A C) B)

 Move inwards using de Morgan's rules and double-negation:

– (B A C) ((A C) B)

 Apply distributivity law (over) and flatten:

– (B A C) (A B) (C B)

Resolution algorithm

– Convert KB into CNF

– Add negation of sentence to be entailed into KB i.e. (KB)

– Then apply resolution rule to resulting clauses.

– The process continues until:

– There are no new clauses that can be added
 Hence KB does not entail

– Two clauses resolve to entail the empty clause.
 Hence KB does entail

Example: Consider the knowledge base given as: KB = (B (A C)) B

 Prove that A can be inferred from above KB by using resolution.

Solution:
 At first, convert KB into CNF

B (A C)) ((A C) B) B

(B A C) ((A C) B) B

(B A C) ((A C) B) B

(B A C) (A B) (C B) B

Add negation of sentence to be inferred from KB into KB

Now KB contains following sentences all in CNF
(B A C)
(A B)
(C B)
 B
A (negation of conclusion to be proved)

Jagdish Bhatta 68 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Now use Resolution algorithm

Resolution: More Examples

1. KB= {(G∨H)→(￢J ∧￢K), G}. Show that KB ⊢ ￢J

 Solution:
Clausal form of (G∨H)→(￢J ∧￢K) is

{￢G∨￢J, ￢H ∨￢J, ￢G∨￢K, ￢H ∨￢K}

1. ￢G∨￢J [Premise]

2. ￢H ∨￢J [Premise]

3. ￢G∨￢K [Premise]

4. ￢H ∨￢K [Premise]
5. G [Premise]
6. J [￢ Conclusion]

7. ￢G [1, 6 Resolution]
8. _ [5, 7 Resolution]

Hence KB entails ￢J

2. KB= {P→￢Q, ￢Q→R}. Show that KB ⊢ P→R

 Solution:
1. ￢P∨￢Q [Premise]

2. Q∨R [Premise]

3. P [￢ Conclusion]

(B A C)

(A B)

(C B)

B A

(BCB)

(ACA)

(BAB)

(ACC)

A

Jagdish Bhatta 69 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

4. ￢R [￢ Conclusion]

5. ￢Q [1, 3 Resolution]
6. R [2, 5 Resolution]
7. _ [4, 6 Resolution]

Hence, KB ⊢ P→R

3. ⊢ ((P∨Q)∧￢P)→Q

Clausal form of ￢(((P∨Q)∧￢P)→Q) is {P∨Q, ￢P, ￢Q}

1. P∨Q [￢ Conclusion]

2. ￢P [￢ Conclusion]

3. ￢Q [￢ Conclusion]
4. Q [1, 2 Resolution]
5. _ [3, 4 Resolution]

Jagdish Bhatta 70 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Forward and backward chaining

The completeness of resolution makes it a very important inference model. But in many
practical situations full power of resolution is not needed. Real-world knowledge bases often
contain only clauses of restricted kind called Horn Clause. A Horn clauses is disjunction of
literals with at most one positive literal
Three important properties of Horn clause are:

 Can be written as an implication
 Inference through forward chaining and backward chaining.
 Deciding entailment can be done in a time linear size of the knowledge base.

Forward chaining:

Idea: fire any rule whose premises are satisfied in the KB,
– add its conclusion to the KB, until query is found

Prove that Q can be inferred from above KB

Jagdish Bhatta 71

 agdis

Downloaded from: http://CSITauthority.blogspot.com

fFËVHØ†ÊWÁÿÊ³&��µÖO˜9
Z˜�¬g»ìŽÊ˜
zÿ‰‡‚FŁóÞ6sãú!?²n�øi˘”I�¯»zW⁄™Ýuˇ-�Y¸K„
¾²Ół�®Ýû
–×gim/�C1ö‰?'£T#tÚ�Ò™M…Y‚�D½˜�ØD

ÚyY'â�È×	c¿f⁄†þ˙ Eﬂåé�”cýﬁý¹hP�
�;�*h•ý+<òPÓuÜ.��¹�Îłr¤Í…³˚¨w�àTŠl¶�ÔÝP�]�ƒ»_ü¸⁄

Unit- 5: Knowledge Representation Artificial Intelligence

Backward chaining:

Idea: work backwards from the query q: to prove q by BC,

Check if q is known already, or
Prove by BC all premises of some rule concluding q

For example, for above KB (as in forward chaining above)

P Q
L M P
B L M
A P L
A B L
A
B

Prove that Q can be inferred from above KB

Solution:

We know P Q, try to prove P
L M P
Try to prove L and M
B L M
A P L
Try to prove B, L and A and P
A and B is already known, since A B L, L is also known
Since, B L M, M is also known
Since, L M P, p is known, hence the proved.

Jagdish Bhatta 72 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

First-Order Logic

Pros and cons of propositional logic

- Propositional logic is declarative
- Propositional logic allows partial/disjunctive/negated information

o (unlike most data structures and databases)
- Propositional logic is compositional:

o meaning of B P is derived from meaning of B and of P
- Meaning in propositional logic is context-independent

o (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power

o (unlike natural language)

Propositional logic assumes the world contains facts, whereas first-order logic (like natural
language) assumes the world contains:

– Objects: people, houses, numbers, colors, baseball games, wars, …
– Relations: red, round, prime, brother of, bigger than, part of, comes

between,…
– Functions: father of, best friend, one more than, plus, …

Logics in General

The primary difference between PL and FOPL is their ontological commitment:

 Ontological Commitment: What exists in the world — TRUTH
– PL: facts hold or do not hold.
– FL : objects with relations between them that hold or do not hold

Another difference is:
 Epistemological Commitment: What an agent believes about facts — BELIEF

Jagdish Bhatta 73 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

FOPL: Syntax

Representing knowledge in first-order logic

The objects from the real world are represented by constant symbols (a,b,c,...). For instance,
the symbol ―Tom‖ may represent a certain individual called Tom.

Properties of objects may be represented by predicates applied to those objects (P(a), ...): e.g
"male(Tom)" represents that Tom is a male.

Relationships between objects are represented by predicates with more arguments:
"father(Tom, Bob)" represents the fact that Tom is the father of Bob.

The value of a predicate is one of the boolean constants T (i.e. true) or F (i.e.
false)."father(Tom, Bob) = T" means that the sentence "Tom is the father of Bob" is true.
"father(Tom, Bob) = F" means that the sentence "Tom is the father of Bob" is false.

Besides constants, the arguments of the predicates may be functions (f,g,...) or variables
(x,y,...).

Function symbols denote mappings from elements of a domain (or tuples of elements of
domains) to elements of a domain. For instance, weight is a function that maps objects to

Jagdish Bhatta 74 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

their weight: weight (Tom) = 150.Therefore the predicate greater-than (weight (Bob), 100)
means that the weight of Bob is greater than 100. The arguments of a function may
themselves be functions.

Variable symbols represent potentially any element of a domain and allow the formulation of
general statements about the elements of the domain.

The quantifier‘s and are used to build new formulas from old ones.
"x P(x)" expresses that there is at least one element of the domain that makes P(x) true.
"x mother(x, Bob)‖ means that there is x such that x is mother of Bob or, otherwise stated,
Bob has a mother.

"x P(x)" expresses that for all elements of the domain P(x) is true.

Quantifiers

Allows us to express properties of collections of objects instead of enumerating objects by
name. Two quantifiers are:

 Universal: ―for all‖
 Existential: ―there exists‖

Universal quantification:

<Variables> <sentence>

Eg: Everyone at UAB is smart:
 x At(x,UAB) Smart(x)

x P is true in a model m iff P is true for all x in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

At(KingJohn,UAB) Smart(KingJohn) At(Richard,UAB)
Smart(Richard)At(UAB,UAB) Smart(UAB) ...

Typically, is the main connective with

– A universally quantifier is also equivalent to a set of implications over all
objects

Common mistake: using as the main connective with :
x At(x, UAB) Smart(x)
Means ―Everyone is at UAB and everyone is smart‖

Existential quantification

<variables> <sentence>
Someone at UAB is smart:

Jagdish Bhatta 75 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

x At(x, UAB) Smart(x)

x P is true in a model m iff P is true for at least one x in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

At(KingJohn,UAB) Smart(KingJohn)At(Richard,UAB) Smart(Richard)
At(UAB, UAB) Smart(UAB) ...

Typically, is the main connective with

Common mistake: using as the main connective with :
x At(x, UAB) Smart(x) is true even if there is anyone who is not at UAB!

FOPL: Semantic

An interpretation is required to give semantics to first-order logic. The interpretation is a
non-empty ―domain of discourse‖ (set of objects). The truth of any formula depends on the
interpretation.

The interpretation provides, for each:

constant symbol an object in the domain
function symbols a function from domain tuples to the domain
predicate symbol a relation over the domain (a set of tuples)

Then we define:

universal quantifier ∀xP(x) is True iff P(a) is True for all assignments of domain
elements a to x

existential quantifier ∃xP(x) is True iff P(a) is True for at least one assignment of
domain element a to x

FOPL: Inference (Inference in first-order logic)

First order inference can be done by converting the knowledge base to PL and using
propositional inference.

– How to convert universal quantifiers?
– Replace variable by ground term.

– How to convert existential quantifiers?
– Skolemization.

Universal instantiation (UI)

Substitute ground term (term without variables) for the variables.

For example consider the following KB

Jagdish Bhatta 76 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

 x King (x) Greedy (x) Evil(x)
King (John)
Greedy (John)
Brother (Richard, John)

It‘s UI is:
King (John) Greedy (John) Evil(John)
King (Richard) Greedy (Richard) Evil(Richard)
King (John)
Greedy (John)
Brother (Richard, John)

Note: Remove universally quantified sentences after universal instantiation.

Existential instantiation (EI)

For any sentence and variable v in that, introduce a constant that is not in the KB (called
skolem constant) and substitute that constant for v.

E.g.: Consider the sentence, x Crown(x) OnHead(x, John)

After EI,

Crown(C1) OnHead(C1, John) where C1 is Skolem Constant.

Towards Resolution for FOPL:

- Based on resolution for propositional logic
- Extended syntax: allow variables and quantifiers
- Define ―clausal form‖ for first-order logic formulae (CNF)
- Eliminate quantifiers from clausal forms
- Adapt resolution procedure to cope with variables (unification)

Conversion to CNF:

1. Eliminate implications and bi-implications as in propositional case
2. Move negations inward using De Morgan‘s laws

plus rewriting ￢∀xP as ∃x￢P and ￢∃xP as ∀x￢P

3. Eliminate double negations
4. Rename bound variables if necessary so each only occurs once

e.g. ∀xP(x)∨∃xQ(x) becomes ∀xP(x)∨∃yQ(y)

5. Use equivalences to move quantifiers to the left
e.g. ∀xP(x)∧Q becomes ∀x (P(x)∧Q) where x is not in Q

e.g. ∀xP(x)∧∃yQ(y) becomes ∀x∃y(P(x)∧Q(y))

6. Skolemise (replace each existentially quantified variable by a new term)
∃xP(x) becomes P(a0) using a Skolem constant a0 since ∃x occurs at the outermost level

Jagdish Bhatta 77 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

∀x∃yP(x, y) becomes P(x, f0(x)) using a Skolem function f0 since ∃y occurs within ∀x

7. The formula now has only universal quantifiers and all are at the left of the formula: drop them
8. Use distribution laws to get CNF and then clausal form

Example:

1.) ∀x [∀yP(x, y)→￢∀y(Q(x, y)→R(x, y))]

Solution:

1. ∀x [￢∀yP(x, y)∨￢∀y(￢Q(x, y)∨R(x, y))]

2, 3. ∀x [∃y￢P(x, y)∨∃y(Q(x, y)∧￢R(x, y))]

4. ∀x [∃y￢P(x, y)∨∃z (Q(x, z)∧￢R(x, z))]

5. ∀x∃y∃z [￢P(x, y)∨(Q(x, z)∧￢R(x, z))]

6. ∀x [￢P(x, f (x))∨(Q(x, g(x))∧￢R(x, g(x)))]

7. ￢P(x, f (x))∨(Q(x, g(x))∧￢R(x, g(x)))

8. (￢P(x, f (x))∨Q(x, g(x)))∧(￢P(x, f (x))∨￢R(x, g(x)))

8. {￢P(x, f (x))∨Q(x, g(x)), ￢P(x, f (x))∨￢R(x, g(x))}

2.) ￢∃x∀y∀z ((P(y)∨Q(z))→(P(x)∨Q(x)))

Solution:

1. ￢∃x∀y∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x))

2. ∀x￢∀y∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x))

2. ∀x∃y￢∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x))

2. ∀x∃y∃z￢(￢(P(y)∨Q(z))∨P(x)∨Q(x))

2. ∀x∃y∃z ((P(y)∨Q(z))∧￢(P(x)∨Q(x)))

6. ∀x ((P(f (x))∨Q(g(x)))∧￢P(x)∧￢Q(x))

7. (P(f (x))∨Q(g(x))∧￢P(x)∧￢Q(x)

8. {P(f (x))∨Q(g(x)), ￢P(x), ￢Q(x)}

Jagdish Bhatta 78 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Unification:

A unifier of two atomic formulae is a substitution of terms for variables that makes them
identical.

- Each variable has at most one associated term
- Substitutions are applied simultaneously

Unifier of P(x, f (a), z) and P(z, z, u) : {x/ f (a), z/ f (a), u/ f (a)}

We can get the inference immediately if we can find a substitution such that King(x) and
Greedy(x) match King(John) and Greedy(y)

 = {x/John,y/John} works

Unify(,) = if =

 p q
 Knows(John,x) Knows(John,Jane) {x/Jane}
 Knows(John,x) Knows(y,OJ) {x/OJ,y/John}
 Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}
 Knows(John,x) Knows(x,OJ) {fail}

Last unification is failed due to overlap of variables. x can not take the values of John and OJ
at the same time.

We can avoid this problem by renaming to avoid the name clashes (standardizing
apart)

E.g.
 Unify{Knows(John,x) Knows(z,OJ) } = {x/OJ, z/John}

Let C1 and C2 be two clauses. If C1 and C2 have no variables in common, then they are said
to be standardized apart. Standardized apart eliminates overlap of variables to avoid clashes
by renaming variables.

Another complication:

To unify Knows(John,x) and Knows(y,z),
Unification of Knows(John,x) and Knows(y,z) gives ={y/John, x/z } or ={y/John, x/John,
z/John}

First unifier gives the result Knows(John,z) and second unifier gives the resultKnows(John,
John). Second can be achieved from first by substituting john in place of z. The first unifier is
more general than the second.

There is a single most general unifier (MGU) that is unique up to renaming of variables.

MGU = { y/John, x/z }

Jagdish Bhatta 79 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Towards Resolution for First-Order Logic

 Based on resolution for propositional logic
 Extended syntax: allow variables and quantifiers
 Define ―clausal form‖ for first-order logic formulae
 Eliminate quantifiers from clausal forms
 Adapt resolution procedure to cope with variables (unification)

First-Order Resolution

For clauses P∨Q and ￢Q′ ∨R with Q,Q′ atomic formulae

P∨Q ￢Q′ ∨R

(P∨R)

where is a most general unifier for Q and Q′

(P∨R)is the resolvent of the two clauses

Applying Resolution Refutation

 Negate query to be proven (resolution is a refutation system)
 Convert knowledge base and negated query into CNF and extract clauses
 Repeatedly apply resolution to clauses or copies of clauses until either the empty

clause (contradiction) is derived or no more clauses can be derived (a copy of a clause
is the clause with all variables renamed)

 If the empty clause is derived, answer ‗yes‘ (query follows from knowledge base),
otherwise answer ‗no‘ (query does not follow from knowledge base)

Resolution: Examples

1.) ⊢ ∃x (P(x)→∀xP(x))

Solution:
 Add negation of the conclusion and convert the predicate in to CNF:

(￢∃x(P(x)→∀xP(x)))

1, 2. ∀x￢(￢P(x)∨∀xP(x))

2. ∀x (￢￢P(x)∧￢∀xP(x))

2, 3. ∀x (P(x)∧∃x￢P(x))

Jagdish Bhatta 80 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

4. ∀x (P(x)∧∃y ￢P(y))

5. ∀x∃y(P(x)∧￢P(y))

6. ∀x (P(x)∧￢P(f (x)))

8. P(x), ￢P(f (x))

Now, we can use resolution as;

1. P(x) [￢ Conclusion]

2. ￢P(f (y)) [Copy of ￢ Conclusion]

3. _ [1, 2 Resolution {x/ f (y)}]

2.) ⊢ ∃x∀y∀z ((P(y)∨Q(z))→(P(x)∨Q(x)))

Solution:

1. P(f (x))∨Q(g(x)) [￢ Conclusion]

2. ￢P(x) [￢ Conclusion]

3. ￢Q(x) [￢ Conclusion]

4. ￢P(y) [Copy of 2]

5. Q(g(x)) [1, 4 Resolution {y/ f (x)}]

6. ￢Q(z) [Copy of 3]

7. _ [5, 6 Resolution {z/g(x)}]

Jagdish Bhatta 81 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

3.)

Jagdish Bhatta 82 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Q.) Anyone passing his history exams and winning the lottery is happy. But anyone who
studies or is lucky can pass all his exams. John did not study but John is lucky. Anyone who
is lucky wins the lottery. Is John happy?

Now, Convert the KB to CNF:

Jagdish Bhatta 83 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Now, the KB contains:

Standardize the variables apart:

5. (Negation of the conclusion added)

Now Use resolution as below:

Jagdish Bhatta 84 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

 Empty

Jagdish Bhatta 85 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Symbolic versus statistical reasoning:

The (Symbolic) methods basically represent uncertainty belief as being

 True,
 False, or
 Neither True nor False.

Some methods also had problems with

 Incomplete Knowledge
 Contradictions in the knowledge.

Statistical methods provide a method for representing beliefs that are not certain (or
uncertain) but for which there may be some supporting (or contradictory) evidence.

Statistical methods offer advantages in two broad scenarios:

Genuine Randomness
-- Card games are a good example. We may not be able to predict any outcomes with
certainty but we have knowledge about the likelihood of certain items (e.g. like being
dealt an ace) and we can exploit this.

Exceptions
-- Symbolic methods can represent this. However if the number of exceptions is large
such system tend to break down. Many common sense and expert reasoning tasks for
example. Statistical techniques can summarise large exceptions without resorting
enumeration.

Uncertain Knowledge:

Let action At = leave for airport t minutes before flight. Will At get me there on time?

Problems:

1. Partial observability (road state, other drivers' plans, etc.)
2. Noisy sensors (radio traffic reports)
3. Uncertainty in action outcomes (flat tyre, etc.)
4. Complexity of modeling and predicting traffic

Hence a purely logical approach either

1. Risks falsehood: ―A25 will get me there on time‖ or

Jagdish Bhatta 86 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

2. Leads to conclusions that are too weak for decision making: ―A25 will get me there
on time if there's no accident on the bridge and it doesn't rain and my tires remain
intact etc etc.‖

A1440 might reasonably be said to get me there on time but I'd have to stay overnight in the
airport…

Handling Uncertainty:

Instead of providing all condition it can express with degree of beliefs in the relevant
sentences.

Example:
Say we have a rule
if toothache then problem is cavity

But not all patients have toothaches because of cavities (although perhaps most do)

So we could set up rules like
if toothache and not(gum disease) and not(filling) andthen problem is cavity

This gets very complicated! a better method would be to say

if toothache then problem is cavity with probability 0.8

Given the available evidence,
A25 will get me there on time with probability 0.04

A most important tool for dealing with degree of beliefs is probability theory, which assigns
to each sentence a numerical degree of belief between 0 & 1.

Making decisions under uncertainty:

Suppose I believe the following:

P(A25 gets me there on time|…) = 0.04

P(A90 gets me there on time|…) = 0.70

P(A120 gets me there on time|…) = 0.95

P(A1440 gets me there on time|…) = 0.9999

Which action to choose?
- Depends on my preferences for missing flight vs. length of wait at airport, etc. Utility

theory is used to represent and infer preferences

Jagdish Bhatta 87 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Decision theory = utility theory + probability theory
The rational decision depends on both the relative importance of various goals and the

likelihood that, and degree to which, they will be achieved.

Basic Statistical methods – Probability:

The basic approach statistical methods adopt to deal with uncertainty is via the axioms of
probability:

 Probabilities are (real) numbers in the range 0 to 1.
 A probability of P(A) = 0 indicates total uncertainty in A, P(A) = 1 total certainty and

values in between some degree of (un)certainty.
 Probabilities can be calculated in a number of ways.

Very Simply

Probability = (number of desired outcomes) / (total number of outcomes)

So given a pack of playing cards the probability of being dealt an ace from a full
normal deck is 4 (the number of aces) / 52 (number of cards in deck) which is 1/13.
Similarly the probability of being dealt a spade suit is 13 / 52 = 1/4.

Conditional probability, P(A|B), indicates the probability of of event A given that we know
event B has occurred.

The aim of a probabilistic logic (or probability logic) is to combine the capacity of
probability theory to handle uncertainty with the capacity of deductive logic to exploit
structure. The result is a richer and more expressive formalism with a broad range of possible
application areas. Probabilistic logic is a natural extension of traditional logic truth tables: the
results they define are derived through probabilistic expressions instead. The difficulty with
probabilistic logics is that they tend to multiply the computational complexities of their
probabilistic and logical components.

Random Variables:

In probability theory and statistics, a random variable (or stochastic variable) is a way of
assigning a value (often a real number) to each possible outcome of a random event. These
values might represent the possible outcomes of an experiment, or the potential values of a
quantity whose value is uncertain (e.g., as a result of incomplete information or imprecise
measurements.) Intuitively, a random variable can be thought of as a quantity whose value is
not fixed, but which can take on different values; normally, a probability distribution is used
to describe the probability of different values occurring. Random variables are usually real-
valued, but one can consider arbitrary types such as boolean values, complex numbers,
vectors, matrices, sequences, trees, sets, shapes, manifolds and functions. The term random

element is used to encompass all such related concepts.

Jagdish Bhatta 88 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

For example: There are two possible outcomes for a coin toss: heads, or tails. The possible
outcomes for one fair coin toss can be described using the following random variable:

and if the coin is equally likely to land on either side then it has a probability mass function
given by:

Example: A simple world consisting of two random variables:
Cavity– a Boolean variable that refers to whether my lower left wisdom tooth has a cavity
Toothache- a Boolean variable that refers to whether I have a toothache or not

We use the single capital letters to represent unknown random variables
P induces a probability distribution for any random variables X.

Each RV has a domain of values that it can take it, e. g. domain of Cavity is {true, false}

RVs domain are: Boolean, Discrete and Continuous

Atomic Event:

An atomic eventis a complete specification of the state of the world about which the agent is
uncertain.

Example:
In the above world with two random variables (Cavity and Toothache) there are only four
distinct atomic events, one being:

Cavity = false, Toothache = true
Which are the other three atomic events?

Propositions:

Think of a proposition as the event (set of sample points) where the proposition is true

Given Boolean random variables A and B:

event α = set of sample points where A(ω) = true
event ¬α = set of sample points where A(ω) = false

Jagdish Bhatta 89 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

event a ^ b = points where A(ω) = true and B(ω) = true

Often in AI applications, the sample points are defined by the values of a set of random
variables, i.e., the sample space is the Cartesian product of the ranges of the variables.

With Boolean variables, sample point = propositional logic model

e.g., A = true, B = false, or a ^ ¬b.

Proposition = disjunction of atomic events in which it is true

e.g., (a ∨ b) ≡ (¬a ^ b) ∨(a ^ ¬b) ∨(a ^ b)
 P(a ∨ b) = P(¬a^ b) + P(a^ ¬b) + P(a^ b)

Propositional or Boolean random variables

e.g., Cavity(do I have a cavity?)
Discrete random variables (finite or infinite)

e.g., Weather is one of (sunny, rain, cloudy, snow)
Weather = rain is a proposition

Values must be exhaustive and mutually exclusive
Continuous random variables (bounded or unbounded)
e.g., Temp = 21.6, also allow, e.g., Temp < 22.0.

Prior Probability:

The prior or unconditional probability associated with a proposition is the degree of belief
accorded to it in the absence of any other information.

Example:
P(Weather= sunny) = 0.72, P(Weather= rain) = 0.1, P(Weather= cloudy) = 0.08,

P(Weather= snow) = 0.1

Probability distribution gives values for all possible assignments:

P(Weather) = (0.72, 0.1, 0.08, 0.1)

Joint probability distribution for a set of r.v.s gives the probability of every atomic event
on those r.v.s (i.e., every sample point)

P(Weather, Cavity) = a 4 ×2 matrix of values.

Weather= sunny rain cloudy snow
Cavity=true 0.144 0.02 0.016 0,02
Cavity=false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the joint distribution because every event
is a sum of sample points.

Jagdish Bhatta 90 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Conditional Probability:

The conditional probability ―P(a|b)‖ is the probability of ―a‖ given that all we know is ―b‖.

Example: P(cavity|toothache) = 0.8 means if a patient have toothache and no other
information is yet available, then the probability of patient‘s having the cavity is 0.8.

Definition of conditional probability:

P(a|b) = P(a^ b)/P(b) if P(b) ≠0
Product rule gives an alternative formulation:

P(a^ b) = P(a|b)P(b) = p(b|a)P(a)

Inference using full joint probability distribution:

We use the full joint distribution as the knowledge base from which answers to all questions
may be derived. The probability of a proposition is equal to the sum of the probabilities of
the atomic events in which it holds.

P(a) = ΣP(ei)
Therefore, given a full joint distribution that specifies the probabilities of all the atomic
events, one can compute the probability of any proposition.

Full Joint probability distribution : an example

We consider the following domain consisting of three Boolean variables: Toothache, Cavity,
and Catch (the dentist‘s nasty steel probe catches in my tooth).

The full joint distribution is the following 2x2x2 table:

 toothache ¬toothache
 catch ¬catch catch ¬catch
Cavity 0.108 0.012 0.072 0.008
¬cavity 0.016 0.064 0.144 0.576

The probability of any proposition can be computed from the probabilities in the table. The
probabilities in the joint distribution must sum to 1.

Each cell represents an atomic event and these are all the possible atomic events.

P(cavity or toothache) = P(cavity, toothache, catch) + P(cavity, toothache, ¬catch) +

P(cavity, ¬toothache, catch) + P(cavity, ¬toothache, ¬catch) +
P(¬cavity, toothache, catch) + P(¬cavity, toothache, ¬catch)

= 0.108+0.012+0.072+0.008+0.016+0.064=0.28

We simply identify those atomic events in which the proposition is true and add up their
probabilities

Jagdish Bhatta 91 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Marginalization or summing out:

Distribution over Y can be obtained by summing out all the other variables from any joint
distribution containing Y. This process is called marginalization.
 P(Y) = ∑P(Y, z)
Examples:

P(cavity) = 0.108 +0.012 +0.072 + 0.008 = 0.2
P(¬Toothache) = 0.072 + 0.008 + 0.144 + 0.576 = 0.8
P(Cavity, ¬Toothache) = 0.072 + 0.008 = 0.08

P(Y) = S P(Y, z)
P(Y, z) = P(Y|z)P(z)

Therefore, for any set of variables Yand Z:

P(Y) = S P(Y|z)P(z) - This rule is the conditioning rule

Calculating Conditional Probability:
P(¬cavity | Toothache) = P(¬cavity ^ Toothache)/ P(Toothache)

 = (0.016 + 0.064)/(0.108 + 0.012 + 0.016 + 0.064)
 = 0.4

Again let‘s calculate
P(cavity | Toothache) = P(cavity ^ Toothache)/ P(Toothache)

 = (0.108 + 0.012)/(0.108 + 0.012 + 0.016 + 0.064)
 = 0.6

Notice that in above two calculations the term 1/ P(Toothache) remain constant no matter
which value of cavity is calculated. This constant term is called normalization constant for
the distribution P(cavity | Toothache), ensuring that it adds up to 1.

Independence:
A and B are independent iff
P(A|B) = P(A) or P(B|A) = P(B) or P(A, B) = P(A)P(B)

Example:
 P(Toothache,Catch,Cavity,Weather) = P(Toothache,Catch,Cavity)P(Weather)

Here weather is independent of other three variables.

Jagdish Bhatta 92 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Bayes’ Rule (Theorem) :

Proof of bays rule:
We know that:
 P(a|b) = P(a ^ b)/ P(b)
 P(a ^ b) = P(a|b) P(b)……………….(1)
Similarly
 P(b|a) = P(a ^ b)/ P(a)
 P(a ^ b) = P(b|a) P(a) ……………….(2)

Equating 1 and 2

P(a|b) P(b) = P(b|a) P(a)
 i.e. P(b|a) = P(a|b) P(b)/P(a)

Why is the Bayes’ rule is useful in practice?

Bayes‘ rule is useful in practice because there are many cases where we have good
probability estimates for three of the four probabilities involved, and therefore can compute
the fourth one.

Useful for assessing diagnostic probability from causal probability:

 Diagnostic knowledge is often more fragile than causal knowledge.

Example of Bayes' rule:

A doctor knows that the disease meningitis causes the patient tohave a stiff neck 50% of the
time. The doctor also knows that the probability that a patient has meningitis is 1/50,000, and
the probability that any patient has a stiff neck is 1/20.

Find the probability that a patient with a stiff neck has meningitis.

Jagdish Bhatta 93 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Here, we are given;
p(s|m) = 0.5
p(m) = 1/50000
p(s) = 1/20

Now using Bayes‘ rule;

P(m|s) = P(s|m)P(m)/P(s) = (0.5*1/50000)/(1/20) = 0.0002

Uses of Bayes' Theorem :

In doing an expert task, such as medical diagnosis, the goal is to determine identifications
(diseases) given observations (symptoms). Bayes' Theorem provides such a relationship.

P(A | B) = P(B | A) * P(A) / P(B)

Suppose: A = Patient has measles, B = has a rash

Then: P(measles/rash) = P(rash/measles) * P(measles) / P(rash)

The desired diagnostic relationship on the left can be calculated based on the known
statistical quantities on the right.

Bayesian networks:

- A data structure to represent the dependencies among variables and to give a concise

specification of any full joint probability distribution.
- Also called belief networks or probabilistic network or casual network or knowledge

map.

The basic idea is:

 Knowledge in the world is modular -- most events are conditionally independent of
most other events.

 Adopt a model that can use a more local representation to allow interactions between
events that only affect each other.

 Some events may only be unidirectional others may be bidirectional -- make a
distinction between these in model.

 Events may be causal and thus get chained together in a network.

A Bayesian network is a directed acyclic graph which consists of:

 A set of random variables which makes up the nodes of the network.
 A set of directed links (arrows) connecting pairs of nodes. If there is an arrow from

node X to node Y, X is said to be a parent of Y.

Jagdish Bhatta 94 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

 Each node Xi has a conditional probability distribution P(Xi| Parents(Xi)) that
quantifies the effect of the parents on the node.

Intuitions:

 A Bayesian network models our incomplete understanding of the causal relationships
from an application domain.

 A node represents some state of affairs or event.
 A link from X to Y means that X has a direct influence on Y.

Implementation:

 A Bayesian Network is a directed acyclic graph:
o A graph where the directions are links which indicate dependencies that exist

between nodes.
o Nodes represent propositions about events or events themselves.
o Conditional probabilities quantify the strength of dependencies.

Our existing simple world of variables toothache, cavity, catch & weather is represented as:

Weather is independent of the other variables

Example:

Sample Domain:

You have a burglar alarm installed in your home. It is fairly reliable at detecting a burglary,
but also responds on occasion to minor earthquakes. You also have two neighbors, John and
Mary, who have promised to call you at work when they hear the alarm. John always calls
when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and
calls then, too. Mary, on the other hand, likes rather loud music and sometimes misses the
alarm altogether.

Weather

Toothach
e

Cavity

Catch

Jagdish Bhatta 95 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

We would like have to estimate the probability of a burglary with given evidence who has or
has not call.

Variables:Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

The probabilities associated with the nodes reflect our representation of the causal
relationships.

A Bayesian network provides a complete description of the domain in the sense that one can
compute the probability of any state of the world (represented as a particular assignment to
each variable).

Example: What is the probability that the alarm has sounded, but neitherburglary nor an
earthquake has occurred, and both John and Mary call?

P(j, m, a, ¬b, ¬e) = P(j|a) P(m|a) P(a|, ¬b, ¬e) P(¬b) P(¬e)

= 0.90*0.70*0.001*0.999*0.998 = 0.00062

Burglary Earthquake

Alarm

JohnCalls
MaryCalls

P(B)
.001

P(E)
.002

A P(J)
T .90
F .05

A P(M)
T .70
F .01

B E P(A)
T T .95
T F .94
F T .29
F F .001

Jagdish Bhatta 96 Downloaded from: http://CSITauthority.blogspot.com

Unit- 5: Knowledge Representation Artificial Intelligence

Consider the following example:

 The probability, P(S1) that my car won't start.
 If my car won't start then it is likely that

o The battery is flat or
o The staring motor is broken.

In order to decide whether to fix the car myself or send it to the garage I make the following
decision:

 If the headlights do not work then the battery is likely to be flat so i fix it myself.
 If the starting motor is defective then send car to garage.
 If battery and starting motor both gone send car to garage.

The Bayesian network to represent this is as follows:

Jagdish Bhatta 97 Downloaded from: http://CSITauthority.blogspot.com

[Unit 6: Machine Learning]

Artificial Intelligence (CSC 355)

Jagdish Bhatta

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

 What is Learning?

“Learning denotes changes in the system that are adaptive in the sense that they enable the
system to do the same task (or tasks drawn from the same population) more effectively the
next time.” --Herbert Simon

"Learning is constructing or modifying representations of what is being experienced." --
Ryszard Michalski

"Learning is making useful changes in our minds." --Marvin Minsky

Types of Learning:

The strategies for learning can be classified according to the amount of inference the
system has to perform on its training data. In increasing order we have

1. Rote learning – the new knowledge is implanted directly with no inference at all, e.g.
simple memorisation of past events, or a knowledge engineer’s direct programming of
rules elicited from a human expert into an expert system.

2. Supervised learning – the system is supplied with a set of training examples consisting
of inputs and corresponding outputs, and is required to discover the relation or mapping
between then, e.g. as a series of rules, or a neural network.

3. Unsupervised learning – the system is supplied with a set of training examples
consisting only of inputs and is required to discover for itself what appropriate outputs
should be, e.g. a Kohonen Network or Self Organizing Map.

Early expert systems relied on rote learning, but for modern AI systems we are generally
interested in the supervised learning of various levels of rules.

The need for Learning:

As with many other types of AI system, it is much more efficient to give the system
enough knowledge to get it started, and then leave it to learn the rest for itself. We may
even end up with a system that learns to be better than a human expert.

The general learning approach is to generate potential improvements, test them, and
discard those which do not work. Naturally, there are many ways we might generate the
potential improvements, and many ways we can test their usefulness. At one extreme, there
are model driven (top-down) generators of potential improvements, guided by an
understanding of how the problem domain works. At the other, there are data driven
(bottom-up) generators, guided by patterns in some set of training data.

Jagdish Bhatta 99 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Machine Learning:

As regards machines, we might say, very broadly, that a machine learns whenever it
changes its structure, program, or data (based on its inputs or in response to external
information) in such a manner that its expected future performance improves. Some of
these changes, such as the addition of a record to a data base, fall comfortably within the
province of other disciplines and are not necessarily better understood for being called
learning. But, for example, when the performance of a speech-recognition machine
improves after hearing several samples of a person's speech, we feel quite justified in that
case saying that the machine has learned.

Machine learning usually refers to the changes in systems that perform tasks associated
with artificial intelligence (AI). Such tasks involve recognition, diagnosis, planning, robot
control, prediction, etc. The changes might be either enhancements to already performing
systems or synthesis of new systems.

Learning through Examples: (A type of Concept learning)

Concept learning also refers to a learning task in which a human or machine learner is
trained to classify objects by being shown a set of example objects along with their class
labels. The learner will simplify what has been observed in an example. This simplified
version of what has been learned will then be applied to future examples. Concept learning
ranges in simplicity and complexity because learning takes place over many areas. When a
concept is more difficult, it will be less likely that the learner will be able to simplify, and
therefore they will be less likely to learn. This learning by example consists of the idea of
version space.

A version space is a hierarchical representation of knowledge that enables you to keep
track of all the useful information supplied by a sequence of learning examples without
remembering any of the examples.

The version space method is a concept learning process accomplished by managing
multiple models within a version space.

Version Space Characteristics

In settings where there is a generality-ordering on hypotheses, it is possible to represent the
version space by two sets of hypotheses: (1) the most specific consistent hypotheses and
(2) the most general consistent hypotheses, where "consistent" indicates agreement with
observed data.

The most specific hypotheses (i.e., the specific boundary SB) are the hypotheses that cover
the observed positive training examples, and as little of the remaining feature space as
possible. These are hypotheses which if reduced any further would exclude a positive
training example, and hence become inconsistent. These minimal hypotheses essentially
constitute a (pessimistic) claim that the true concept is defined just by the positive data

Jagdish Bhatta 100 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

already observed: Thus, if a novel (never-before-seen) data point is observed, it should be
assumed to be negative. (I.e., if data has not previously been ruled in, then it's ruled out.)

The most general hypotheses (i.e., the general boundary GB) are those which cover the
observed positive training examples, but also cover as much of the remaining feature space
without including any negative training examples. These are hypotheses which if enlarged
any further would include a negative training example, and hence become inconsistent.

Tentative heuristics are represented using version spaces. A version space represents all the
alternative plausible descriptions of a heuristic. A plausible description is one that is
applicable to all known positive examples and no known negative example.

A version space description consists of two complementary trees:

1. One that contains nodes connected to overly general models, and
2. One that contains nodes connected to overly specific models.

Node values/attributes are discrete.

Fundamental Assumptions

1. The data is correct; there are no erroneous instances.
2. A correct description is a conjunction of some of the attributes with values.

Diagrammatical Guidelines

There is a generalization tree and a specialization tree.

Each node is connected to a model.

Nodes in the generalization tree are connected to a model that matches everything in its
subtree.

Nodes in the specialization tree are connected to a model that matches only one thing in its
subtree.

Links between nodes and their models denote

 generalization relations in a generalization tree, and
 specialization relations in a specialization tree.

Diagram of a Version Space

In the diagram below, the specialization tree is colored red, and the generalization tree is
colored green.

Jagdish Bhatta 101 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Generalization and Specialization Leads to Version Space Convergence

The key idea in version space learning is that specialization of the general models and
generalization of the specific models may ultimately lead to just one correct model that
matches all observed positive examples and does not match any negative examples.

That is, each time a negative example is used to specialilize the general models, those
specific models that match the negative example are eliminated and each time a positive
example is used to generalize the specific models, those general models that fail to match
the positive example are eliminated. Eventually, the positive and negative examples may
be such that only one general model and one identical specific model survive.

Jagdish Bhatta 102 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Candidate Elimination Algorithm:

The version space method handles positive and negative examples symmetrically.

Given:

 A representation language.
 A set of positive and negative examples expressed in that language.

Compute: a concept description that is consistent with all the positive examples and none
of the negative examples.

Method:

 Initialize G, the set of maximally general hypotheses, to contain one element: the
null description (all features are variables).

 Initialize S, the set of maximally specific hypotheses, to contain one element: the
first positive example.

 Accept a new training example.
o If the example is positive:

1. Generalize all the specific models to match the positive example, but
ensure the following:

 The new specific models involve minimal changes.
 Each new specific model is a specialization of some general

model.
 No new specific model is a generalization of some other

specific model.
2. Prune away all the general models that fail to match the positive

example.
o If the example is negative:

1. Specialize all general models to prevent match with the negative
example, but ensure the following:

 The new general models involve minimal changes.
 Each new general model is a generalization of some specific

model.
 No new general model is a specialization of some other

general model.
2. Prune away all the specific models that match the negative example.

o If S and G are both singleton sets, then:
 if they are identical, output their value and halt.
 if they are different, the training cases were inconsistent. Output this

result and halt.
 else continue accepting new training examples.

Jagdish Bhatta 103 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

The algorithm stops when:

1. It runs out of data.
2. The number of hypotheses remaining is:

o 0 - no consistent description for the data in the language.
o 1 - answer (version space converges).
o 2+ - all descriptions in the language are implicitly included.

Problem 1:

Learning the concept of "Japanese Economy Car"

Features: (Country of Origin, Manufacturer, Color, Decade, Type)

Origin Manufacturer Color Decade Type Example Type
Japan Honda Blue 1980 Economy Positive
Japan Toyota Green 1970 Sports Negative
Japan Toyota Blue 1990 Economy Positive
USA Chrysler Red 1980 Economy Negative
Japan Honda White 1980 Economy Positive

Solution:

1. Positive Example: (Japan, Honda, Blue, 1980, Economy)

Initialize G to a singleton
set that includes everything.
Initialize S to a singleton
set that includes the first
positive example.

G = { (?, ?, ?, ?, ?) }
S = { (Japan, Honda, Blue, 1980,
Economy) }

These models represent the most general and the most specific heuristics one might learn.
The actual heuristic to be learned, "Japanese Economy Car", probably lies between them
somewhere within the version space.

2. Negative Example: (Japan, Toyota, Green, 1970, Sports)

Specialize G to exclude the negative example.

Jagdish Bhatta 104 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

G =

{ (?, Honda, ?, ?, ?),
(?, ?, Blue, ?, ?),
(?, ?, ?, 1980, ?),
(?, ?, ?, ?, Economy) }

S = { (Japan, Honda, Blue, 1980, Economy) }

Refinement occurs by generalizing S or specializing G, until the heuristic hopefully
converges to one that works well.

3. Positive Example: (Japan, Toyota, Blue, 1990, Economy)

Prune G to exclude descriptions inconsistent with the positive example.
Generalize S to include the positive example.

G = { (?, ?, Blue, ?, ?),
(?, ?, ?, ?, Economy) }

S = { (Japan, ?, Blue, ?, Economy) }

4. Negative Example: (USA, Chrysler, Red, 1980, Economy)

Specialize G to exclude the negative example (but stay consistent with S)

Jagdish Bhatta 105 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

G = { (?, ?, Blue, ?, ?),
(Japan, ?, ?, ?, Economy) }

S = { (Japan, ?, Blue, ?, Economy) }

5. Positive Example: (Japan, Honda, White, 1980, Economy)

Prune G to exclude descriptions inconsistent with positive example.
Generalize S to include positive example.

G = { (Japan, ?, ?, ?, Economy) }
S = { (Japan, ?, ?, ?, Economy) }

G and S are singleton sets and S = G.
Converged.
No more data, so algorithm stops.

Jagdish Bhatta 106 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Explanation Based Machine Learning:

Explanation-based learning (EBL) is a form of machine learning that exploits a very
strong, or even perfect, domain theory to make generalizations or form concepts from
training examples. This is a type of analytic learning. The advantage of explanation-based
learning is that, as a deductive mechanism, it requires only a single training example (
inductive learning methods often require many training examples)

An Explanation-based Learning (EBL) system accepts an example (i.e. a training
example) and explains what it learns from the example. The EBL system takes only the
relevant aspects of the training.

EBL accepts four inputs:

A training example : what the learning sees in the world. (specific facts that rule out some
possible hypotheses)

A goal concept : a high level description of what the program is supposed to learn. (the set
of all possible conclusions)

A operational criterion : a description of which concepts are usable. (criteria for
determining which features in the domain are efficiently recognizable, e.g. which features
are directly detectable using sensors)

Jagdish Bhatta 107 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

A domain theory : a set of rules that describe relationships between objects and actions in
a domain. (axioms about a domain of interest)

From this EBL computes a generalization of the training example that is sufficient not only
to describe the goal concept but also satisfies the operational criterion.

This has two steps:

Explanation: the domain theory is used to prune away all unimportant aspects of the
training example with respect to the goal concept.

Generalisation: the explanation is generalized as far possible while still describing the
goal concept

An example of EBL using a perfect domain theory is a program that learns to play chess by
being shown examples. A specific chess position that contains an important feature, say,
"Forced loss of black queen in two moves," includes many irrelevant features, such as the
specific scattering of pawns on the board. EBL can take a single training example and
determine what the relevant features are in order to form a generalization.

Learning by Analogy:

Reasoning by analogy generally involves abstracting details from a a particular set of
problems and resolving structural similarities between previously distinct problems.
Analogical reasoning refers to this process of recognition and then applying the solution
from the known problem to the new problem. Such a technique is often identified as case-

based reasoning. Analogical learning generally involves developing a set of mappings
between features of two instances.

Jagdish Bhatta 108 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

The question in above figure represents some known aspects of a new case, which has
unknown aspects to be determined. In deduction, the known aspects are compared (by a
version of structure mapping called unification) with the premises of some implication.
Then the unknown aspects, which answer the question, are derived from the conclusion of
the implication. In analogy, the known aspects of the new case are compared with the
corresponding aspects of the older cases. The case that gives the best match may be
assumed as the best source of evidence for estimating the unknown aspects of the new
case. The other cases show alternative possibilities for those unknown aspects; the closer
the agreement among the alternatives, the stronger the evidence for the conclusion.

1. Retrieve: Given a target problem, retrieve cases from memory that are relevant to
solving it. A case consists of a problem, its solution, and, typically, annotations
about how the solution was derived. For example, suppose Fred wants to prepare
blueberry pancakes. Being a novice cook, the most relevant experience he can
recall is one in which he successfully made plain pancakes. The procedure he
followed for making the plain pancakes, together with justifications for decisions
made along the way, constitutes Fred's retrieved case.

2. Reuse: Map the solution from the previous case to the target problem. This may
involve adapting the solution as needed to fit the new situation. In the pancake
example, Fred must adapt his retrieved solution to include the addition of
blueberries.

3. Revise: Having mapped the previous solution to the target situation, test the new
solution in the real world (or a simulation) and, if necessary, revise. Suppose Fred
adapted his pancake solution by adding blueberries to the batter. After mixing, he
discovers that the batter has turned blue – an undesired effect. This suggests the
following revision: delay the addition of blueberries until after the batter has been
ladled into the pan.

4. Retain: After the solution has been successfully adapted to the target problem,
store the resulting experience as a new case in memory. Fred, accordingly, records
his newfound procedure for making blueberry pancakes, thereby enriching his set
of stored experiences, and better preparing him for future pancake-making
demands.

Jagdish Bhatta 109 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Transformational Analogy:
Suppose you are asked to prove a theorem in plane geometry. You might look for a
previous theorem that is very similar and copy its proof, making substitutions when
necessary. The idea is to transform a solution to a previous problem in to solution for the
current problem. The following figure shows this process,

Fig: Transformational Analogy

Derivational Analogy:
Notice that transformational analogy does not look at how the old problem was solved, it
only looks at the final solution. Often the twists and turns involved in solving an old
problem are relevant to solving a new problem. The detailed history of problem solving
episode is called derivation, Analogical reasoning that takes these histories into account is
called derivational analogy.

 New Derivation Old derivation

Fig: Derivational Analogy

For details of the above mentioned theory, Refer Book:- E. Rich, K. Knight, S.

B. Nair, Tata MacGraw Hill (Pages 371-372)

New
 Problem

Previously
solved problem

Solution to
New Problem

Solution to Old
Solution

New
 Problem

Previously
solved problem

Solution to
New Problem

Solution to Old
Solution

Jagdish Bhatta 110 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Learning by Simulating Evolution:

Refer Book:- P. H. Winston, Artificial Intelligence, Addison Wesley. (Around page 220)

Learning by Training Perceptron:

Below is an example of a learning algorithm for a single-layer (no hidden-layer)

perceptron. For multilayer perceptrons, more complicated algorithms such as

backpropagation must be used. Or, methods such as the delta rule can be used if the

function is non-linear and differentiable, although the one below will work as well.

The learning algorithm we demonstrate is the same across all the output neurons, therefore

everything that follows is applied to a single neuron in isolation. We first define some

variables:

 x(j) denotes the j-th item in the n-dimensional input vector

 w(j) denotes the j-th item in the weight vector

 f(x) denotes the output from the neuron when presented with input x

 α is a constant where (learning rate)

Assume for the convenience that the bias term b is zero. An extra dimension n + 1 can be

added to the input vectors x with x(n + 1) = 1, in which case w(n + 1) replaces the bias

term.

the appropriate weights are applied to the inputs, and the resulting weighted sum passed to

a function which produces the output y

Let be training set of m training examples, where xi
is the input vector to the perceptron and yi is the desired output value of the perceptron for
that input vector.

Jagdish Bhatta 111 Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Machine Learning

Learning algorithm steps:

1. Initialize weights and threshold.

 Set wi(t), (1 ≤ i ≤ m) to be the weight i at time t, and ø to be the threshold value in
the output node.

 Set w(0) to be -ø,the bias, and x(0) to be always 1.
 Set wi(1) to small random values, thus initialising the weights and threshold.

2. Present input and desired output

 Present input x0 = 1 and x1,x2,...,xm and desired output d(t)

3. Calculate the actual output

 y(t) = fh[w0(t) + w1(t)x1(t) + w2(t)x2(t) + + wm(t)xm(t)]

4. Adapts weights

 wi(t + 1) = wi(t) + α[d(t) − y(t)]xi(t) , for .

Steps 3 and 4 are repeated until the iteration error is less than a user-specified error
threshold or a predetermined number of iterations have been completed.

Jagdish Bhatta 112 Downloaded from: http://CSITauthority.blogspot.com

[Unit 7: Application of AI]

Artificial Intelligence (CSC 355)

Jagdish Bhatta

Central Department of Computer Science & Information Technology
Tribhuvan University

Downloaded from: http://CSITauthority.blogspot.com

Artificial Intelligence Chapter- Application of AI

Expert Systems:

An Expert system is a set of program that manipulates encoded knowledge to solve
problem in a specialized domain that normally requires human expertise.

A computer system that simulates the decision- making process of a human expert in a
specific domain.

An expert system’s knowledge is obtained from expert sources and coded in a form
suitable for the system to use in its inference or reasoning processes. The expert knowledge
must be obtained from specialists or other sources of expertise, such as texts, journals,
articles and data bases.

An expert system is an “intelligent” program that solves problems in a narrow problem
area by using high-quality, specific knowledge rather than an algorithm.

Block Diagram

There is currently no such thing as “standard” expert system. Because a variety of
techniques are used to create expert systems, they differ as widely as the programmers who
develop them and the problems they are designed to solve. However, the principal
components of most expert systems are knowledge base, an inference engine, and a user
interface, as illustrated in the figure.

Fig: Block Diagram of expert system

Knowledge

Base

Inference

Engine

User

Interface
User

Jagdish Bhatta 114

Artificial Intelligence Chapter- Application of AI

1. Knowledge Base

The component of an expert system that contains the system’s knowledge is called its
knowledge base. This element of the system is so critical to the way most expert
systems are constructed that they are also popularly known as knowledge-based

systems

A knowledge base contains both declarative knowledge (facts about objects, events
and situations) and procedural knowledge (information about courses of action).
Depending on the form of knowledge representation chosen, the two types of
knowledge may be separate or integrated. Although many knowledge representation
techniques have been used in expert systems, the most prevalent form of knowledge
representation currently used in expert systems is the rule-based production system
approach.

To improve the performance of an expert system, we should supply the system with
some knowledge about the knowledge it posses, or in other words, meta-knowledge.

2. Inference Engine

Simply having access to a great deal of knowledge does not make you an expert; you
also must know how and when to apply the appropriate knowledge. Similarly, just
having a knowledge base does not make an expert system intelligent. The system must
have another component that directs the implementation of the knowledge. That
element of the system is known variously as the control structure, the rule interpreter,
or the inference engine.

The inference engine decides which heuristic search techniques are used to determine
how the rules in the knowledge base are to be applied to the problem. In effect, an
inference engine “runs” an expert system, determining which rules are to be invoked,
accessing the appropriate rules in the knowledge base, executing the rules , and
determining when an acceptable solution has been found.

3. User Interface

The component of an expert system that communicates with the user is known as the
user interface. The communication performed by a user interface is bidirectional. At
the simplest level, we must be able to describe our problem to the expert system, and
the system must be able to respond with its recommendations. We may want to
ask the system to explain its “reasoning”, or the system may request additional
information about the problem from us.

Beside these three components, there is a Working Memory - a data structure which
stores information about a specific run. It holds current facts and knowledge.

Jagdish Bhatta 115

Artificial Intelligence Chapter- Application of AI

Stages of Expert System Development:

Although great strides have been made in expediting the process of developing an expert
system, it often remains an extremely time consuming task. It may be possible for one or
two people to develop a small expert system in a few months; however the development of
a sophisticated system may require a team of several people working together for more
than a year.

An expert system typically is developed and refined over a period of several years. We can
divide the process of expert system development into five distinct stages. In practice, it
may not be possible to break down the expert system development cycle precisely.
However, an examination of these five stages may serve to provide us with some insight
into the ways in which expert systems are developed.

Fig: Different phases of expert system development

Identification:

Beside we can begin to develop an expert system, it is important that we describe, with as
much precision as possible, the problem that the system is intended to solve. It is not
enough simply to feel that the system would be helpful in certain situation; we must
determine the exact nature of the problem and state the precise goals that indicate exactly
how we expect the expert system to contribute to the solution.

Conceptualization:

Once we have formally identified the problem that an expert system is to solve, the next
stage involves analyzing the problem further to ensure that its specifics, as well as it
generalities, are understood. In the conceptualization stage the knowledge engineer
frequently creates a diagram of the problem to depict graphically the relationships between
the objects and processes in the problem domain. It is often helpful at this stage to divide
the problem into a series of sub-problems and to diagram both the relationships among the
pieces of each sub-problem and the relationships among the various sub-problems.

Formulating
Rules that

Embody the
Knowledge

Conceptualization Formalization Implementation

Designing
structures to
organize the
knowledge

Finding
Concepts to
represent the
knowledge.

Validating
The Rules.

Testing

Determining the
Characteristics

of the problems.

Identification

Jagdish Bhatta 116

Artificial Intelligence Chapter- Application of AI

Formalization:

In the preceding stages, no effort has been made to relate the domain problem to the
artificial intelligence technology that may solve it. During the identification and the
conceptualization stages, the focus is entirely on understanding the problem. Now, during
the formalization stage, the problem is connected to its proposed solution, an expert
system, by analyzing the relationships depicted in the conceptualization stage.
During formalization, it is important that the knowledge engineer be familiar with the
following:

 The various techniques of knowledge representation and heuristic search
used in expert systems.

 The expert system “tools” that can greatly expedite the development
process. And

 Other expert systems that may solve similar problems and thus may be
adequate to the problem at hand.

Implementation:

During the implementation stage, the formalized concepts are programmed onto the
computer that has been chosen for system development, using the predetermined
techniques and tools to implement a “first pass” prototype of the expert system.

Theoretically, if the methods of the previous stage have been followed with diligence and
care, the implementation of the prototype should be as much an art as it is a science,
because following all rules does not guarantee that the system will work the first time it is
implemented. Many scientists actually consider the first prototype to be a “throw-away’
system, useful for evaluating progress but hardly a usable expert system.

Testing:

Testing provides opportunities to identify the weakness in the structure and
implementation of the system and to make the appropriate corrections. Depending on the
types of problems encountered, the testing procedure may indicate that the system was

Features of an expert system:

What are the features of a good expert system? Although each expert system has its own
particular characteristics, there are several features common to many systems. The
following list from Rule-Based Expert Systems suggests seven criteria that are important
prerequisites for the acceptance of an expert system .

1. “The program should be useful.” An expert system should be developed to meet a
specific need, one for which it is recognized that assistance is needed.

Jagdish Bhatta 117

Artificial Intelligence Chapter- Application of AI

2. “The program should be usable.” An expert system should be designed so that
even a novice computer user finds it easy to use .

3. “The program should be educational when appropriate.” An expert system may

be used by non-experts, who should be able to increase their own expertise by
using the system.

4. “The program should be able to explain its advice.” An expert system should be

able to explain the “reasoning” process that led it to its conclusions, to allow us to
decide whether to accept the system’s recommendations.

5. “The program should be able to respond to simple questions.” Because people

with different levels of knowledge may use the system , an expert system should be
able to answer questions about points that may not be clear to all users.

6. “The program should be able to learn new knowledge.” Not only should an expert

system be able to respond to our questions, it also should be able to ask questions to
gain additional information.

7. “The program’s knowledge should be easily modified.” It is important that we

should be able to revise the knowledge base of an expert system easily to correct
errors or add new information.

Jagdish Bhatta 118

Artificial Intelligence Chapter- Application of AI

Neural Networks:

A neuron is a cell in brain whose principle function is the collection, Processing, and
dissemination of electrical signals. Brains Information processing capacity comes
from networks of such neurons. Due to this reason some earliest AI work aimed to
create such artificial networks. (Other Names are Connectionism; Parallel distributed
processing and neural computing).

What is a Neural Network?

An Artificial Neural Network (ANN) is an information processing paradigm that is
inspired by the way biological nervous systems, such as the brain, process information.
The key element of this paradigm is the novel structure of the information processing
system. It is composed of a large number of highly interconnected processing elements
(neurones) working in unison to solve specific problems. ANNs, like people, learn by
example. An ANN is configured for a specific application, such as pattern recognition or
data classification, through a learning process.

Why use neural networks?

Neural networks, with their remarkable ability to derive meaning from complicated or
imprecise data, can be used to extract patterns and detect trends that are too complex to be
noticed by either humans or other computer techniques. A trained neural network can be
thought of as an "expert" in the category of information it has been given to analyze. Other
advantages include:

1. Adaptive learning: An ability to learn how to do tasks based on the data given for
training or initial experience.

2. Self-Organisation: An ANN can create its own organisation or representation of the
information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and
special hardware devices are being designed and manufactured which take
advantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a
network leads to the corresponding degradation of performance. However, some
network capabilities may be retained even with major network damage

Jagdish Bhatta 119

Artificial Intelligence Chapter- Application of AI

Neural networks versus conventional computers

Neural networks take a different approach to problem solving than that of conventional
computers. Conventional computers use an algorithmic approach i.e. the computer follows
a set of instructions in order to solve a problem. Unless the specific steps that the computer
needs to follow are known the computer cannot solve the problem. That restricts the
problem solving capability of conventional computers to problems that we already
understand and know how to solve. But computers would be so much more useful if they
could do things that we don't exactly know how to do.

Neural networks process information in a similar way the human brain does. The network
is composed of a large number of highly interconnected processing elements(neurones)
working in parallel to solve a specific problem. Neural networks learn by example. They
cannot be programmed to perform a specific task. The examples must be selected carefully
otherwise useful time is wasted or even worse the network might be functioning
incorrectly. The disadvantage is that because the network finds out how to solve the
problem by itself, its operation can be unpredictable.

On the other hand, conventional computers use a cognitive approach to problem solving;
the way the problem is to solved must be known and stated in small unambiguous
instructions. These instructions are then converted to a high level language program and
then into machine code that the computer can understand. These machines are totally
predictable; if anything goes wrong is due to a software or hardware fault.

Units of Neural Network:

Nodes(units):

Nodes represent a cell of neural network.
Links:

Links are directed arrows that show propagation of information from one node to
another node.

Activation:
Activations are inputs to or outputs from a unit.

Weight:
Each link has weight associated with it which determines strength and sign of the
connection.

Activation function:
A function which is used to derive output activation from the input activations to a
given node is called activation function.

Bias Weight:
Bias weight is used to set the threshold for a unit. Unit is activated when the
weighted sum of real inputs exceeds the bias weight.

Jagdish Bhatta 120

Artificial Intelligence Chapter- Application of AI

Simple Model of Neural Network

A simple mathematical model of neuron is devised by McCulloch and Pit is given in the
figure given below:

It fires when a linear combination of its inputs exceeds some threshold.

A neural network is composed of nodes (units) connected by directed links A link from
unit j to i serve to propagate the activation aj from j to i. Each link has some numeric
weight Wj,i associated with it, which determines strength and sign of connection.

Each unit first computes a weighted sum of it’s inputs:
 n

ini = Wj,i aj
 J=0

Then it applies activation function g to this sum to derive the output:

 n

ai = g(ini) =g(Wj,i aj)
 J=0

Here, aj output activation from unit j and Wj,i is the weight on the link j to this node.
Activation function typically falls into one of three categories:

 Linear
 Threshold (Heaviside function)
 Sigmoid
 Sign

Jagdish Bhatta 121

Artificial Intelligence Chapter- Application of AI

For linear activation functions, the output activity is proportional to the total weighted
output.

g(x) = k x + c, where k and x are constant

For threshold activation functions, the output are set at one of two levels, depending on
whether the total input is greater than or less than some threshold value.

g(x) = 1 if x>= k

 = 0 if x < k

For sigmoid activation functions, the output varies continuously but not linearly as the
input changes. Sigmoid units bear a greater resemblance to real neurons than do linear or
threshold units. It has the advantage of differentiable.

g(x) = 1/ (1 + e-x)

Realizing logic gates by using Neurons:

Jagdish Bhatta 122

Artificial Intelligence Chapter- Application of AI

Network structures:

Feed-forward networks:
Feed-forward ANNs allow signals to travel one way only; from input to output. There is
no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-
forward ANNs tend to be straight forward networks that associate inputs with outputs.
They are extensively used in pattern recognition. This type of organization is also referred
to as bottom-up or top-down.

Feedback networks (Recurrent networks:)

Feedback networks (figure 1) can have signals traveling in both directions by introducing
loops in the network. Feedback networks are very powerful and can get extremely
complicated. Feedback networks are dynamic; their 'state' is changing continuously until
they reach an equilibrium point. They remain at the equilibrium point until the input
changes and a new equilibrium needs to be found. Feedback architectures are also referred
to as interactive or recurrent.

Outputs
Inputs

Outputs
Inputs

Jagdish Bhatta 123

Artificial Intelligence Chapter- Application of AI

Feed-forward example

Here;
a5 = g(W3;5 a3 +W4;5 a4)
 = g(W3;5 g(W1;3 a1 +W2;3 a2) + W4;5 g(W1;4 a1 +W2;4 a2)

Types of Feed Forward Neural Network:

Single-layer neural networks (perceptrons)

A neural network in which all the inputs connected directly to the outputs is called a
single-layer neural network, or a perceptron network. Since each output unit is independent
of the others each weight affects only one of the outputs.

Jagdish Bhatta 124

Artificial Intelligence Chapter- Application of AI

Multilayer neural networks (perceptrons)

The neural network which contains input layers, output layers and some hidden layers also
is called multilayer neural network. The advantage of adding hidden layers is that it
enlarges the space of hypothesis. Layers of the network are normally fully connected.

Once the number of layers, and number of units in each layer, has been selected, training is
used to set the network's weights and thresholds so as to minimize the prediction error
made by the network

Training is the process of adjusting weights and threshold to produce the desired result for
different set of data.

Learning in Neural Networks:

Learning: One of the powerful features of neural networks is learning. Learning in
neural networks is carried out by adjusting the connection weights among neurons. It
is similar to a biological nervous system in which learning is carried out by changing
synapses connection strengths, among cells.

The operation of a neural network is determined by the values of the interconnection
weights. There is no algorithm that determines how the weights should be assigned in
order to solve specific problems. Hence, the weights are determined by a learning process

Learning may be classified into two categories:

 (1) Supervised Learning
 (2) Unsupervised Learning

Jagdish Bhatta 125

Artificial Intelligence Chapter- Application of AI

Supervised Learning:

In supervised learning, the network is presented with inputs together with the target
(teacher signal) outputs. Then, the neural network tries to produce an output as close as
possible to the target signal by adjusting the values of internal weights. The most common
supervised learning method is the “error correction method”.

Error correction method is used for networks which their neurons have discrete output
functions. Neural networks are trained with this method in order to reduce the error
(difference between the network's output and the desired output) to zero.

Unsupervised Learning:

In unsupervised learning, there is no teacher (target signal) from outside and the network
adjusts its weights in response to only the input patterns. A typical example of
unsupervised learning is Hebbian learning.

Jagdish Bhatta 126

Artificial Intelligence Chapter- Application of AI

Consider a machine (or living organism) which receives some sequence of inputs x1, x2,
x3, . . ., where xt is the sensory input at time t. In supervised learning the machine is given
a sequence of input & a sequence of desired outputs y1, y2, . . . , and the goal of the
machine is to learn to produce the correct output given a new input. While, in unsupervised
learning the machine simply receives inputs x1, x2, . . ., but obtains neither supervised
target outputs, nor rewards from its environment. It may seem somewhat mysterious to
imagine what the machine could possibly learn given that it doesn’t get any feedback from
its environment. However, it is possible to develop of formal framework for unsupervised
learning based on the notion that the machine’s goal is to build representations of the input
that can be used for decision making, predicting future inputs, efficiently communicating
the inputs to another machine, etc. In a sense, unsupervised learning can be thought of as
finding patterns in the data above and beyond what would be considered pure unstructured
noise.

Hebbian Learning:

The oldest and most famous of all learning rules is Hebb’s postulate of learning:

―When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic changes take
place in one or both cells such that A’s efficiency as one of the cells firing B is
increased‖

From the point of view of artificial neurons and artificial neural networks, Hebb's principle
can be described as a method of determining how to alter the weights between model
neurons. The weight between two neurons increases if the two neurons activate
simultaneously—and reduces if they activate separately. Nodes that tend to be either
both positive or both negative at the same time have strong positive weights, while those
that tend to be opposite have strong negative weights.

Hebb’s Algorithm:

Step 0: initialize all weights to 0

Step 1: Given a training input, s, with its target output, t, set the activations of the input

 units: xi = si

Step 2: Set the activation of the output unit to the target value: y = t

Step 3: Adjust the weights: wi(new) = wi(old) + xiy

Step 4: Adjust the bias (just like the weights): b(new) = b(old) + y

Jagdish Bhatta 127

Artificial Intelligence Chapter- Application of AI

Example:

PROBLEM: Construct a Hebb Net which performs like an AND function, that is, only
when both features are “active” will the data be in the target class.

TRAINING SET (with the bias input always at 1):

Training-First Input:

Training- Second Input:

Jagdish Bhatta 128

Artificial Intelligence Chapter- Application of AI

Training- Third Input:

Jagdish Bhatta 129

Artificial Intelligence Chapter- Application of AI

Training- Fourth Input:

Final Neuron:

Jagdish Bhatta 130

Artificial Intelligence Chapter- Application of AI

Perceptron Learning Theory:

The term "Perceptrons" was coined by Frank RosenBlatt in 1962 and is used to describe
the connection of simple neurons into networks. These networks are simplified versions of
the real nervous system where some properties are exagerrated and others are ignored. For
the moment we will concentrate on Single Layer Perceptrons.

So how can we achieve learning in our model neuron? We need to train them so they can
do things that are useful. To do this we must allow the neuron to learn from its mistakes.
There is in fact a learning paradigm that achieves this, it is known as supervised learning
and works in the following manner.

i. set the weight and thresholds of the neuron to random values.
ii. present an input.

iii. caclulate the output of the neuron.
iv. alter the weights to reinforce correct decisions and discourage wrong decisions,

hence reducing the error. So for the network to learn we shall increase the weights
on the active inputs when we want the output to be active, and to decrease them
when we want the output to be inactive.

v. Now present the next input and repeat steps iii. - v.

Perceptron Learning Algorithm:

The algorithm for Perceptron Learning is based on the supervised learning procedure
discussed previously.

Algorithm:

i. Initialize weights and threshold.

Set wi(t), (0 <= i <= n), to be the weight i at time t, and ø to be the threshold value
in the output node. Set w0 to be -ø, the bias, and x0 to be always 1.

Set wi(0) to small random values, thus initializing the weights and threshold.

ii. Present input and desired output

Present input x0, x1, x2, ..., xn and desired output d(t)

iii. Calculate the actual output

y(t) = g [w0(t)x0(t) + w1(t)x1(t) + + wn(t)xn(t)]

iv. Adapts weights

Jagdish Bhatta 131

Artificial Intelligence Chapter- Application of AI

wi(t+1) = wi(t) + α[d(t) - y(t)]xi(t) , where 0 <= α <= 1 (learning rate) is a positive
gain function that controls the adaption rate.

Steps iii. and iv. are repeated until the iteration error is less than a user-specified error
threshold or a predetermined number of iterations have been completed.

Please note that the weights only change if an error is made and hence this is only when
learning shall occur.

Delta Rule:

The delta rule is a gradient descent learning rule for updating the weights of the artificial
neurons in a single-layer perceptron. It is a special case of the more general
backpropagation algorithm. For a neuron with activation function the delta rule for

's th weight is given by

,

where is a small constant called learning rate, is the neuron's activation function,
is the target output, is the weighted sum of the neuron's inputs, is the actual output,

and is the th input. It holds and .

The delta rule is commonly stated in simplified form for a perceptron with a linear
activation function as

Backpropagation

It is a supervised learning method, and is an implementation of the Delta rule. It requires a
teacher that knows, or can calculate, the desired output for any given input. It is most
useful for feed-forward networks (networks that have no feedback, or simply, that have no
connections that loop). The term is an abbreviation for "backwards propagation of errors".
Backpropagation requires that the activation function used by the artificial neurons (or
"nodes") is differentiable.

As the algorithm's name implies, the errors (and therefore the learning) propagate
backwards from the output nodes to the inner nodes. So technically speaking,
backpropagation is used to calculate the gradient of the error of the network with respect to
the network's modifiable weights. This gradient is almost always then used in a simple
stochastic gradient descent algorithm, is a general optimization algorithm, but is typically

used to fit the parameters of a machine learning model, to find weights that minimize the

error. Often the term "backpropagation" is used in a more general sense, to refer to the

Jagdish Bhatta 132

Artificial Intelligence Chapter- Application of AI

entire procedure encompassing both the calculation of the gradient and its use in stochastic
gradient descent. Backpropagation usually allows quick convergence on satisfactory local
minima for error in the kind of networks to which it is suited.

Backpropagation networks are necessarily multilayer perceptrons (usually with one input,
one hidden, and one output layer). In order for the hidden layer to serve any useful
function, multilayer networks must have non-linear activation functions for the multiple
layers: a multilayer network using only linear activation functions is equivalent to some
single layer, linear network.

Summary of the backpropagation technique:

1. Present a training sample to the neural network.
2. Compare the network's output to the desired output from that sample. Calculate the

error in each output neuron.
3. For each neuron, calculate what the output should have been, and a scaling factor,

how much lower or higher the output must be adjusted to match the desired output.
This is the local error.

4. Adjust the weights of each neuron to lower the local error.
5. Assign "blame" for the local error to neurons at the previous level, giving greater

responsibility to neurons connected by stronger weights.
6. Repeat from step 3 on the neurons at the previous level, using each one's "blame"

as its error.

Characteristics:

• A multi-layered perceptron has three distinctive characteristics
– The network contains one or more layers of hidden neurons
– The network exhibits a high degree of connectivity
– Each neuron has a smooth (differentiable everywhere) nonlinear activation

function, the most common is the sigmoidal nonlinearity:

• The backpropagation algorithm provides a computational efficient method for

training multi-layer networks

Jagdish Bhatta 133

Artificial Intelligence Chapter- Application of AI

Algorithm:

Step 0: Initialize the weights to small random values

Step 1: Feed the training sample through the network and determine the final output

Step 2: Compute the error for each output unit, for unit k it is:

Step 3: Calculate the weight correction term for each output unit, for unit k it is:

Step 4: Propagate the delta terms (errors) back through the weights of the hidden units
where the delta input for the jth hidden unit is:

The delta term for jth hidden unit is:

Step 5: Calculate the weight correction term for the hidden units:

Step 6: Update the weights:

Step 7: Test for stopping (maximum cylces, small changes, etc)

Note: There are a number of options in the design of a backprop system;

– Initial weights – best to set the initial weights (and all other free parameters)
to random numbers inside a small range of values (say –0.5 to 0.5)

– Number of cycles – tend to be quite large for backprop systems
– Number of neurons in the hidden layer – as few as possible

Jagdish Bhatta 134

Artificial Intelligence Chapter- Application of AI

Natural Language Processing:

Perception and communication are essential components of intelligent behavior. They
provide the ability to effectively interact with our environment. Humans perceive and
communicate through their five basic senses of sight, hearing, touch, smell and taste, and
their ability to generate meaningful utterances. Developing programs that understand a
natural language is a difficult problem. Natural languages are large. They contain infinity
of different sentences. No matter how many sentences a person has heard or seen, new
ones can always be produced. Also, there is much ambiguity in a natural language. Many
words have several meanings and sentences can have different meanings in different
contexts. This makes the creation of programs that understand a natural language, one of
the most challenging tasks in AI.

Developing programs to understand natural language is important in AI because a natural
form of communication with systems is essential for user acceptance. AI programs must be
able to communicate with their human counterparts in a natural way, and natural language
is one of the most important mediums for that purpose. So, Natural Language Processing
(NLP) is the field that deals with the computer processing of natural languages, mainly
evolved by people working in the field of Artificial Intelligence.

Natural Language Processing (NLP), is the attempt to extract the fuller meaning
representation from the free text. Natural language processing is a technology which
involves converting spoken or written human language into a form which can be processed
by computers, and vice versa. Some of the better-known applications of NLP include:

 Voice recognition software which translates speech into input for word processors
or other applications;

 Text-to-speech synthesizers which read text aloud for users such as the hearing-
impaired;

 Grammar and style checkers which analyze text in an attempt to highlight errors
of grammar or usage;

 Machine translation systems which automatically render a document such as a
web page in another language.

Jagdish Bhatta 135

Artificial Intelligence Chapter- Application of AI

Natural Language Generation:

"Natural Language Generation (NLG), also referred to as text generation, is a subfield of
natural language processing (NLP; which includes computational linguistics)

Natural Language Generation (NLG) is the natural language processing task of
generating natural language from a machine representation system such as a knowledge
base or a logical form.

In a sense, one can say that an NLG system is like a translator that converts a computer
based representation into a natural language representation. However, the methods to
produce the final language are very different from those of a compiler due to the inherent
expressivity of natural languages.

Jagdish Bhatta 136

Artificial Intelligence Chapter- Application of AI

NLG may be viewed as the opposite of natural language understanding. The difference can
be put this way: whereas in natural language understanding the system needs to
disambiguate the input sentence to produce the machine representation language, in NLG
the system needs to make decisions about how to put a concept into words.

The different types of generation techniques can be classified into four main categories:

 Canned text systems constitute the simplest approach for single-sentence and multi-
sentence text generation. They are trivial to create, but very inflexible.

 Template systems, the next level of sophistication, rely on the application of pre-
defined templates or schemas and are able to support flexible alterations. The
template approach is used mainly for multi-sentence generation, particularly in
applications whose texts are fairly regular in structure.

 Phrase-based systems employ what can be seen as generalized templates. In such
systems, a phrasal pattern is first selected to match the top level of the input, and
then each part of the pattern is recursively expanded into a more specific phrasal
pattern that matches some subportion of the input. At the sentence level, the
phrases resemble phrase structure grammar rules and at the discourse level they
play the role of text plans.

 Feature-based systems, which are as yet restricted to single-sentence generation,
represent each possible minimal alternative of expression by a single feature.
Accordingly, each sentence is specified by a unique set of features. In this
framework, generation consists in the incremental collection of features appropriate
for each portion of the input. Feature collection itself can either be based on
unification or on the traversal of a feature selection network. The expressive power
of the approach is very high since any distinction in language can be added to the
system as a feature. Sophisticated feature-based generators, however, require very
complex input and make it difficult to maintain feature interrelationships and
control feature selection.

Many natural language generation systems follow a hybrid approach by combining
components that utilize different techniques.

Natural Language Understanding:

Developing programs that understand a natural language is a difficult problem. Natural
languages are large. They contain infinity of different sentences. No matter how many
sentences a person has heard or seen, new ones can always be produced. Also, there is
much ambiguity in a natural language. Many words have several meaning such as can,
bear, fly, bank etc, and sentences have different meanings in different contexts.

Example :- A can of juice. I can do it.

This makes the creation of programs that understand a natural language, one of the most
challenging tasks in AI. Understanding the language is not only the transmission of words.
It also requires inference about the speakers’ goal, knowledge as well as the context of the

Jagdish Bhatta 137

Artificial Intelligence Chapter- Application of AI

interaction. We say a program understand natural language if it behaves by taking the
correct or acceptable action in response to the input. A word functions in a sentence as a
part of speech. Parts of the speech for the English language are nouns, pronouns, verbs,
adjectives, adverbs, prepositions, conjunctions and interjections. Three major issues
involved in understanding language.

 A large amount of human knowledge is assumed.

 Language is pattern based, phonemes are components of the words and words make

phrases and sentences. Phonemes, words and sentences order are not random.

 Language acts are the product of agents (human or machine).

Levels of knowledge used in Language Understanding
A language understanding knowledge must have considerable knowledge about the
structures of the language including what the words are and how they combine into phrases
and sentences. It must also know the meanings of the words and how they contribute to the
meanings of the sentence and to the context within which they are being used. The
component forms of knowledge needed for an understanding of natural languages are
sometimes classified according to the following levels.

 Phonological

 Relates sound to the words we recognize. A phoneme is the smallest

unit of the sound. Phones are aggregated to the words.

 Morphological

 This is lexical knowledge which relates to the word construction

from basic units called morphemes. A morpheme is the smallest unit

of meaning. Eg:- friend + ly = friendly

 Syntactic

 This knowledge relates to how words are put together or structure

red together to form grammatically correct sentences in the

language.

 Semantic

 This knowledge is concerned with the meanings of words and

phrases and how they combine to form sentence meaning.

 Pragmatic

Jagdish Bhatta 138

Artificial Intelligence Chapter- Application of AI

 This is high – level knowledge which relates to the use of sentences

in different contexts and how the context affects the meaning of the

sentence.

 World

 Includes the knowledge of the physical world, the world of human

social interaction, and the roles of goals and intentions in

communication.

Basic Parsing Techniques

Before the meaning of a sentence can be determined, the meanings of its constituent parts
must be established. This requires knowledge of the structure of the sentence, the meaning
of the individual words and how the words modify each other. The process of determining
the syntactical structure of a sentence is known as parsing. Parsing is the process of
analyzing a sentence by taking it apart word – by – word and determining its structure
from its constituent parts and sub parts. The structure of a sentence can be represented with
a syntactic tree. When given an input string, the lexical parts or terms (root words), must
first be identified by type and then the role they play in a sentence must be determined.
These parts can be combined successively into larger units until a complete tree has been
computed.

Jagdish Bhatta 139

Artificial Intelligence Chapter- Application of AI

To determine the meaning of a word, a parser must have access to a lexicon. When the
parser selects the word from the input stream, it locates the world in the lexicon and
obtains the word’s possible functions and features, including the semantic information.

Lexeme (Lexicon) & word forms:

The distinction between these two senses of "word" is arguably the most important one in
morphology. The first sense of "word", the one in which dog and dogs are "the same

Input String Parser Output representation
structure

Input String

Figure :- Parsing an input to create an output structure

Jagdish Bhatta 140

Artificial Intelligence Chapter- Application of AI

word", is called a lexeme. The second sense is called word form. We thus say that dog and
dogs are different forms of the same lexeme. Dog and dog catcher, on the other hand, are
different lexemes, as they refer to two different kinds of entities. The form of a word that is
chosen conventionally to represent the canonical form of a word is called a lemma, or
citation form.

A lexicon defines the words of a language that a system knows about. This is includes
common words and words that are specific to the domain of the application. Entries
include meanings for each word and its syntactic and morphological behavior.

Morphology:

Morphology is the identification, analysis and description of the structure of words (words
as units in the lexicon are the subject matter of lexicology). While words are generally
accepted as being (with clitics) the smallest units of syntax, it is clear that in most (if not
all) languages, words can be related to other words by rules. For example, English speakers
recognize that the words dog, dogs, and dog catcher are closely related. English speakers
recognize these relations from their tacit knowledge of the rules of word formation in
English. They infer intuitively that dog is to dogs as cat is to cats; similarly, dog is to dog

catcher as dish is to dishwasher (in one sense). The rules understood by the speaker reflect
specific patterns (or regularities) in the way words are formed from smaller units and how
those smaller units interact in speech. In this way, morphology is the branch of linguistics
that studies patterns of word formation within and across languages, and attempts to
formulate rules that model the knowledge of the speakers of those languages.

Morphological analysis is the process of recognizing the suffixes and prefixes that
have been attached to a word.

We do this by having a table of affixes and trying to match the input as:
 prefixes +root + suffixes.

– For example: adjective + ly -> adverb. E.g.: [Friend + ly]=friendly
– We may not get a unique result.
– “-s, -es” can be either a plural noun or a 3ps verb
– “-d, -ed” can be either a past tense or a perfect participle

Morphological Information:

• Transform part of speech
– green, greenness (adjective, noun)
– walk, walker (verb, noun)

• Change features of nouns

– boat, boats (singular, plural)

• Bill slept , Bill’s bed

Jagdish Bhatta 141

Artificial Intelligence Chapter- Application of AI

– (subjective case, possessive case)

• Change features of verbs
– Aspect

• I walk. I am walking. (present, progressive)
– Tense

• I walked. I will walk. I had been walking. (past, future, past

progressive)
– Number and person

• I walk. They walk. (first person singular, third person plural)

Syntactic Analysis:

Syntactic analysis takes an input sentence and produces a representation of its grammatical
structure. A grammar describes the valid parts of speech of a language and how to combine
them into phrases. The grammar of English is nearly context free.

A computer grammar specifies which sentences are in a language and their parse trees. A
parse tree is a hierarchical structure that shows how the grammar applies to the input. Each
level of the tree corresponds to the application of one grammar rule.

It is the starting point for working out the meaning of the whole sentence. Consider the
following two sentences.

1. “The dog ate the bone.”
2. “The bone was eaten by the dog.”

Understanding the structure (via the syntax rules) of the sentences help us work out that
it’s the bone that gets eaten and not the dog. Syntactic analysis determines possible
grouping of words in a sentence. In other cases there may be many possible groupings of
words. Consider the sentence “John saw Mary with a telescope”. Two different readings
based on the groupings.

1. John saw (Mary with a telescope).
2. John (saw Mary with a telescope).

A sentence is syntactically ambiguous if there are two or more possible groupings.
Syntactic analysis helps determining the meaning of a sentence by working out possible
word structure. Rules of syntax are specified by writing a grammar for the language. A
parser will check if a sentence is correct according to the grammar. It returns a
representation (parse tree) of the sentence’s structure. A grammar specifies allowable
sentence structures in terms of basic categories such as noun and verbs. A given grammar,
however, is unlikely to cover all possible grammatical sentences. Parsing sentences is to
help determining their meanings, not just to check that they are correct. Suppose we want a
grammar that recognizes sentences like the following.

Jagdish Bhatta 142

Artificial Intelligence Chapter- Application of AI

 John ate the biscuit.
 The lion ate the zebra.
 The lion kissed John

But reject incorrect sentences such as
 Ate John biscuit the.
 Zebra the lion the ate.
 Biscuit lion kissed.

A simple grammar that deals with this is given below

sentence --> noun_phase, verb phrase.
noun_phrase --> proper_noun.
noun_phrase --> determiner, noun.
verb_phrase --> verb, noun_phrase.
proper_noun --> [mary].
proper_noun --> [john].
noun --> [zebra].
noun --> [biscuit].
verb --> [ate].
verb --> [kissed].
determiner --> [the].

Incorrect sentences like “biscuit lion kissed” will be excluded by the grammar.

Jagdish Bhatta 143

Artificial Intelligence Chapter- Application of AI

Semantic Analysis:

Semantic analysis is a process of converting the syntactic representations into a meaning
representation.

This involves the following tasks:

– Word sense determination
– Sentence level analysis
– Knowledge representation

- Word sense

Words have different meanings in different contexts.

Mary had a bat in her office.

• bat = `a baseball thing’

• bat = `a flying mammal’

- Sentence level analysis

Once the words are understood, the sentence must be assigned some meaning

I saw an astronomer with a telescope.

- Knowledge Representation

Understanding language requires lots of knowledge.

Jagdish Bhatta 144

Artificial Intelligence Chapter- Application of AI

Parameters in Natural Language Processing:

 Auditory Inputs
 Segmentation
 Syntax Structure
 Semantic Structure
 Pragmatic Analysis

- Auditory Inputs:

Three of our five senses – sight, hearing and touch – are used as major inputs. These are
usually referred to as the visual, auditory and tactile inputs respectively. They are
sometimes called input channels; however, as previously mentioned, the term "channel" is
used in various ways, so I will avoid it.

Jagdish Bhatta 145

Artificial Intelligence Chapter- Application of AI

In the fashion of video devices, audio devices are used to either capture or create sound. In
some cases, an audio output device can be used as an input device, in order to capture
produced sound.

 Microphone
 MIDI keyboard or other digital musical instrument

- Segmentation:

Text segmentation is the process of dividing written text into meaningful units, such as
words, sentences, or topics. The term applies both to mental processes used by humans
when reading text, and to artificial processes implemented in computers, which are the
subject of natural language processing. The problem is non-trivial, because while some
written languages have explicit word boundary markers, such as the word spaces of written
English and the distinctive initial, medial and final letter shapes of Arabic, such signals are
sometimes ambiguous and not present in all written languages.

Word segmentation is the problem of dividing a string of written language into its
component words. In English and many other languages using some form of the Latin
alphabet, the space is a good approximation of a word delimiter. (Some examples
where the space character alone may not be sufficient include contractions like can't
for can not.)

However the equivalent to this character is not found in all written scripts, and without it
word segmentation is a difficult problem. Languages which do not have a trivial word
segmentation process include Chinese, Japanese, where sentences but not words are
delimited, and Thai, where phrases and sentences but not words are delimited.

In some writing systems however, such as the Ge'ez script used for Amharic and Tigrinya
among other languages, words are explicitly delimited (at least historically) with a non-
whitespace character.

Word splitting is the process of parsing concatenated text (i.e. text that contains no spaces
or other word separators) to infer where word breaks exist.

Sentence segmentation is the problem of dividing a string of written language into its
component sentences. In English and some other languages, using punctuation,
particularly the full stop character is a reasonable approximation. However, even in
English this problem is not trivial due to the use of the full stop character for
abbreviations, which may or may not also terminate a sentence. For example Mr. is
not its own sentence in "Mr. Smith went to the shops in Jones Street." When
processing plain text, tables of abbreviations that contain periods can help prevent
incorrect assignment of sentence boundaries. As with word segmentation, not all
written languages contain punctuation characters which are useful for approximating
sentence boundaries.

Jagdish Bhatta 146

Artificial Intelligence Chapter- Application of AI

Other segmentation problems: Processes may be required to segment text into
segments besides words, including morphemes (a task usually called morphological
analysis), paragraphs, topics or discourse turns.

A document may contain multiple topics, and the task of computerized text segmentation
may be to discover these topics automatically and segment the text accordingly. The topic
boundaries may be apparent from section titles and paragraphs. In other cases one needs to
use techniques similar to those used in document classification. Many different approaches
have been tried.

- Syntax Structure:

Same concept as in the syntactic analysis above

- Semantic Structure:

Same concept as in the semantic analysis above

- Pragmatic Analysis:

This is high level knowledge which relates to the use of sentences in different contexts and
how the context affects the meaning of the sentences. It is the study of the ways in which
language is used and its effect on the listener. Pragmatic comprises aspects of meaning that
depend upon the context or upon facts about real world.

Pragmatics – Handling Pronouns

Handling pronouns such as “he”, “she” and “it” is not always straight forward. Let us see
the following paragraph.

“John buys a new telescope. He sees Mary in the distance. He gets out his telescope. He
looks at her through it”.

Here, “her” refers to Mary who was not mentioned at all in the previous sentences. John’s
telescope was referred to as “a new telescope”, “his telescope” and “it”.

Let us see one more example

“When is the next flight to Sydney?”
“Does it have any seat left?”

Here, “it”, refers to a particular flight to Sydney, not Sydney itself.

Pragmatics – Ambiguity in Language

A sentence may have more than one structure such as

Jagdish Bhatta 147

Artificial Intelligence Chapter- Application of AI

“I saw an astronomer with a telescope.”

This English sentence has a prepositional phrase “with a telescope” which may be attached
with either with verb to make phrase “saw something with telescope” or to object noun
phrase to make phrase “a astronomer with a telescope”. If we do first, then it can be
interpreted as “I saw an astronomer who is having a telescope”, and if we do second, it can
be interpreted as “Using a telescope I saw an astronomer”.

Now, to remove such ambiguity, one possible idea is that we have to consider the context.
If the knowledge base (KB) can prove that whether the telescope is with astronomer or not,
then the problem is solved.

Next approach is that; let us consider the real scenario where the human beings
communicate. If A says the same sentence “I saw an astronomer with a telescope.” To B,
then in practical, it is more probable that, B (listener) realizes that “A has seen astronomer

who is having a telescope”. It is because, normally, the word “telescope” belongs to
“astronomer”, so it is obvious that B realizes so.

If A has says that “I saw a lady with a telescope.” In this case, B realizes that “A has seen

the lady using a telescope”, because the word “telescope” has not any practical relationship
with “lady” like “astronomer”.

So, we may be able to remove such ambiguity, by defining a data structure, which can
efficiently handle such scenario. This idea may not 100% correct but seemed more
probable.

Jagdish Bhatta 148

Artificial Intelligence Chapter- Application of AI

Machine Vision:

Machine vision (MV) is the application of computer vision to industry and manufacturing.
Whereas computer vision is the general discipline of making computers see (understand
what is perceived visually), machine vision, being an engineering discipline, is interested
in digital input/output devices and computer networks to control other manufacturing
equipment such as robotic arms and equipment to eject defective products.

Machine vision is the ability of a computer to "see." A machine-vision system
employs one or more video cameras, analog-to-digital conversion (ADC), and digital
signal processing (DSP). The resulting data goes to a computer or robot controller.
Machine vision is similar in complexity to voice recognition . The machine vision
systems use video cameras, robots or other devices, and computers to visually analyze an
operation or activity. Typical uses include automated inspection, optical character
recognition and other non-contact applications.

Two important specifications in any vision system are the sensitivity and the resolution.
Sensitivity is the ability of a machine to see in dim light, or to detect weak impulses at
invisible wavelengths. Resolution is the extent to which a machine can differentiate
between objects. In general, the better the resolution, the more confined the field of vision.
Sensitivity and resolution are interdependent. All other factors held constant, increasing the
sensitivity reduces the resolution, and improving the resolution reduces the sensitivity.

One of the most common applications of Machine Vision is the inspection of
manufactured goods such as semiconductor chips, automobiles, food and
pharmaceuticals. Just as human inspectors working on assembly lines visually inspect
parts to judge the quality of workmanship, so machine vision systems use digital
cameras, smart cameras and image processing software to perform similar
inspections.

Machine vision systems have two primary hardware elements: the camera, which
serves as the eyes of the system, and a computer video analyser. The recent rapid
acceleration in the development of machine vision for industrial applications can be
attributed to research in the areas of computer technologies. The first step in vision
analysis is the conversion of analog pixel intensity data into digital format for
processing. Next, an appropriate computer algorithm is employed to understand the
image data and provide appropriate analysis or action.

Machine vision encompasses computer science, optics, mechanical engineering, and
industrial automation. Unlike computer vision which is mainly focused on machine-based
image processing, machine vision integrates image capture systems with digital
input/output devices and computer networks to control manufacturing equipment such as
robotic arms. Manufacturers favour machine vision systems for visual inspections that
require high-speed, high-magnification, 24-hour operation, and/or repeatability of
measurements.

Jagdish Bhatta 149

Artificial Intelligence Chapter- Application of AI

A typical machine vision system will consist of most of the following components:

 One or more digital or analogue cameras (black-and-white or colour) with suitable
optics for acquiring images, such as lenses to focus the desired field of view onto
the image sensor and suitable, often very specialized, light sources

 Input/Output hardware (e.g. digital I/O) or communication links (e.g. network
connection or RS-232) to report results

 A synchronizing sensor for part detection (often an optical or magnetic sensor) to
trigger image acquisition and processing and some form of actuators to sort, route
or reject defective parts

 A program to process images and detect relevant features.

The aim of a machine vision inspection system is typically to check the compliance of a
test piece with certain requirements, such as prescribed dimensions, serial numbers,
presence of components, etc. The complete task can frequently be subdivided into
independent stages, each checking a specific criterion. These individual checks typically
run according to the following model:

1. Image Capture
2. Image Preprocessing
3. Definition of one or more (manual) regions of interest
4. Segmentation of the objects
5. Computation of object features
6. Decision as to the correctness of the segmented objects

Naturally, capturing an image, possible several for moving processes, is a pre-requisite for
analysing a scene. In many cases these images are not suited for immediate examination
and require pre-processing to change certain sizing specific structures etc. In most cases it
is at least approximately known which image areas have to be analysed, i.e. the location of
a mark to be read or a component to be verified. These are called Regions of Interest
(ROIs) (sometimes Area of Interest or AOIs). Of course, such a region can also comprise
the entire image if required.

Machine vision is used in various industrial and medical applications. Examples include:

 Electronic component analysis
 Signature identification
 Optical character recognition
 Handwriting recognition
 Object recognition
 Pattern recognition
 Materials inspection
 Currency inspection
 Medical image analysis

Jagdish Bhatta 150

Artificial Intelligence Chapter- Application of AI

Computer Vision:

Computer vision is the science and technology of machines that see, where see in this
case means that the machine is able to extract information from an image that is necessary
to solve some task. As a scientific discipline, computer vision is concerned with the theory
behind artificial systems that extract information from images. The image data can take
many forms, such as video sequences, views from multiple cameras, or multi-dimensional
data from a medical scanner.

As a technological discipline, computer vision seeks to apply its theories and models to the
construction of computer vision systems. Examples of applications of computer vision
include systems for:

 Controlling processes (e.g., an industrial robot or an autonomous vehicle).
 Detecting events (e.g., for visual surveillance or people counting).
 Organizing information (e.g., for indexing databases of images and image

sequences).
 Modeling objects or environments (e.g., industrial inspection, medical image

analysis or topographical modeling).
 Interaction (e.g., as the input to a device for computer-human interaction).

Computer vision is closely related to the study of biological vision. The field of biological
vision studies and models the physiological processes behind visual perception in humans
and other animals. Computer vision, on the other hand, studies and describes the processes
implemented in software and hardware behind artificial vision systems. Interdisciplinary
exchange between biological and computer vision has proven fruitful for both fields.

Computer vision is, in some ways, the inverse of computer graphics. While computer
graphics produces image data from 3D models, computer vision often produces 3D models
from image data. There is also a trend towards a combination of the two disciplines, e.g.,
as explored in augmented reality.

Sub-domains of computer vision include scene reconstruction, event detection, video
tracking, object recognition, learning, indexing, motion estimation, and image restoration.

Jagdish Bhatta 151

	ló41¿WKò}�
Ö�™â›i:0©áóX€hÆaôþÍ;ø
	−�v‚÷÷’fô£…•	½eGv#6Æ�šﬁ4åû©	Q�i
	™b¯Ò~Å)Ñ›ÃðÂzÄ¦Ãï`Nix/	S‘ø¸˙¯ªhô
	rYÓ¾>é˜èˇ�š©*s™ørÁÕö—Ø×¤àà˚N#ÐÉ
	(@I9¼Ú®¯ÒÎ"ﬂÊøRÁg^È«�¸=�⁄žã?àm¼ó
	ÃxæÞ/k&��Â�7Ø+Ò—�¤‰à$c˘"�}�dﬁł¸N
	VÍôÔÞ²]×��-�y9yc@I÷+Ä%êCéŽ¡v/[±

	ýl«�&t�Í�ˇ�x±rûí«Êûˇ<B0b.ÈÄïıRƒ
	Éi½¾Vl9�K®Ö\’	:�Uýì©£2Ò˙v8ÃÔÌ³ýƒ

