
Jagdish Bhatta 

BSCCSIT.COM CSC 304 ARTIFICIAL INTELLIEGENCE



[Unit 1: Introduction] 
Artificial Intelligence (CSC 355) 

Jagdish Bhatta 
Central Department of Computer Science & Information Technology 

Tribhuvan University 

Downloaded from: http://CSITauthority.blogspot.com



Artificial Intelligence  Chapter- Introduction 

Intelligence 

Scientists have proposed two major “consensus” definitions of intelligence: 

(i) from Mainstream Science on Intelligence (1994);

A very general mental capability that, among other things, involves the ability to reason, 
plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn 
from experience. It is not merely book learning, a narrow academic skill, or test-taking 
smarts. Rather, it reflects a broader and deeper capability for comprehending our 
surroundings- making sense” of things, or “figuring out” what to do. 

(ii) from Intelligence: Knowns and Unknowns (1995);

Individuals differ from one another in their ability to understand complex ideas, to adapt 
effectively to the environment, to learn from experience, to engage in various forms of 
reasoning, [and] to overcome obstacles by taking thought. Although these individual 
differences can be substantial, they are never entirely consistent: a given person’s 
intellectual performance will vary on different occasions, in different domains, as judged 
by different criteria. Concepts of “intelligence” are attempts to clarify and organize this 
complex set of phenomena.   

Thus, intelligence is: 
– the ability to reason
– the ability to understand
– the ability to create
– the ability to Learn from experience
– the ability to plan and execute complex tasks

What is Artificial Intelligence? 

"Giving machines ability to perform tasks normally associated with human

intelligence."  

AI is intelligence of machines and branch of computer science that aims to create it. AI 
consists of design of intelligent agents, which is a program that perceives its environment 
and takes action that maximizes its chance of success. With Ai it comes issues like 
deduction, reasoning, problem solving, knowledge representation, planning, learning, 
natural language processing, perceptron, etc. 

 “Artificial Intelligence is the part of computer science concerned with designing 
intelligence computer systems, that is, systems that exhibit the characteristics we associate 
with intelligence in human behavior.” 
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Different definitions of AI are given by different books/writers. These definitions can be 
divided into two dimensions. 

Systems that think like humans Systems that think rationally 

“The exciting new effort to make computers 
think…..machine with minds, in the full and literal 
sense.” (Haugeland, 1985) 

“[The automaton of] activities that we associate with 
human thinking, activities such as decision-making, 
problem solving, learning…..” (Bellman, 1978) 

“The study of mental faculties through the use of 
computational models.” (Charniak and 
McDermott, 1985) 

“The study of the computations that make it 
possible to perceive, reason, and act.” (Winston, 
1992) 

Systems that act like humans Systems that act rationally 
“ The art of creating machines that perform functions 
that require intelligence when performed by people.” 
(Kurzweil, 1990) 

“The study of how to make computer do things at 
which, at the moment, people are better.” (Rich and 
Knight, 1991) 

“Computational Intelligence is the study of the 
design of intelligent agents.” (Poole et al., 1998) 

“AI… is concerned with intelligent behavior in 
artifacts.”  (Nilsson, 1998) 

Top dimension is concerned with thought processes and reasoning, where as bottom 
dimension addresses the behavior. 

The definition on the left measures the success in terms of fidelity of human performance, 
whereas definitions on the right measure an ideal concept of intelligence, which is called 
rationality.   

Human-centered approaches must be an empirical science, involving hypothesis and 
experimental confirmation. A rationalist approach involves a combination of mathematics 
and engineering.  

Acting Humanly: The Turing Test Approach 

The Turing test, proposed by Alan Turing (1950) was designed to convince the people 
that whether a particular machine can think or not. He suggested a test based on 
indistinguishability from undeniably intelligent entities- human beings. The test involves 
an interrogator who interacts with one human and one machine. Within a given time 
the interrogator has to find out which of the two the human is, and which one the 
machine. 
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The computer passes the test if a human interrogator after posing some written questions, 
cannot tell whether the written response come from human or not.  
 
To pass a Turing test, a computer must have following capabilities: 

 
 Natural Language Processing: Must be able to communicate successfully in 

English 
 Knowledge representation: To store what it knows and hears. 
 Automated reasoning: Answer the Questions based on the stored information. 
 Machine learning: Must be able to adapt in new circumstances. 

 
Turing test avoid the physical interaction with human interrogator. Physical simulation of 
human beings is not necessary for testing the intelligence.  
 
The total Turing test includes video signals and manipulation capability so that the 
interrogator can test the subject’s perceptual abilities and object manipulation ability. To 
pass the total Turing test computer must have following additional capabilities: 
 
 Computer Vision: To perceive objects  
 Robotics: To manipulate objects and move 

 
 
Thinking Humanly: Cognitive modeling approach 

 
If we are going to say that a given program thinks like a human, we must have some way 
of determining how humans think. We need to get inside  the actual workings of human 
minds. There are two ways to do this: 
 
  – through introspection: catch our thoughts while they go by 

– through psychological experiments.  
 
Once we have precise theory of mind, it is possible to express the theory as a computer 
program. 
 
The field of cognitive science brings together computer models from AI and experimental 
techniques from psychology to try to construct precise and testable theories of the 
workings of the human mind. 
   
Think rationally: The laws of thought approach 
 
Aristotal was one of the first who attempt to codify the right thinking that is irrefutable 
reasoning process. He gave Syllogisms that always yielded correct conclusion when 
correct premises are given. 
 
For example: 

Ram is a man 
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All men are mortal 
 Ram is mortal

These law of thought were supposed to govern the operation of mind: This study initiated 
the field of logic. The logicist tradition in AI hopes to create intelligent systems using logic 
programming. However there are two obstacles to this approach. First, It is not easy to take 
informal knowledge and state in the formal terms required by logical notation, particularly 
when knowledge is not 100% certain. Second, solving problem principally is different 
from doing it in practice. Even problems with certain dozens of fact may exhaust the 
computational resources of any computer unless it has some guidance as which reasoning 
step to try first. 

Acting Rationally: The rational Agent approach: 

Agent is something that acts. 

Computer agent is expected to have following attributes: 
 Autonomous control
 Perceiving their environment
 Persisting over a prolonged period of time
 Adapting to change
 And capable of taking on another’s goal

Rational behavior: doing the right thing. 

The right thing: that which is expected to maximize goal achievement, given the available 
information. 

Rational Agent is one that acts so as to achieve the best outcome or, when there is 
uncertainty, the best expected outcome.  

In the “laws of thought” approach to AI, the emphasis was given to correct inferences. 
Making correct inferences is sometimes part of being a rational agent, because one way to 
act rationally is to reason logically to the conclusion and act on that conclusion. On the 
other hand, there are also some ways of acting rationally that cannot be said to involve 
inference. For Example, recoiling from a hot stove is a reflex action that usually more

successful than a slower action taken after careful deliberation. 

Advantages: 
 It is more general than laws of thought approach, because correct inference is just

one of several mechanisms for achieving rationality.
 It is more amenable to scientific development than are approaches based on human

behavior or human thought because the standard of rationality is clearly defined
and completely general.
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Characteristics of A.I. Programs  

 Symbolic Reasoning: reasoning about objects represented by symbols, and their 
properties and relationships, not just numerical calculations.  

 Knowledge: General principles are stored in the program and used for reasoning 
about novel situations.  

 Search: a ``weak method'' for finding a solution to a problem when no direct 
method exists. Problem: combinatoric explosion of possibilities.  

 Flexible Control: Direction of processing can be changed by changing facts in the 
environment.  

Foundations of AI: 
 
Philosophy:  
Logic,  reasoning, mind as a physical system, foundations of learning, language and 
rationality. 
 
 Where does knowledge come from? 
 How does knowledge lead to action? 
 How does mental mind arise from physical brain? 
 Can formal rules be used to draw valid conclusions? 

 
Mathematics: 
Formal  representation and proof algorithms, computation, undecidability, intractability, 
probability. 
 
 What are the formal rules to draw the valid conclusions? 
 What can be computed? 
 How do we reason with uncertain information? 

 
Psychology:  
Adaptation,  phenomena of perception and motor control. 
 
 How humans and animals think and act? 

Economics: 
Formal theory of rational decisions, game theory, operation research. 
 
 How should we make decisions so as to maximize payoff? 
 How should we do this when others may not go along? 
 How should we do this when the payoff may be far in future? 

 
Linguistics:  
Knowledge representation, grammar 
 
 How does language relate to thought? 
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Neuroscience:  
Physical substrate for mental activities 
 
 How do brains process information? 

 
Control theory:  
Homeostatic systems, stability, optimal agent design 

 
 How can artifacts operate under their own control? 

 
 
Brief history of AI 
 
   
– 1943: Warren Mc Culloch and Walter Pitts: a model of artificial boolean neurons to 

perform computations. 
– First steps toward connectionist computation and learning (Hebbian learning). 
– Marvin Minsky and Dann Edmonds (1951) constructed the first neural network 

computer 
 
– 1950: Alan Turing’s “Computing Machinery and Intelligence” 

– First complete vision of AI. 
 
 
The birth of AI (1956): 

- Dartmouth Workshop bringing together top minds on automata theory, neural nets and 
the study of intelligence. 

– Allen Newell and Herbert Simon: The logic theorist (first nonnumeric thinking 
program used for theorem proving) 

– For the next 20 years the field was dominated by these participants. 
 
Great expectations (1952-1969): 

– Newell and Simon introduced the General Problem Solver. 
– Imitation of human problem-solving 

– Arthur Samuel (1952-) investigated game playing (checkers ) with great success. 
– John McCarthy(1958-) : 

– Inventor of Lisp (second-oldest high-level language) 
– Logic oriented, Advice Taker (separation between knowledge and reasoning) 

 
– Marvin Minsky (1958 -) 

– Introduction of microworlds that appear to require intelligence to solve: e.g. blocks-
world. 

– Anti-logic orientation, society of the mind. 
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Collapse in AI research (1966 - 1973): 

– Progress was slower than expected. 
– Unrealistic predictions. 

– Some systems lacked scalability. 
– Combinatorial explosion in search. 

– Fundamental limitations on techniques and representations. 
– Minsky and Papert (1969) Perceptrons. 

 
AI revival through knowledge-based systems (1969-1970): 

– General-purpose vs. domain specific 
- E.g. the DENDRAL project  (Buchanan et al. 1969) 

First successful knowledge intensive system. 
 

– Expert systems  
- MYCIN to diagnose blood infections (Feigenbaum et al.) 

- Introduction of uncertainty in reasoning. 
 

– Increase in knowledge representation research. 
- Logic, frames, semantic nets, … 
 

AI becomes an industry (1980 - present): 

– R1 at DEC (McDermott, 1982) 
– Fifth generation project in Japan (1981) 
– American response … 
 
  Puts an end to the AI winter. 
 
Connectionist revival (1986 - present): (Return of Neural Network): 

– Parallel distributed processing (RumelHart and McClelland, 1986); backprop. 
 
AI becomes a science (1987 - present): 

– In speech recognition: hidden markov models 
– In neural networks 
– In uncertain reasoning and expert systems: Bayesian network formalism 
 
 
The emergence of intelligent agents (1995 - present): 

– The whole agent problem: 
“How does an agent act/behave embedded in real environments with continuous 
sensory inputs” 
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Applications of AI:  (Describe these application areas yourself) 

 Autonomous planning and scheduling

 Game playing

 Autonomous Control

 Expert Systems

 Logistics Planning

 Robotics

 Language understanding and problem solving

 Speech Recognition

 Computer Vision

Knowledge: 

Knowledge is a theoretical or practical understanding of a subject or a domain. Knowledge 
is also the sum of what is currently known. 

Knowledge is “the sum of what is known: the body of truth, information, and principles 
acquired by mankind.”  Or, "Knowledge is what I know, Information is what we know." 

There are many other definitions such as: 
 

- Knowledge is "information combined with experience, context, interpretation, and
reflection. It is a high-value form of information that is ready to apply to decisions and
actions." (T. Davenport et al., 1998)

- Knowledge is “human expertise stored in a person’s mind, gained through experience,
and interaction with the person’s environment." (Sunasee and Sewery, 2002)

- Knowledge is “information evaluated and organized by the human mind so that it can be
used purposefully, e.g., conclusions or explanations." (Rousa, 2002)

Knowledge consists of information that has been: 
– interpreted,
– categorised,
– applied, experienced and revised.
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In general, knowledge is more than just data, it consist of: facts, ideas, beliefs, heuristics, 
associations, rules, abstractions, relationships, customs. 

Research literature classifies knowledge as follows: 

Classification-based Knowledge » Ability to classify information
Decision-oriented Knowledge » Choosing the best option
Descriptive knowledge » State of some world (heuristic)
Procedural knowledge » How to do something
Reasoning knowledge » What conclusion is valid in what situation?
Assimilative knowledge » What its impact is?

Knowledge is important in AI for making intelligent machines. Key issues confronting the 
designer of AI system are: 

Knowledge acquisition: Gathering the knowledge from the problem domain to solve the 
AI problem.  

Knowledge representation: Expressing the identified knowledge into some knowledge 
representation language such as propositional logic, predicate logic etc. 

Knowledge manipulation: Large volume of knowledge has no meaning until up to it is 
processed to deduce the hidden aspects of it. Knowledge is manipulated to draw 
conclusions from knowledgebase. 

Importance of Knowledge: 

Learning: 

It is concerned with design and development of algorithms that allow computers to evolve 

behaviors based on empirical data such as from sensor data. A major focus of learning is to 

automatically learn to recognize complex patterns and make intelligent decision based on 

data. 

A complete program is said to learn from experience E with respect to some class of tasks 

T and performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E. 
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Intelligent Agents 
 

An Intelligent Agent perceives it environment via sensors and acts rationally upon that 
environment with its effectors (actuators). Hence, an agent gets percepts one at a time, and 
maps this percept sequence to actions. 
 
Properties of the agent 
 

– Autonomous 
– Interacts with other agents plus the environment 
– Reactive to the environment 
– Pro-active (goal- directed) 

 
 
 
 

 
 
 
 
 
 
 

 
 

What do you mean, sensors/percepts and effectors/actions? 
 

For Humans 

– Sensors: Eyes (vision), ears (hearing), skin (touch), tongue (gestation), nose 
(olfaction), neuromuscular system (proprioception) 

– Percepts:  
• At the lowest level – electrical signals from these sensors 
• After preprocessing – objects in the visual field (location, textures, 

colors, …), auditory streams (pitch, loudness, direction), … 
– Effectors: limbs, digits, eyes, tongue, ….. 
– Actions: lift a finger, turn left, walk, run, carry an object, … 

 
The Point: percepts and actions need to be carefully defined, possibly at different levels of 
abstraction 
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A more specific example: Automated taxi driving system 
 

• Percepts: Video, sonar, speedometer, odometer, engine sensors, keyboard input, 
microphone, GPS, … 

• Actions: Steer, accelerate, brake, horn, speak/display, … 
• Goals: Maintain safety, reach destination, maximize profits (fuel, tire wear), obey 

laws, provide passenger comfort, … 
• Environment: Urban streets, freeways, traffic, pedestrians, weather, customers, … 

 
[ Different aspects of driving may require different types of agent programs!] 

 
Challenge!! 

Compare Software with an agent 
Compare Human with an agent 

 
Percept: The Agents perceptual inputs at any given instant. 
Percept Sequence: The complete history of everything the agent has ever perceived. 
 
The agent function is mathematical concept that maps percept sequence to actions. 
 

 
 
 
The agent function will internally be represented by the agent program. 

 
The agent program is concrete implementation of agent function it runs on the physical 
architecture to produce f. 
 
The vacuum-cleaner world: Example of Agent 
 
 
 
 
 
 
 
 
 
 
 
 
Environment: square A and B 
Percepts: [location and content] E.g. [A, Dirty] 

Actions: left, right, suck, and no-op 
 
 
 



f :P* A
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The concept of rationality 
 
A rational agent is one that does the right thing. 

– Every entry in the table is filled out correctly. 
 
What is the right thing? 

– Right action is the one that will cause the agent to be most successful. 
 
Therefore we need some way to measure success of an agent. Performance measures are 
the criterion for success of an agent behavior.  
 
E.g., performance measure of a vacuum-cleaner agent could be amount of dirt cleaned up, 
amount of time taken, amount of electricity consumed, amount of noise generated, etc. 

  
It is better to design Performance measure according to what is wanted in the environment 

instead of how the agents should behave. 
   

It is not easy task to choose the performance measure of an agent. For example if the 
performance measure for automated vacuum cleaner is “The amount of dirt cleaned within 
a certain time” Then a rational agent can maximize this performance by cleaning up the 
dirt , then dumping it all on the floor, then cleaning it up again , and so on. Therefore  
“How clean the floor is” is better choice for performance measure of vacuum cleaner. 
 
What is rational at a given time depends on four things: 

– Performance measure, 
– Prior environment knowledge, 
– Actions, 
– Percept sequence to date (sensors).  
–  

Definition: A rational agent chooses whichever action maximizes the expected value of the 

performance measure given the percept sequence to date and prior environment 

knowledge. 
  
 
 
 

Percept sequence Action 
[A,Clean] Right 
[A, Dirty] Suck 
[B, Clean] Left 
[B, Dirty] Suck 
 ………. …… 
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Environments 
 
To design a rational agent we must specify its task environment. Task environment means: 
PEAS description of the environment: 

– Performance  
– Environment 
– Actuators 
– Sensors 

 
Example: Fully automated taxi: 

 
 PEAS description of the environment: 

Performance: Safety, destination, profits, legality, comfort 

Environment: Streets/freeways, other traffic, pedestrians, weather,, … 

Actuators: Steering, accelerating, brake, horn, speaker/display,… 

Sensors: Video, sonar, speedometer, engine sensors, keyboard, GPS, … 

 

Agent Types: 

 

Refer Book: AI by Russel and Norvig  
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Problem Solving: 
 
Problem solving, particularly in artificial intelligence, may be characterized as a systematic 
search through a range of possible actions in order to reach some predefined goal or 
solution. Problem-solving methods divide into special purpose and general purpose. A 
special-purpose method is tailor-made for a particular problem and often exploits very 
specific features of the situation in which the problem is embedded. In contrast, a general-
purpose method is applicable to a wide variety of problems. One general-purpose 
technique used in AI is means-end analysis—a step-by-step, or incremental, reduction of 
the difference between the current state and the final goal. 
 
Four general steps in problem solving: 

– Goal formulation 
– What are the successful world states 

– Problem formulation 
– What actions and states to consider given the goal 

– Search 
– Determine the possible sequence of actions that lead to the states of 

known values and then choosing the best sequence. 
– Execute 

– Give the solution perform the actions. 
 
Problem formulation:  
 
A problem is defined by: 

   
– An initial state: State from which agent start 
– Successor function: Description of possible actions available to the agent. 
– Goal test: Determine whether the given state is goal state or not 
–  Path cost: Sum of cost of each path from initial state to the given state. 

 
A solution is a sequence of actions from initial to goal state. Optimal solution has the 
lowest path cost. 
 
 
State Space representation 

 
The state space is commonly defined as a directed graph in which each node is a state and 
each arc represents the application of an operator transforming a state to a successor state. 
 

A solution is a path from the initial state to a goal state. 
 
State Space representation of Vacuum World Problem: 
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  States?? two locations with or without dirt: 2 x 22=8 states. 
  Initial state?? Any state can be initial 
  Actions?? {Left, Right, Suck} 
  Goal test?? Check whether squares are clean. 
  Path cost?? Number of actions to reach goal. 

 
For following topics refer Russell and Norvig’s Chapter 3 from pages 87-96. 

Problem Types: Toy Problems & Real World Problems (Discussed in class) . 
            Well Defined Problems (Discussed in class).   
 
Water Leakage Problem: 
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If  
 hall _wet and kitchen_dry 
then 
 leak_in_bathroom 
If 
 hall_wet and bathroom_dry 
then 
 problem_in_kitchen 
If 
 window_closed or  no_rain 
then 
 no_water_from_outside 
 
 
Production System: 
 

A production system (or production rule system) is a computer program typically used 
to provide some form of artificial intelligence, which consists primarily of a set of rules 
about behavior. These rules, termed productions, are a basic representation found useful 
in automated planning, expert systems and action selection. A production system provides 
the mechanism necessary to execute productions in order to achieve some goal for the 
system. 

Productions consist of two parts: a sensory precondition (or "IF" statement) and an action 
(or "THEN"). If a production's precondition matches the current state of the world, then the 
production is said to be triggered. If a production's action is executed, it is said to have 
fired. A production system also contains a database, sometimes called worcking memory, 
which maintains data about current state or knowledge, and a rule interpreter. The rule 
interpreter must provide a mechanism for prioritizing productions when more than one is 
triggered. 

 
The underlying idea of production systems is to represent knowledge in the form of 
condition-action pairs called production rules: 
 
If the condition C is satisfied then the action A is appropriate. 
 
Types of production rules 
 
Situation-action rules 

If it is raining then open the umbrella.  
Inference rules 

If Cesar is a man then Cesar is a person 
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Production system is also called ruled-based system 

Architecture of Production System: 

Short Term Memory: 
- Contains the description of the current state. 

Set of Production Rules:  
- Set of condition-action pairs and defines a single chunk of problem solving 

knowledge. 
Interpreter:  

- A mechanism to examine the short term memory and to determine which rules 
to fire (According to some strategies such as DFS, BFS, Priority, first-
encounter etc) 

 

The execution of a production system can be defined as a series of recognize-act cycles: 
Match –memory contain matched against condition of production rules, this produces a 
subset of production called conflict set. Conflict resolution –one of the production in the 
conflict set is then selected,  Apply the rule. 
 
Consider an example:  
 
Problem: Sorting a string composed of letters a, b & c. 
Short Term Memory: cbaca 
Production Set: 
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Interpreter: Choose one rule according to some strategy.  
 

 
 
 
Production System: The water jug problem 
 
Problem: 
 
There are two jugs, a 4-gallon one and a 3-gallon one. Neither jug has any measuring 
markers on it. There is a pump that can be used to fill the jugs with water. 
How can you get exactly n ( 0, 1, 2, 3, 4) gallons of water into one of the two jugs ? 
 
Solution Paradigm: 
 

- build a simple production system for solving this problem.  
- represent the problem by using the state space paradigm. 

 
 
State = (x, y); where: x represents the number of gallons in the 4-gallon jug; y represents 
the number of gallons in the 3-gallon jug. x ε{0, 1, 2, 3, 4} and y ε{0, 1, 2, 3}. 
 
The initial state represents the initial content of the two jugs. 
 
For instance, it may be (2, 3), meaning that the 4-gallon jug contains 2 gallons of water and 
the 3-gallon jug contains three gallons of water. 
 
The goal state is the desired content of the two jugs. 
 
The left hand side of a production rule indicates the state in which the rule is applicable 
and the right hand side indicates the state resulting after the application of the rule. 
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For instance; 

(x, y) such that x < 4 →(4, y) represents the production 
If the 4-gallon jug is not full then fill it from the pump. 
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The Water Jug Problem: Representation  
 

 
 
 
Constraint Satisfaction Problem: 

A Constraint Satisfaction Problem is characterized by: 

 a set of variables {x1, x2, .., xn},  
 for each variable xi a domain Di with the possible values for that variable, and  
 a set of constraints, i.e. relations, that are assumed to hold between the values of 

the variables. [These relations can be given intentionally, i.e. as a formula, or 
extensionally, i.e. as a set, or procedurally, i.e. with an appropriate generating or 
recognizing function.] We will only consider constraints involving one or two 
variables. 

The constraint satisfaction problem is to find, for each i from 1 to n, a value in Di for xi so 
that all constraints are satisfied. Means that, we must find a value for each of the variables 
that satisfies all of the constraints. 

A CS problem can easily be stated  as a sentence in first order logic, of the form: 

 (exist x1)..(exist xn) (D1(x1) & .. Dn(xn) => C1..Cm) 

A CS problem is usually represented as an undirected graph, called Constraint Graph 
where the nodes are the variables and the edges are the binary constraints. Unary 
cconstraints can be disposed of by just redefining the domains to contain only the values 
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that satisfy all the unary constraints. Higher order constraints are represented by hyperarcs. 
In the following we restrict our attention to the case of unary and binary constraints. 
 
Formally, a constraint satisfaction problem is defined as a triple , where X is a 
set of variables, D is a domain of values, and C is a set of constraints. Every constraint is in 
turn a pair , where t is a tuple of variables and R is a set of tuples of values; all these 
tuples having the same number of elements; as a result R is a relation. An evaluation of the 
variables is a function from variables to values, . Such an evaluation satisfies 
a constraint if . A solution is an 
evaluation that satisfies all constraints. 
 
Constraints 
 

 A constraint is a relation between a local collection of variables. 
 The constraint restricts the values that these variables can simultaneously have. 
 For example, all-diff(X1, X2, X3). This constraint says that X1, X2, and X3 must 

take on different values.  Say that {1,2,3} is the set of values for each of these 
variables then: 

X1=1, X2=2, X3=3 OK X1=1, X2=1,X3=3 NO 
 
The constraints are the key component in expressing a problem as a CSP.  

 The constraints are determined by how the variables and the set of values are 
chosen. 

 Each constraint consists of; 
1. A set of variables it is over. 
2. A specification of the sets of assignments to those variables that satisfy the 

constraint. 
 The idea is that we break the problem up into a set of distinct conditions each of 

which have to be satisfied for the problem to be solved.  
 

Example: In N-Queens:  Place N queens on an N x N chess board so that queen can 
attack any other queen. 
 

 No queen can attack any other queen. 
 Given any two queens Qi and Qj they cannot attack each other.  
 Now we translate each of these individual conditions into a separate constraint. 

o Qi cannot attack Qj(i ≠j) 
 Qi is a queen to be placed in column i, Qj is a queen to be placed in 

column j. 
 The value of Qi and Qj are the rows the queens are to be placed in. 

 Note the translation is dependent on the representation we chose.  
 Queens can attack each other, 

1. Vertically, if they are in the same column---this is impossible as Qi and Qj 
are placed in different columns. 

2. Horizontally, if they are in the same row---we need the constraint Qi≠Qj. 
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3. Along a diagonal, they cannot be the same number of columns apart as they 
are rows apart: we need the constraint  |i-j| ≠|Qi-Qj| ( | | is absolute value) 

 Representing the Constraints; 
1. Between every pair of variables (Qi,Qj) (i ≠j), we have a constraint Cij. 
2. For each Cij, an assignment of values to the variables Qi= A and Qj= B, 

satisfies this constraint if and only if;  
A ≠B 

|   A-B| ≠|i-j|  
 Solutions:  

o A solution to the N-Queens problem will be any assignment of values to the 
variables Q1,…,QN that satisfies all of the constraints.  

o Constraints can be over any collection of variables. In N-Queens we only need 
binary constraints---constraints over pairs of variables.  

 
 
More Examples: Map Coloring Problem (Discussed in class) 
 
Refer Russell and Norvig’s Chapter 5 from pages 165-169. Also have a brief look on 
page 172-173 for forward checking that we have discussed in class. 
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Searching 
 
A search problem 
 
Figure below contains a representation of a map. The nodes represent cities, and the links 
represent direct road connections between cities. The number associated to a link 
represents the length of the corresponding road. 
 
The search problem is to find a path from a city S to a city G 
 

S

A

D

B

E

C

F

G

3

4 4

5 5

42

4
3

 
Figure : A graph representation of a map  

 
This problem will be used to illustrate some search methods. 
 
Search problems are part of a large number of real world applications: 

- VLSI layout 
- Path planning 
- Robot navigation etc. 

 
There are two broad classes of search methods: 

 - uninformed (or blind) search methods; 
 - heuristically informed search methods. 

 
In the case of the uninformed search methods, the order in which potential solution 
paths are considered is arbitrary, using no domain-specific information to judge where the 
solution is likely to lie. 
 
In the case of the heuristically informed search methods, one uses domain-dependent 
(heuristic) information in order to search the space more efficiently. 
 
Measuring problem Solving Performance 
 
We will evaluate the performance of a search algorithm in four ways 

• Completeness: An algorithm is said to be complete if it definitely finds solution 
to the problem, if exist.  

 
• Time Complexity: How long (worst or average case) does it take to find a 

solution? Usually measured in terms of the number of nodes expanded 

Jagdish Bhatta 27 Downloaded from: http://CSITauthority.blogspot.com



Artificial Intelligence    Chapter- Searching 

 
• Space Complexity: How much space is used by the algorithm? Usually 

measured in terms of the maximum number of nodes in memory at a 
time 

 
• Optimality/Admissibility: If a solution is found, is it guaranteed to be an 

optimal one? For example, is it the one with minimum cost? 
 
Time and space complexity are measured in terms of  
 b --  maximum branching factor (number of successor of any node) of the search tree 
d  --  depth of the least-cost solution 
m --  maximum length of any path in the space 

 
Breadth First Search 
 
All nodes are expended at a given depth in the search tree before any nodes at the next 
level are expanded until the goal reached. 
 
Expand shallowest unexpanded node. fringe is implemented as a FIFO queue 
 
Constraint: Do not generate as child node if the node is already parent to avoid more loop.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BFS Evaluation: 
 

  Completeness: 
– Does it always find a solution if one exists? 

– YES 
– If shallowest goal node is at some finite depth d and If b is finite  

 
  Time complexity: 

– Assume a state space where every state has b successors. 

S

A D

B
E

C
F

G

D A

E E B B

A CECFBFD
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– root has b successors, each node at the next level has again b 
successors (total b2), … 

– Assume solution is at depth d 

– Worst case; expand all except the last node at depth d 

– Total no. of nodes generated: 
 b + b2 + b3 + ………………….. bd + ( bd+1 –b) = O(bd+1) 

 
  Space complexity: 

– Each node that is generated must remain in memory 
– Total no. of nodes in memory: 

1+ b + b2 + b3 + ………………….. bd + ( bd+1 –b) = O(bd+1) 
 

Optimal (i.e., admissible): 
– if all paths have the same cost. Otherwise, not optimal but finds solution 

with shortest path length (shallowest solution). If each path does not have 
same path cost shallowest solution may not be optimal 

 
Two lessons: 

– Memory requirements are a bigger problem than its execution time. 
– Exponential complexity search problems cannot be solved by uninformed 

search methods for any but the smallest instances. 
 
DEPTH2 NODES TIME MEMORY 
2 1100 0.11 seconds 1 megabyte 
4 111100 11 seconds 106 megabytes 
6 107 19 minutes 10 gigabytes 
8 109 31 hours 1 terabyte 
10 1011 129 days 101 terabytes 
12 1013 35 years 10 petabytes 
14 1015 3523 years 1 exabyte 

 
 
Depth First Search 
 
Looks for the goal node among all the children of the current node before using the sibling 
of this node i.e. expand deepest unexpanded node.  
Fringe is implemented as a LIFO queue (=stack) 
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DFS Evaluation: 

  
  Completeness; 

– Does it always find a solution if one exists? 

– NO 
– If search space is infinite and search space contains loops then DFS 

may not find solution. 
 

  Time complexity; 
– Let m is the maximum depth of the search tree. In the worst case Solution 

may exist at depth m. 
– root has b successors, each node at the next level has again b successors 

(total b2), … 
– Worst case; expand all except the last node at depth m 

– Total no. of nodes generated: 
   b + b2 + b3 + ………………….. bm = O(bm) 
 

  Space complexity: 
– It needs to store only a single path from the root node to a leaf node, along 

with remaining unexpanded sibling nodes for each node on the path.  
– Total no. of nodes in memory: 

1+ b + b + b + ………………….. b   m  times = O(bm) 
 

Optimal (i.e., admissible): 
– DFS expand deepest node first, if expands entire let sub-tree even if right 

sub-tree contains goal nodes at levels 2 or 3. Thus we can say DFS may not 
always give optimal solution. 

 
 
 
 
 
 

S

A

B

C

G

E

FD
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Uniform Cost Search: 
 

Uniform-cost search (UCS) is modified version of BFS to make optimal. It is basically a 
tree search algorithm used for traversing or searching a weighted tree, tree structure, or 
graph. The search begins at the root node. The search continues by visiting the next node 
which has the least total cost from the root. Nodes are visited in this manner until a goal 
state is reached. 

Typically, the search algorithm involves expanding nodes by adding all unexpanded 
neighboring nodes that are connected by directed paths to a priority queue. In the queue, 
each node is associated with its total path cost from the root, where the least-cost paths are 
given highest priority. The node at the head of the queue is subsequently expanded, adding 
the next set of connected nodes with the total path cost from the root to the respective 
node. The uniform-cost search is complete and optimal if the cost of each step exceeds 
some positive bound ε. 

Does not care about the number of steps, only care about total cost. 
 
•Complete? Yes, if step cost ≥ε (small positive number). 
•Time? Maximum as of BFS 
•Space? Maximum as of BFS. 
•Optimal? Yes 

Consider an example: 
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4

1

341315

11

73612 161810

A

B C

D E F H

I J G1 K L M N G2

Note: Heurisitic 

estimates are not 

used in this search!

Paths from root 

are generated.

4 11

A

B C

11

19

Since B has the least cost, 

we expand it. 

4

34

11

A

C

F H
1415

Node H has the least cost thus far, so we expand it. 

4 11

A

B

4

C

11

A

0

Start with 

root node 

A.

1315

D E 17

B

19

1315

D E 17

Of our 3 choices, C 

has the least cost so 

we’ll expand it.

4

34

11

A

C

F
15

B

19

1315

D E 17

1

N

H

7

G215
21

We have a goal, G2 but 

need to expand other 

branches to see if there is 

another goal with less 

distance.

4

34

11

A

C

F

B

19

1315

E 17

1

N

H

7

G2
15 21

36

L M
21 18

Note: Both 

nodes F and N 

have a cost of 

15, we chose to 

expand the 

leftmost node 

first. We 

continue 

expanding until 

all remaining 

paths are 

greater than 21, 

the cost of G2
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Depth Limited Search: 
 
The problem of unbounded trees can be solve by supplying depth-first search with a 
determined depth limit (nodes at depth are treated as they have no successors) –Depth 
limited search. Depth-limited search is an algorithm to explore the vertices of a graph. It 
is a modification of depth-first search and is used for example in the iterative deepening 
depth-first search algorithm.  
 
Like the normal depth-first search, depth-limited search is an uninformed search. It works 
exactly like depth-first search, but avoids its drawbacks regarding completeness by 
imposing a maximum limit on the depth of the search. Even if the search could still expand 
a vertex beyond that depth, it will not do so and thereby it will not follow infinitely deep 
paths or get stuck in cycles. Therefore depth-limited search will find a solution if it is 
within the depth limit, which guarantees at least completeness on all graphs. 
 
It solves the infinite-path problem of DFS. Yet it introduces another source of problem if 
we are unable to find good guess of l. Let d is the depth of shallowest solution. 

  If l < d then incompleteness results. 
  If l > d then not optimal. 

 
  Time complexity: O( bl ) 
  Space complexity: O ( bl ) 

 
Iterative Deepening Depth First Search:  
 
In this strategy, depth-limited search is run repeatedly, increasing the depth limit with each 
iteration until it reaches d, the depth of the shallowest goal state. On each iteration, IDDFS 
visits the nodes in the search tree in the same order as depth-first search, but the 
cumulative order in which nodes are first visited, assuming no pruning, is effectively 
breadth-first. 
 
IDDFS combines depth-first search's space-efficiency and breadth-first search's 
completeness (when the branching factor is finite). It is optimal when the path cost is a 
non-decreasing function of the depth of the node. 
 
The technique of iterative deepening is based on this idea. Iterative deepening is depth-first 
search to a fixed depth in the tree being searched. If no solution is found up to this depth 
then the depth to be searched is increased and the whole `bounded' depth-first search begun 
again. 
 
IIt works by setting a depth of search -say, depth 1- and doing depth-first search to that 
depth. If a solution is found then the process stops -otherwise, increase the depth by, say, 1 
and repeat until a solution is found. Note that every time we start up a new bounded depth 
search we start from scratch - i.e. we throw away any results from the previous search. 
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Now iterative deepening is a popular method of search. We explain why this is so.  

Depth-first search can be implemented to be much cheaper than breadth-first search in 
terms of memory usage -but it is not guaranteed to find a solution even where one is 
guaranteed.  

On the other hand, breadth-first search can be guaranteed to terminate if there is a winning 
state to be found and will always find the `quickest' solution (in terms of how many steps 
need to be taken from the root node). It is, however, a very expensive method in terms of 
memory usage.  

Iterative deepening is liked because it is an effective compromise between the two other 
methods of search. It is a form of depth-first search with a lower bound on how deep the 
search can go. Iterative deepening terminates if there is a solution. It can produce the same 
solution that breadth-first search would produce but does not require the same memory 
usage (as for breadth-first search).  

Note that depth-first search achieves its efficiency by generating the next node to explore 
only when this needed. The breadth-first search algorithm has to grow all the search paths 
available until a solution is found -and this takes up memory. Iterative deepening achieves 
its memory saving in the same way that depth-first search does -at the expense of redoing 
some computations again and again (a time cost rather than a memory one). In the search 
illustrated, we had to visit node d three times in all! 

 Complete (like BFS) 
 Has linear memory requirements (like DFS) 
 Classical time-space tradeoff. 
 This is the preferred method for large state spaces, where the solution path length is 

unknown. 
 
The overall idea goes as follows until the goal node is not found i.e. the depth limit is 
increased gradually. 
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Iterative Deepening search evaluation: 
 

  Completeness: 
– YES (no infinite paths) 

  Time complexity: 
– Algorithm seems costly due to repeated generation of certain states. 
– Node generation: 

  level d : once 
  level d-1: 2 
  level d-2: 3 
  … 
  level 2: d-1 
  level 1: d 

– Total no. of nodes generated: 
d.b +(d-1). b2 + (d-2). b3 + …………………..+1. bd = O(bd) 

Space complexity: 
– It needs to store only a single path from the root node to a leaf node, along 

with remaining unexpanded sibling nodes for each node on the path.  
– Total no. of nodes in memory:  

1+ b + b + b + ………………….. b   d  times = O(bd) 
  Optimality:  

– YES if path cost is non-decreasing function of the depth of the node. 
 

Notice that BFS generates some nodes at depth d+1, whereas IDS does not. The 

result is that IDS is actually faster than BFS, despite the repeated generation of 

node. 

 
Example: Number of nodes generated for b=10 and d=5 solution at far right 
 
N(IDS) = 50 + 400 + 3000 + 20000 + 100000 = 123450 
 
N(BFS) = 10 + 100 + 1000 + 10000 + 100000 + 999990 = 1111100 

 
 
 
Bidirectional Search: 
 
This is a search algorithm which replaces a single search graph, which is likely to with two 
smaller graphs -- one starting from the initial state and one starting from the goal state. It 
then, expands nodes from the start and goal state simultaneously. Check at each stage if the 
nodes of one have been generated  by the other, i.e, they meet in the middle.  If so, the path 
concatenation is the solution. 

Jagdish Bhatta 35 Downloaded from: http://CSITauthority.blogspot.com



Artificial Intelligence    Chapter- Searching 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 Completeness: yes 
 Optimality: yes (If done with correct strategy- e.g. breadth first) 
 Time complexity: O(bd/2) 
 Space complexity: O(bd/2) 

 
 

Problems: generate predecessors; many goal states; efficient check for node already 
visited by other half of the search; and, what kind of search.  
 
Drawbacks of uniformed search : 
 

 Criterion to choose next node to expand depends only on a global criterion: level. 
 Does not exploit the structure of the problem. 
 One may prefer to use a more flexible rule, that takes advantage of what is being 

discovered on the way, and hunches about what can be a good move.  
 Very often, we can select which rule to apply by comparing the current state and 

the desired state 
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Heuristic Search: 
 
Heuristic Search Uses domain-dependent (heuristic) information in order to search the 
space more efficiently. 
 
Ways of using heuristic information: 

 
 • Deciding which node to expand next, instead of doing the expansion in a strictly 

breadth-first or depth-first order; 
 
 • In the course of expanding a node, deciding which successor or successors to generate, 

instead of blindly generating all possible successors at one time; 
 
 • Deciding that certain nodes should be discarded, or pruned, from the search space. 
 
Heuristic Searches - Why Use?  
 

 It may be too resource intensive (both time and space) to use a blind search  
 Even if a blind search will work we may want a more efficient search method  

 
Informed Search uses domain specific information to improve the search pattern 

– Define a heuristic function, h(n), that estimates the "goodness" of a node n. 
– Specifically, h(n) = estimated cost (or distance) of minimal cost path from n 

to a goal state. 
– The heuristic function is an estimate, based on domain-specific information 

that is computable from the current state description, of how close we are to 
a goal. 

 

 
Best-First Search 
 
Idea: use an evaluation function f(n) that gives an indication of which node to expand next 
for each node. 

– usually gives an estimate to the goal. 
– the node with the lowest value is expanded first. 

 
A key component of f(n) is a heuristic function, h(n),which is a additional knowledge of 
the problem.  
 
There is a whole family of best-first search strategies, each with a different evaluation 
function. 
 
Typically, strategies use estimates of the cost of reaching the goal and try to minimize it. 
 
Special cases: based on the evaluation function. 

– Greedy best-first search 
– A*search  
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Greedy Best First Search 
 
The best-first search part of the name means that it uses an evaluation function to select 
which node is to be expanded next. The node with the lowest evaluation is selected for 
expansion because that is the best node, since it supposedly has the closest path to the goal 
(if the heuristic is good). Unlike A* which uses both the link costs and a heuristic of the 
cost to the goal, greedy best-first search uses only the heuristic, and not any link costs. A 
disadvantage of this approach is that if the heuristic is not accurate, it can go down paths 
with high link cost since there might be a low heuristic for the connecting node. 
 
Evaluation function f(n) = h(n) (heuristic) = estimate of cost from n to goal. 
 

e.g., hSLD(n) = straight-line distance from n to goal 
 
Greedy best-first search expands the node that appears to be closest to goal. The greedy 
best-first search algorithm is O(bm) in terms of space and time complexity. (Where b is the 
average branching factor (the average number of successors from a state), and m is the 
maximum depth of the search tree.) 
 
Example: Given following graph of cities, starting at Arad city, problem is to reach to 
the Bucharest. 
 
 
 
 
 

 
 
Solution using greedy best first can be as below: 
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A* Search : A Better Best-First Strategy 
 
 
Greedy Best-first search 

 minimizes estimated cost h(n) from current node n to goal; 
 is informed but (almost always) suboptimal and incomplete. 

 
Admissible Heuristic: 
 
A heuristic function is said to be admissible if it is no more than the lowest-cost path to 
the goal. In other words, a heuristic is admissible if it never overestimates the cost of 
reaching the goal. An admissible heuristic is also known as an optimistic heuristic. 

An admissible heuristic is used to estimate the cost of reaching the goal state in an 
informed search algorithm. In order for a heuristic to be admissible to the search problem, 
the estimated cost must always be lower than the actual cost of reaching the goal state. The 
search algorithm uses the admissible heuristic to find an estimated optimal path to the goal 
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state from the current node. For example, in A* search the evaluation function (where n is 
the current node) is: f(n) = g(n) + h(n) 

where; 

f(n) = the evaluation function. 
g(n) = the cost from the start node to the current node 
h(n) = estimated cost from current node to goal. 

h(n) is calculated using the heuristic function. With a non-admissible heuristic, the A* 

algorithm would overlook the optimal solution to a search problem due to an 

overestimation in f(n). 

It is obvious that the SLD heuristic function is admissible as we can never find a shorter 

distance between any two towns. 

 

Formulating admissible heuristics: 

 n is a node 
 h is a heuristic 
 h(n) is cost indicated by h to reach a goal from n 
 C(n) is the actual cost to reach a goal from n 
 h is admissible if 

 
 
For Example: 8-puzzle 
 
Figure shows 8-puzzle start state and goal state. The 
solution is 26 steps long. 

 

h1(n) = number of misplaced tiles 
h2(n) = sum of the distance of the tiles from their goal position (notdiagonal). 
h1(S) = ? 8 
h2(S) = ? 3+1+2+2+2+3+3+2 = 18 
hn(S) = max{h1(S), h2(S)}= 18  

 
Consistency ( Monotonicity ) 
 
A heuristic is said to be consistent if  for any node N and any successor N’ of N , estimated 
cost to reach to the goal from node N is less than the sum of step cost from N to N’ and 
estimated cost from node N’ to goal node.  
i.e h(n) ≤ c(n, n’) + h(n’) 
 Where;  
  h(n) = Estimated cost to reach to the goal node from node n 

c(n, n’) = actual cost from n to n’ 
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A* Search: 
 
A* is a best first, informed graph search algorithm. A* is different from other best first search 
algorithms in that it uses a heuristic function h(x) as well as the path cost to the node g(x), in 
computing the cost f(x) = h(x) + g(x) for the node.  The h(x) part of the f(x) function must be an 
admissible heuristic; that is, it must not overestimate the distance to the goal. Thus, for an 
application like routing, h(x) might represent the straight-line distance to the goal, since 
that is physically the smallest possible distance between any two points or nodes. 
 
It finds a minimal cost-path joining the start node and a goal node for node n. 
Evaluation function: f(n) = g(n) + h(n) 
 
Where, 

g(n) = cost so far to reach n from root 
h(n) = estimated cost to goal from n 
f(n) = estimated total cost of path through n to goal 

 
 combines the two by minimizing f(n) = g(n) + h(n); 
 is informed and, under reasonable assumptions, optimal and complete. 

 
As A* traverses the graph, it follows a path of the lowest known path, keeping a sorted 
priority queue of alternate path segments along the way. If, at any point, a segment of the 
path being traversed has a higher cost than another encountered path segment, it abandons 
the higher-cost path segment and traverses the lower-cost path segment instead. This 
process continues until the goal is reached. 
 
 
A* Search Example: 
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Admissibility and Optimality: 

A* is admissible and considers fewer nodes than any other admissible search algorithm 
with the same heuristic. This is because A* uses an "optimistic" estimate of the cost of a 
path through every node that it considers—optimistic in that the true cost of a path through 
that node to the goal will be at least as great as the estimate. But, critically, as far as A* 
"knows", that optimistic estimate might be achievable. 
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Here is the main idea of the proof: 

When A* terminates its search, it has found a path whose actual cost is lower than the 
estimated cost of any path through any open node. But since those estimates are optimistic, 
A* can safely ignore those nodes. In other words, A* will never overlook the possibility of 
a lower-cost path and so is admissible. 

Suppose, now that some other search algorithm B terminates its search with a path whose 
actual cost is not less than the estimated cost of a path through some open node. Based on 
the heuristic information it has, Algorithm B cannot rule out the possibility that a path 
through that node has a lower cost. So while B might consider fewer nodes than A*, it 
cannot be admissible. Accordingly, A* considers the fewest nodes of any admissible 
search algorithm. 

This is only true if both: 

 A* uses an admissible heuristic. Otherwise, A* is not guaranteed to expand fewer 
nodes than another search algorithm with the same heuristic. 

 A* solves only one search problem rather than a series of similar search problems. 
Otherwise, A* is not guaranteed to expand fewer nodes than incremental heuristic 
search algorithms 

Thus, if estimated distance h(n) never exceed the true distance h*(n) between the current 
node to goal node, the A* algorithm will always find a shortest path -This is known as the 
admissibility of A* algorithm and h(n) is a admissible heuristic. 
 
IF 0 =< h (n) =< h*(n), and costs of all arcs are positive 
THEN A* is guaranteed to find a solution path of minimal cost if any solution path exists. 
 
Theorem: A* is optimal if h(n) is admissible. 
 
Suppose suboptimal goal G2 in the queue. 
Let n be an unexpanded node on a shortest path to optimal 
goal G and C* be the cost of optimal goal node. 
 
f(G2 )  = h (G2) + g(G2 )  
f(G2 ) = g(G2), since h(G2 )=0 
f(G2 ) > C* …………..(1) 

 
 Again, since h(n) is admissible, It does not overestimates the cost of completing the 
solution path. 

f(n) = g(n) + h(n) ≤C*  ……………(2) 
 

Now from (1) and (2) 
f(n) ≤ C* < f(G2) 
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Since f(G2) > f(n), A* will never select G2 for expansion. Thus A* gives us optimal 
solution when heuristic function is admissible. 
 
 
Theorem: If h(n) is consistent , then the values of f(n) along the path are non-

decreasing. 

 
Suppose n’ is successor of n, then 

g(n’) = g(n) + C(n, a, n’) 
We know that, 

f(n’) = g(n’) + h(n’) 
f(n’) = g(n) + C(n, a, n’) + h(n’) …………….(1) 

A heuristic is consistent if 
h(n) ≤ C(n, a, n’) + h(n’)……………………(2) 

Now from (1) and (2) 
 f(n’) = g(n) + C(n, a, n’) + h(n’) ≥ g(n) + h(n) = f(n) 

  f(n’) ≥ f(n) 
f(n) is non-decreasing along any path. 

 
 
One more example: Maze Traversal (for A* Search) 
 
Problem: To get from square A3 to square E2, one step at a time, avoiding obstacles 
(black squares). 
 
Operators: (in order)  

• go_left(n)  
• go_down(n)  
• go_right(n)  

Each operator costs 1. 
Heuristic: Manhattan distance 
 
Start Position: A3 
Goal: E2 
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Hill Climbing Search: 

Hill climbing can be used to solve problems that have many solutions, some of which are 
better than others. It starts with a random (potentially poor) solution, and iteratively 
makes small changes to the solution, each time improving it a little. When the 
algorithm cannot see any improvement anymore, it terminates. Ideally, at that point 
the current solution is close to optimal, but it is not guaranteed that hill climbing will ever 
come close to the optimal solution. 

For example, hill climbing can be applied to the traveling salesman problem. It is easy to 
find a solution that visits all the cities but will be very poor compared to the optimal 
solution. The algorithm starts with such a solution and makes small improvements to it, 
such as switching the order in which two cities are visited. Eventually, a much better route 
is obtained. In hill climbing the basic idea is to always head towards a state which is better 
than the current one. So, if you are at town A and you can get to town B and town C (and 
your target is town D) then you should make a move IF town B or C appear nearer to town 
D than town A does. 

The hill climbing can be described as follows:  

1. Start with current-state = initial-state.  
2. Until current-state = goal-state OR there is no change in current-state do:  

 Get the successors of the current state and use the evaluation function to 
assign a score to each successor.  

 If one of the successors has a better score than the current-state then set the 
new current-state to be the successor with the best score.  

Hill climbing terminates when there are no successors of the current state which are better 
than the current state itself. 
 
Hill climbing is depth-first search with a heuristic measurement that orders choices as 

nodes are expanded. It always selects the most promising successor of the node last 

expanded. 

 
For instance, consider that the most promising successor of a node is the one that has the 
shortest straight-line distance to the goal node G. In figure below, the straight line 
distances between each city and goal G is indicated in square brackets, i.e. the heuristic.  
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The hill climbing search from S to G proceeds as follows: 
S

A

A

G

E

FB

88.5

8.5 6

6 3

D

 
Exercise:  
Apply the hill climbing algorithm to find a path from S to G, considering that the most 
promising successor of a node is its closest neighbor. 
 

S

A

D

B

E

C

F

G
3

4 4

5 5

42

4

3

 
 
Note: 
The difference between the hill climbing search method and the best first search method is 
the following one: 

 the best first search method selects for expansion the most promising leaf node of 
the current search tree; 

 the hill climbing search method selects for expansion the most promising successor 
of the node last expanded. 

 
Problems with Hill Climbing 
: 

– Gets stuck at local minima when we reach a position where there are no 
better neighbors, it is not a guarantee that we have found the best solution. 
Ridge is a sequence of local maxima. 

– Another type of problem we may find with hill climbing searches is finding 
a plateau. This is an area where the search space is flat so that all neighbors 
return the same evaluation 
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Simulated Annealing: 
 
It is motivated by the physical annealing process in which material is heated and slowly 
cooled into a uniform structure. Compared to hill climbing the main difference is that SA 
allows downwards steps. Simulated annealing also differs from hill climbing in that a 
move is selected at random and then decides whether to accept it. If the move is better than 
its current position then simulated annealing will always take it. If the move is worse (i.e. 
lesser quality) then it will be accepted based on some probability. The probability of 
accepting a worse state is given by the equation 
 

P = exponential(-c /t) > r   
 
Where 

    c = the change in the evaluation function 
    t = the current value 
    r = a random number between 0 and 1 
 

The probability of accepting a worse state is a function of both the current value and the 
change in the cost function. The most common way of implementing an SA algorithm is to 
implement hill climbing with an accept function and modify it for SA 
 
By analogy with this physical process, each step of the SA algorithm replaces the current 
solution by a random "nearby" solution, chosen with a probability that depends on the 
difference between the corresponding function values and on a global parameter T (called 
the temperature), that is gradually decreased during the process. The dependency is such 
that the current solution changes almost randomly when T is large, but increasingly 
"downhill" as T goes to zero. The allowance for "uphill" moves saves the method from 
becoming stuck at local optima—which are the bane of greedier methods. 
 
Game Search: 
 
Games are a form of multi-agent environment 

– What do other agents do and how do they affect our success? 
– Cooperative vs. competitive multi-agent environments. 
– Competitive multi-agent environments give rise to adversarial search often 

known as games 
Games – adversary 

– Solution is strategy (strategy specifies move for every possible opponent reply). 
– Time limits force an approximate solution 
– Evaluation function: evaluate ―goodness‖ of  game position 
– Examples: chess, checkers, Othello, backgammon  

 
Difference between the search space of a game and the search space of a problem: In the 
first case it represents the moves of two (or more) players, whereas in the latter case it 
represents the "moves" of a single problem-solving agent. 
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An exemplary game: Tic-tac-toe 
 
There are two players denoted by X and O. They are alternatively writing their letter in one 
of the 9 cells of a 3 by 3 board. The winner is the one who succeeds in writing three letters 
in line. 
 
The game begins with an empty board. It ends in a win for one player and a loss for the 
other, or possibly in a draw. 
 
A complete tree is a representation of all the possible plays of the game. The root node is 
the initial state, in which it is the first player's turn to move (the player X). 
The successors of the initial state are the states the player can reach in one move, their 
successors are the states resulting from the other player's possible replies, and so on. 
 
Terminal states are those representing a win for X, loss for X, or a draw. 
 
Each path from the root node to a terminal node gives a different complete play of the 
game. Figure given below shows the initial search space of Tic-Tac-Toe.  

 
 

 
  

Fig:  Partial game tree for Tic-Tac-Toe 
  
 

Jagdish Bhatta 49 Downloaded from: http://CSITauthority.blogspot.com



Artificial Intelligence    Chapter- Searching 

 

A game can be formally defined as a kind of search problem as below: 
 Initial state: It includes the board position and identifies the playesr to move. 
 Successor function: It gives a list of (move, state) pairs each indicating a legal 

move and resulting state. 
 Terminal test: This determines when the game is over. States where the game is 

ended are called terminal states. 
 Utility function: It gives numerical value of terminal states. E.g. win (+1), loose (-

1) and draw (0). Some games have a wider variety of possible outcomes eg. 
ranging from +92 to -192. 

 
The Minimax Algorithm: 
 
Let us assign the following values for the game: 1 for win by X, 0 for draw, -1 for loss by 
X. 
 
Given the values of the terminal nodes (win for X (1), loss for X (-1), or draw (0)), the 
values of the non-terminal nodes are computed as follows: 

 the value of a node where it is the turn of player X to move is the maximum of the 
values of its successors (because X tries to maximize its outcome); 

 the value of a node where it is the turn of player O to move is the minimum of the 
values of its successors (because O tries to minimize the outcome of X). 

 
Figure below shows how the values of the nodes of the search tree are computed from the 
values of the leaves of the tree. The values of the leaves of the tree are given by the rules of 
the game: 

 1 if there are three X in a row, column or diagonal; 
 -1 if there are three O in a row, column or diagonal; 
 0 otherwise 
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An Example: 
 
Consider the following game tree (drawn from the point of view of the Maximizing 
player): 
 

3 75 3 41 5

Min b

d e f

h i j k l m n

29 7

g

o p r

c

Ma x a

 
 

 
Show what moves should be chosen by the two players, assuming that both are using the 
mini-max procedure. 
 

Solution: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16: The mini-max path for the game tree 
 
 
Alpha-Beta Pruning: 
 
The problem with minimax search is that the number if game states it has examine is 
exponential in the number of moves. Unfortunately, we can’t eliminate the exponent, but 
we can effectively cut it in half. The idea is to compute the correct minimax decision 
without looking at every node in the game tree, which is the concept behind pruning. Here 
idea is to eliminate large parts of the tree from consideration. The particular technique for 
pruning that we will discuss here is ―Alpha-Beta Pruning‖. When this approach is applied 
to a standard minimax tree, it returns the same move as minimax would, but prunes away 
branches that cannot possibly influence the final decision. Alpha-beta pruning can be 
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applied to trees of any depth, and it is often possible to prune entire sub-trees rather than 
just leaves. 
 
Alpha-beta pruning is a technique for evaluating nodes of a game tree that eliminates 
unnecessary evaluations. It uses two parameters, alpha and beta.  
 
Alpha: is the value of the best (i.e. highest value) choice we have found so far at any 
choice point along the path for MAX. 
 
Beta: is the value of the best (i.e. lowest-value) choice we have found so far at any choice 
point along the path for MIN. 
 
Alpha-beta search updates the values of alpha and beta as it goes along and prunes the 
remaining branches at a node as soon as the value of the current node is known to be worse 
than the current alpha or beta for MAX or MIN respectively. 
 
An alpha cutoff: 
 
To apply this technique, one uses a parameter called alpha that represents a lower bound 
for the achievement of the Max player at a given node. 
 
Let us consider that the current board situation corresponds to the node A in the following 
figure. 

 
 

  
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17: Illustration of the alpha cut-off. 
 
The minimax method uses a depth-first search strategy in evaluating the descendants of a 
node. It will therefore estimate first the value of the node B. Let us suppose that this value 
has been evaluated to 15, either by using a static evaluation function, or by backing up 
from descendants omitted in the figure. If Max will move to B then it is guaranteed to 
achieve 15. Therefore 15 is a lower bound for the achievement of the Max player (it may 
still be possible to achieve more, depending on the values of the other descendants of A). 

A

B C

D E

Max

Min Min

Max Max

f(B) = 15

f(D) = 10

f(C) 10 = 15

 = 15
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Therefore, the value of  at node B is 15. This value is transmitted upward to the node A 
and will be used for evaluating the other possible moves from A. 
  
To evaluate the node C, its left-most child D has to be evaluated first. Let us assume that 
the value of D is 10 (this value has been obtained either by applying a static evaluation 
function directly to D, or by backing up values from descendants omitted in the figure). 
Because this value is less than the value of , the best move for Max is to node B, 
independent of the value of node E that need not be evaluated. Indeed, if the value of E is 
greater than 10, Min will move to D which has the value 10 for Max. Otherwise, if the 
value of E is less than 10, Min will move to E which has a value less than 10. So, if Max 
moves to C, the best it can get is 10, which is less than the value  = 15 that would be 
gotten if Max would move to B. Therefore, the best move for Max is to B, independent of 
the value of E. The elimination of the node E is an alpha cutoff. 

 
One should notice that E may itself have a huge subtree. Therefore, the elimination of E 
means, in fact, the elimination of this subtree. 

 
 

A beta cutoff: 
 
To apply this technique, one uses a parameter called beta that represents an upper bound 
for the achievement of the Max player at a given node. 
 
In the above tree, the Max player moved to the node B. Now it is the turn of the Min player 
to decide where to move: 

 

 
Figure 3.18: Illustration of the beta cut-off. 
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The Min player also evaluates its descendants in a depth-first order. 
 
Let us assume that the value of F has been evaluated to 15. From the point of view of Min, 
this is an upper bound for the achievement of Min (it may still be possible to make Min 
achieve less, depending of the values of the other descendants of B). Therefore the value of 
 at the node F is 15. This value is transmitted upward to the node B and will be used for 
evaluating the other possible moves from B. 
 
To evaluate the node G, its left-most child H is evaluated first. Let us assume that the value 
of H is 25 (this value has been obtained either by applying a static evaluation function 
directly to H, or by backing up values from descendants omitted in the figure). Because 
this value is greater than the value of , the best move for Min is to node F, independent of 
the value of node I that need not be evaluated. Indeed, if the value of I is v ≥ 25, then Max 
(in G) will move to I. Otherwise, if the value of I is less than 25, Max will move to H. So 
in both cases, the value obtained by Max is at least 25 which is greater than  (the best 
value obtained by Max if Min moves to F). 
 
Therefore, the best move for Min is at F, independent of the value of I. The elimination of 
the node I is a beta cutoff. 
 
One should notice that by applying alpha and beta cut-off, one obtains the same results as 
in the case of mini-max, but (in general) with less effort. This means that, in a given 
amount of time, one could search deeper in the game tree than in the case of mini-max. 
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Knowledge Representation 
 
Knowledge:  
  
Knowledge is a theoretical or practical understanding of a subject or a domain. Knowledge is 
also the sum of what is currently known. 

Knowledge is ―the sum of what is known: the body of truth, information, and principles 
acquired by mankind.‖  Or, "Knowledge is what I know, Information is what we know." 

There are many other definitions such as: 
 

- Knowledge is "information combined with experience, context, interpretation, and 
reflection. It is a high-value form of information that is ready to apply to decisions and 
actions." (T. Davenport et al., 1998) 

- Knowledge is ―human expertise stored in a person‘s mind, gained through experience, and 
interaction with the person‘s environment." (Sunasee and Sewery, 2002) 

- Knowledge is ―information evaluated and organized by the human mind so that it can be 
used purposefully, e.g., conclusions or explanations." (Rousa, 2002) 

Knowledge consists of information that has been: 
– interpreted,  
– categorised,  
– applied, experienced and revised. 

In general, knowledge is more than just data, it consist of: facts, ideas, beliefs, heuristics, 
associations, rules, abstractions, relationships, customs. 

Research literature classifies knowledge as follows:  

Classification-based Knowledge » Ability to classify information 
Decision-oriented Knowledge » Choosing the best option 
Descriptive knowledge » State of some world (heuristic) 
Procedural knowledge » How to do something  
Reasoning knowledge » What conclusion is valid in what situation? 
Assimilative knowledge » What its impact is? 
 
Knowledge Representation 
 
Knowledge representation (KR) is the study of how knowledge about the world can be 
represented and what kinds of reasoning can be done with that knowledge. Knowledge 
Representation is the method used to encode knowledge in Intelligent Systems.  
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Since knowledge is used to achieve intelligent behavior, the fundamental goal of knowledge 
representation is to represent knowledge in a manner as to facilitate inferencing (i.e. drawing 
conclusions) from knowledge. A successful representation of some knowledge must, then, be 
in a form that is understandable by humans, and must cause the system using the knowledge 
to behave as if it knows it. 

Some issues that arise in knowledge representation from an AI perspective are: 

 How do people represent knowledge? 
 What is the nature of knowledge and how do we represent it? 
 Should a representation scheme deal with a particular domain or should it be general 

purpose? 
 How expressive is a representation scheme or formal language? 
 Should the scheme be declarative or procedural? 

 

 
 
 
 
 
 
 
 
 
 Fig: Two entities in Knowledge Representaion 

For example: English or natural language is an obvious way of representing and handling 
facts. Logic enables us to consider the following fact: spot is a dog as dog(spot) We could 
then infer that all dogs have tails with: : dog(x) hasatail(x) We can then deduce:  

hasatail(Spot)  

Using an appropriate backward mapping function the English sentence Spot has a tail can be 

generated.  

Properties for Knowledge Representation Systems 

The following properties should be possessed by a knowledge representation system.  

Representational Adequacy  
- the ability to represent the required knowledge;  

Inferential Adequacy  
- the ability to manipulate the knowledge represented to produce new 

knowledge corresponding to that inferred from the original;  
Inferential Efficiency  
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- the ability to direct the inferential mechanisms into the most productive 
directions by storing appropriate guides;  

 

Acquisitional Efficiency  
-  the ability to acquire new knowledge using automatic methods wherever 

possible rather than reliance on human intervention.  
 
Formal logic-connectives:  

In logic, a logical connective (also called a logical operator) is a symbol or word used to 
connect two or more sentences (of either a formal or a natural language) in a grammatically 
valid way, such that the compound sentence produced has a truth value dependent on the 
respective truth values of the original sentences. 

Each logical connective can be expressed as a function, called a truth function. For this 
reason, logical connectives are sometimes called truth-functional connectives.  

Commonly used logical connectives include: 

 Negation (not) (¬ or ~) 
 Conjunction (and) ( , &, or ·  ) 
 Disjunction (or) (  or ∨ ) 
 Material implication (if...then) ( , or ) 
 Biconditional (if and only if) (iff) (xnor) ( , , or = ) 

For example, the meaning of the statements it is raining and I am indoors is transformed 
when the two are combined with logical connectives: 

 It is raining and I am indoors (P Q) 
 If it is raining, then I am indoors (P Q) 
 It is raining if I am indoors (Q P) 
 It is raining if and only if I am indoors (P Q) 
 It is not raining (¬P) 

For statement P = It is raining and Q = I am indoors. 

Truth Table: 

A proposition in general contains a number of variables. For example (P Q) contains 
variables P and Q each of which represents an arbitrary proposition. Thus a proposition takes 
different values depending on the values of the constituent variables. This relationship of the 
value of a proposition and those of its constituent variables can be represented by a table. It 
tabulates the value of a proposition for all possible values of its variables and it is called a 
truth table. 

For example the following table shows the relationship between the values of P, Q and P Q:  
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Logic: 
 
Logic is a formal language for representing knowledge such that conclusions can be drawn. 
Logic makes statements about the world which are true (or false) if the state of affairs it 
represents is the case (or not the case). Compared to natural languages (expressive but 
context sensitive) and programming languages (good for concrete data structures but not 
expressive) logic combines the advantages of natural languages and formal languages. Logic 
is concise, unambiguous, expressive, context insensitive, effective for inferences. 
 
It has syntax, semantics, and proof theory. 
 
Syntax: Describe possible configurations that constitute sentences.  
 
Semantics: Determines what fact in the world, the sentence refers to i.e. the interpretation. 
Each sentence make claim about the world (meaning of sentence).Semantic property include 
truth and falsity. 
 
Syntax is concerned with the rules used for constructing, or transforming the symbols and 
words of a language, as contrasted with the semantics of a language which is concerned with 
its meaning. 
 
Proof theory (Inference method):  set of rules for generating new sentences that are  
necessarily true given that the old sentences are true.  
 
We will consider two kinds of logic: propositional logic and first-order logic or more 
precisely first-order predicate calculus. Propositional logic is of limited expressiveness but 
is useful to introduce many of the concepts of logic's syntax, semantics and inference 
procedures. 
 
Entailment: 
 
Entailment means that one thing follows from another: 

KB |= α 
 

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true 
 

E.g., x + y =4 entails 4=x + y 
 

OR 
P  Q (P Q)  
F  F F  
F  T T  
T  F T  
T  T T  
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Entailment is a relationship between sentences (i.e., syntax) that is based on semantics. 
 
We can determine whether S |= P by finding Truth Table for S and P, if any row of Truth 
Table where all formulae in S is true. 
 
 
 
Example:  
 

 
 
 
 
Therefore {P, P→Q} |= Q. Here, only row where both P and P→Q are True, Q is also True. 
Here, S= (P, P→Q} and P= {Q}. 
 
 
Models 
 
Logicians typically think in terms of models, in place of ―possible world‖, which are 
formally structured worlds with respect to which truth can be evaluated. 

m is a model of a sentence   if   is true in m. 
  M() is the set of all models of . 

 
 
Tautology: 

A formula of propositional logic is a tautology if the formula itself is always true regardless 
of which valuation is used for the propositional variables. 

There are infinitely many tautologies. Examples include: 

 ("A or not A"), the law of the excluded middle. This formula has only one 
propositional variable, A. Any valuation for this formula must, by definition, assign A 
one of the truth values true or false, and assign A the other truth value. 

 ("if A implies B then not-B implies not-A", and vice 
versa), which expresses the law of contraposition. 

 ("if A implies B and B implies C, then 
A implies C"), which is the principle known as syllogism. 

The definition of tautology can be extended to sentences in predicate logic, which may 
contain quantifiers, unlike sentences of propositional logic. In propositional logic, there is no 
distinction between a tautology and a logically valid formula. In the context of predicate 
logic, many authors define a tautology to be a sentence that can be obtained by taking a 
tautology of propositional logic and uniformly replacing each propositional variable by a 
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first-order formula (one formula per propositional variable). The set of such formulas is a 
proper subset of the set of logically valid sentences of predicate logic (which are the 
sentences that are true in every model). 
 
There are also propositions that are always false such as (P P). Such a proposition is 
called a contradiction.  
 
A proposition that is neither a tautology nor a contradiction is called a contingency.  
For example (P Q) is a contingency. 
 
Validity: 
 
The term validity in logic (also logical validity) is largely synonymous with logical truth, 
however the term is used in different contexts. Validity is a property of formulae, statements 
and arguments. A logically valid argument is one where the conclusion follows from the 
premises. An invalid argument is where the conclusion does not follow from the 
premises. A formula of a formal language is a valid formula if and only if it is true under 
every possible interpretation of the language. 

Saying that an argument is valid is equivalent to saying that it is logically impossible that the 
premises of the argument are true and the conclusion false. A less precise but intuitively clear 
way of putting this is to say that in a valid argument IF the premises are true, then the 
conclusion must be true.  

An argument that is not valid is said to be ―invalid‖. 

An example of a valid argument is given by the following well-known syllogism: 

All men are mortal. 
Socrates is a man. 
Therefore, Socrates is mortal. 

What makes this a valid argument is not that it has true premises and a true conclusion, but 
the logical necessity of the conclusion, given the two premises. 

The following argument is of the same logical form but with false premises and a false 
conclusion, and it is equally valid:  
 

All women are cats.  
All cats are men.  
Therefore, all women are men.  

 
This argument has false premises and a false conclusion. This brings out the hypothetical 
character of validity. What the validity of these arguments amounts to, is that it assures us the 
conclusion must be true IF the premises are true. 
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Thus, an argument is valid if the premises and conclusion follow a logical form. 
This essentially means that the conclusion logically follows from the premises. An argument 
is valid if and only if the truth of its premises entails the truth of its conclusion. It would be 
self-contradictory to affirm the premises and deny the conclusion 
 
Deductive Reasoning: 

Deductive reasoning, also called Deductive logic, is reasoning which constructs or 
evaluates deductive arguments. Deductive arguments are attempts to show that a conclusion 
necessarily follows from a set of premises. A deductive argument is valid if the conclusion 
does follow necessarily from the premises, i.e., if the conclusion must be true provided 
that the premises are true. A deductive argument is sound if it is valid AND its premises 
are true. Deductive arguments are valid or invalid, sound or unsound, but are never false or 
true. 

An example of a deductive argument: 

1. All men are mortal 
2. Socrates is a man 
3. Therefore, Socrates is mortal 

The first premise states that all objects classified as 'men' have the attribute 'mortal'. The 
second premise states that 'Socrates' is classified as a man- a member of the set 'men'. The 
conclusion states that 'Socrates' must be mortal because he inherits this attribute from his 
classification as a man.  

Deductive arguments are generally evaluated in terms of their validity and soundness. An 
argument is valid if it is impossible both for its premises to be true and its conclusion to be 
false. An argument can be valid even though the premises are false. 

This is an example of a valid argument. The first premise is false, yet the conclusion is still 
valid. 

All fire-breathing rabbits live on Mars 
All humans are fire-breathing rabbits 
Therefore, all humans live on Mars 

This argument is valid but not sound In order for a deductive argument to be sound, the 
deduction must be valid and the premise must all be true. 

Let‘s take one of the above examples. 

1. All monkeys are primates 
2. All primates are mammals 
3. All monkeys are mammals 
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This is a sound argument because it is actually true in the real world. The premises are true 
and so is the conclusion. They logically follow from one another to form a concrete argument 
that can‘t be denied. Where validity doesn‘t have to do with the actual truthfulness of an 
argument, soundness does. 

A theory of deductive reasoning known as categorical or term logic was developed by 
Aristotle, but was superseded by propositional (sentential) logic and predicate logic. 

Deductive reasoning can be contrasted with inductive reasoning. In cases of inductive 
reasoning, it is possible for the conclusion to be false even though the premises are true and 
the argument's form is cogent. 

Well Formed Formula: (wff) 
 
It is a syntactic object that can be given a semantic meaning. A formal language can be 
considered to be identical to the set containing all and only its wffs. 

A key use of wffs is in propositional logic and predicate logics such as first-order logic. In 
those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", 
once any free variables in φ have been instantiated. In formal logic, proofs can be represented 
by sequences of wffs with certain properties, and the final wff in the sequence is what is 
proven. 

The well-formed formulas of propositional calculus are expressions such as 
Their definition begins with the arbitrary choice of a set V of propositional 

variables. The alphabet consists of the letters in V along with the symbols for the 
propositional connectives and parentheses "(" and ")", all of which are assumed to not be in 
V. The wffs will be certain expressions (that is, strings of symbols) over this alphabet. 

The well-formed formulas are inductively defined as follows: 

 Each propositional variable is, on its own, a wff. 
 If φ is a wff, then φ is a wff. 
 If φ and ψ are wffs, and • is any binary connective, then ( φ • ψ) is a wff. Here • could 

be ∨, ∧, →, or ↔. 

The WFF for predicate calculus is defined to be the smallest set containing the set of atomic 
WFFs such that the following holds: 

1. is a WFF when is a WFF 
2. and are WFFs when and are WFFs; 
3. is a WFF when x is a variable and is a WFF; 
4. is a WFF when is a variable and is a WFF (alternatively, could be 

defined as an abbreviation for ). 
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If a formula has no occurrences of or , for any variable , then it is called quantifier-

free. An existential formula is a string of existential quantification followed by a quantifier-
free formula. 

Propositional Logic: 

Propositional logic represents knowledge/ information in terms of propositions. Prepositions 
are facts and non-facts that can be true or false. Propositions are expressed using ordinary 
declarative sentences. Propositional logic is the simplest logic.  

Syntax: 

The syntax of propositional logic defines the allowable sentences. The atomic sentences- the 
indivisible syntactic elements- consist of single proposition symbol. Each such symbol stands 
for a proposition that can be true or false. We use the symbols like P1, P2 to represent 
sentences.  

The complex sentences are constructed from simpler sentences using logical connectives. 
There are five connectives in common use: 

 (negation), ^ (conjunction),  (disjunction),  (implication),  (biconditional)

The order of precedence in propositional logic is from (highest to lowest):  , ^ , , ,  . 

Propositional logic is defined as: 

If S is a sentence, S is a sentence (negation) 
If S1 and S2 are sentences, S1 ^ S2 is a sentence (conjunction) 
If S1 and S2 are sentences, S1  S2 is a sentence (disjunction) 
If S1 and S2 are sentences, S1  S2 is a sentence (implication) 
If S1 and S2 are sentences, S1  S2 is a sentence (biconditional) 

Formal grammar for propositional logic can be given as below: 

Sentence   AutomicSentence | ComplexSentence
AutomicSentence  True | False | Symbol
Symbol  P | Q | R ………… 
ComplexSentence Sentence

| (Sentence ^ Sentence)
| (Sentence  Sentence)
| (Sentence  Sentence)
| (Sentence  Sentence)

Semantics: 

Each model specifies true/false for each proposition symbol 
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Rules for evaluating truth with respect to a model: 
S is true if, S is false
S1 ^ S2 is true if, S1 is true and S2 is true
S1  S2 is true if, S1 is true or S2 is true
S1  S2 is true if, S1 is false or S2 is true
S1  S2 is true if, S1  S2 is true and S2  S1 is true

Truth Table showing the evaluation of semantics of complex sentences: 

P Q P PQ PQ PQ PQ 
false false true false false true true 
false true true false true true false 
true false false false true false false 
true true false true true true true 

Logical equivalence: 

Two sentences   and ß are logically equivalent (  ß)  iff true they are true inn same set of 
models  or Two sentences   and ß are logically equivalent (  ß)  iff  |= ß and ß |= . 

Validity:   

A sentence is valid if it is true in all models, 

e.g., True, AA, A  A, (A  (A  B))  B

Valid sentences are also known as tautologies. Every valid sentence is logically equivalent to 
True 
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A sentence is satisfiable if it is true in some model 

– e.g., A  B, C 
 
A sentence is unsatisfiable if it is true in no models 

– e.g., AA 
 
Validity and satisfiablity are related concepts 

–  is valid iff  is unsatisfiable 
–  is satisfiable iff  is not valid 
 

Satisfiability is connected to inference via the following: 
– KB |=  if and only if (KB   ) is unsatisfiable 

 
 
Inference rules in Propositional Logic 

 
Modus Ponens 

 
 
 
 

And-elimination 

   
 

 
 

Monotonicity: the set of entailed sentences can only increase as information is added to the 
knowledge base. 
 

For any sentence  and  if KB |=  then KB   |=  . 
 
Resolution 
 
Unit resolution rule: 

 
Unit resolution rule takes a clause – a disjunction of literals – and a literal  and produces a 
new clause. Single literal is also called unit clause. 

 
 
 

 
Where li and m are complementary literals 

 

 

Satisfiability:

Generalized resolution rule:
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Generalized resolution rule takes two clauses of any length and produces a new clause as 
below. 

 
   

 
    For example: 

 
 
 

 
Resolution Uses CNF (Conjunctive normal form) 

– Conjunction of disjunctions of literals (clauses) 
 
The resolution rule is sound: 

– Only entailed sentences are derived 
Resolution is complete in the sense that it can always be used to either confirm or refute a 
sentence (it can not be used to enumerate true sentences.) 
 
Conversion to CNF: 

 
A sentence that is expressed as a conjunction of disjunctions of literals is said to be in 
conjunctive normal form (CNF). A sentence in CNF that contains only k literals per clause is 
said to be in k-CNF.  
 
Algorithm: 

 

Eliminate ↔rewriting P↔Q as (P→Q)∧(Q→P) 

Eliminate →rewriting P→Q as ￢P∨Q 

Use De Morgan‘s laws to push ￢ inwards: 

- rewrite ￢(P∧Q) as ￢P∨￢Q 

- rewrite ￢(P∨Q) as ￢P∧￢Q 

Eliminate double negations: rewrite ￢￢P as P 

Use the distributive laws to get CNF: 
- rewrite (P∧Q)∨R as (P∨R)∧(Q∨R) 

 Flatten nested clauses: 
- (P∧Q) ∧ R as P∧Q ∧ R 

- (P∨Q)∨R as P∨Q∨R 
 
 

Example: Let‘s illustrate the conversion to CNF by using an example. 
 

B   (A  C) 
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• Eliminate , replacing   ß with (  ß)(ß  ). 
– (B  (A  C))  ((A  C)  B) 

 
 Eliminate , replacing   ß with    ß. 

– (B  A  C)  ((A  C)  B) 
 
 Move  inwards using de Morgan's rules and double-negation: 

– (B  A  C)  ((A  C)  B) 
 
 Apply distributivity law ( over ) and flatten: 

– (B  A  C)  (A  B)  (C  B) 
 
Resolution algorithm 

 

– Convert KB into CNF 

– Add negation of sentence to be entailed into KB i.e. (KB  ) 

– Then apply resolution rule to resulting clauses. 

– The process continues until: 

– There are no new clauses that can be added 
  Hence KB does not entail  

– Two clauses resolve to entail the empty clause. 
  Hence KB does entail  

 
Example: Consider the knowledge base given as: KB = (B  (A C))  B   

  Prove that A can be inferred from above KB by using resolution. 
 

Solution: 
   At first, convert KB into CNF 

 

B  (A  C))  ((A  C)  B)  B   

(B  A  C)  ((A  C)  B)  B   

(B  A  C)  ((A  C)  B)  B    

(B  A  C)  (A  B)  (C  B)  B   

Add negation of sentence to be inferred from KB into KB 

 
Now KB contains following sentences all in CNF 
(B  A  C) 
(A  B) 
(C  B) 
 B   
A (negation of conclusion to be proved) 
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Now use Resolution algorithm 

 
 
Resolution: More Examples  
 

1. KB= {(G∨H)→(￢J ∧￢K), G}. Show that KB ⊢ ￢J 

    Solution: 
Clausal form of (G∨H)→(￢J ∧￢K) is 

{￢G∨￢J, ￢H ∨￢J, ￢G∨￢K, ￢H ∨￢K} 

1. ￢G∨￢J [Premise] 

2. ￢H ∨￢J [Premise] 

3. ￢G∨￢K [Premise] 

4. ￢H ∨￢K [Premise] 
5. G [Premise] 
6. J [￢ Conclusion] 

7. ￢G [1, 6 Resolution] 
8. _ [5, 7 Resolution]  
 
Hence KB entails ￢J 

 

2. KB= {P→￢Q, ￢Q→R}. Show that KB ⊢ P→R 

    Solution: 
1. ￢P∨￢Q [Premise] 

2. Q∨R [Premise] 

3. P [￢ Conclusion] 

(B  A  C) 
 

(A  B) 
 

(C  B) 
 

B A 

(BCB) 
 

(ACA) 
 

(BAB) 
 

(ACC) 
 

A 
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4. ￢R [￢ Conclusion] 

5. ￢Q [1, 3 Resolution] 
6. R [2, 5 Resolution] 
7. _ [4, 6 Resolution] 
 
Hence, KB ⊢ P→R 

 

3. ⊢ ((P∨Q)∧￢P)→Q 

Clausal form of ￢(((P∨Q)∧￢P)→Q) is {P∨Q, ￢P, ￢Q} 

1. P∨Q [￢ Conclusion] 

2. ￢P [￢ Conclusion] 

3. ￢Q [￢ Conclusion] 
4. Q [1, 2 Resolution] 
5. _ [3, 4 Resolution] 
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Forward and backward chaining 

The completeness of resolution makes it a very important inference model. But in many 
practical situations full power of resolution is not needed. Real-world knowledge bases often 
contain only clauses of restricted kind called Horn Clause. A Horn clauses is disjunction of 
literals with at most one positive literal 
Three important properties of Horn clause are: 

 Can be written as an implication
 Inference through forward chaining and backward chaining.
 Deciding entailment can be done in a time linear size of the knowledge base.

Forward chaining: 

Idea: fire any rule whose premises are satisfied in the KB, 
– add its conclusion to the KB, until query is found

Prove that Q can be inferred from above KB 
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Backward chaining: 
 
Idea: work backwards from the query q: to prove q by BC, 

Check if q is known already, or 
Prove by BC all premises of some rule concluding q 

  
For example, for above KB (as in forward chaining above) 

 
P  Q 
L  M  P 
B  L  M 
A  P  L 
A  B  L 
A 
B 
 

Prove that Q can be inferred from above KB 
 
Solution: 

We know P  Q, try to prove P 
L  M  P 
Try to prove L and M 
B  L  M 
A  P  L 
Try to prove B, L and A and P 
A and B is already known, since A  B  L, L is also known 
Since, B  L  M, M is also known  
Since, L  M  P, p is known, hence the proved. 
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First-Order Logic 

 
Pros and cons of propositional logic 

- Propositional logic is declarative 
- Propositional logic allows partial/disjunctive/negated information 

o (unlike most data structures and databases) 
- Propositional logic is compositional: 

o meaning of B  P is derived from meaning of B and of P 
- Meaning in propositional logic is context-independent 

o (unlike natural language, where meaning depends on context) 
- Propositional logic has very limited expressive power 

o (unlike natural language) 
 
Propositional logic assumes the world contains facts, whereas first-order logic (like natural 
language) assumes the world contains: 

– Objects: people, houses, numbers, colors, baseball games, wars, … 
– Relations: red, round, prime, brother of, bigger than, part of, comes 

between,… 
– Functions: father of, best friend, one more than, plus, … 

 
Logics in General 

 
The primary difference between PL and FOPL is their ontological commitment: 

  Ontological Commitment: What exists in the world — TRUTH 
– PL: facts hold or do not hold. 
– FL : objects with relations between them that hold or do not hold 

Another difference is: 
  Epistemological Commitment: What an agent believes about facts — BELIEF 
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FOPL: Syntax 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Representing knowledge in first-order logic 
 
The objects from the real world are represented by constant symbols (a,b,c,...). For instance, 
the symbol ―Tom‖ may represent a certain individual called Tom. 
 
Properties of objects may be represented by predicates applied to those objects (P(a), ...): e.g 
"male(Tom)" represents that Tom is a male. 
 
Relationships between objects are represented by predicates with more arguments: 
"father(Tom, Bob)" represents the fact that Tom is the father of Bob. 
 
The value of a predicate is one of the boolean constants T (i.e. true) or F (i.e. 
false)."father(Tom, Bob) = T"  means that the sentence "Tom is the father of Bob" is true. 
"father(Tom, Bob) = F"  means that the sentence "Tom is the father of Bob" is false. 
 
Besides constants, the arguments of the predicates may be functions (f,g,...) or variables 
(x,y,...). 
 
Function symbols denote mappings from elements of a domain (or tuples of elements of 
domains) to elements of a domain. For instance, weight is a function that maps objects to 
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their weight: weight (Tom) = 150.Therefore the predicate greater-than (weight (Bob), 100) 
means that the weight of Bob is greater than 100. The arguments of a function may 
themselves be functions. 
 
Variable symbols represent potentially any element of a domain and allow the formulation of 
general statements about the elements of the domain. 
 
The quantifier‘s  and  are used to build new formulas from old ones. 
"x P(x)" expresses that there is at least one element of the domain that makes P(x) true. 
"x mother(x, Bob)‖ means that there is x such that x is mother of Bob or, otherwise stated, 
Bob has a mother. 

"x P(x)" expresses that for all elements of the domain P(x) is true. 
 
Quantifiers 
 
Allows us to express properties of collections of objects instead of enumerating objects by 
name. Two quantifiers are: 

  Universal: ―for all‖  
  Existential: ―there exists‖  

 
Universal quantification: 
 
<Variables> <sentence> 
 
Eg: Everyone at UAB is smart: 
       x At(x,UAB)  Smart(x) 
 
x P is true in a model m iff P is true for all x in the model 
 
Roughly speaking, equivalent to the conjunction of instantiations of P 

 
At(KingJohn,UAB)  Smart(KingJohn)  At(Richard,UAB)  
Smart(Richard)At(UAB,UAB)  Smart(UAB) ... 

 
Typically,  is the main connective with  

– A universally quantifier is also equivalent to a set of implications over all 
objects 

Common mistake: using  as the main connective with : 
x At(x, UAB)  Smart(x) 
Means ―Everyone is at UAB and everyone is smart‖ 

 
Existential quantification 
 
<variables> <sentence> 
Someone at UAB is smart: 
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x At(x, UAB)  Smart(x) 
 
x P is true in a model m iff P is true for at least one x in the model 
 
Roughly speaking, equivalent to the disjunction of instantiations of P 

   
At(KingJohn,UAB)  Smart(KingJohn)At(Richard,UAB)  Smart(Richard)  
At(UAB, UAB)  Smart(UAB)  ... 
 

Typically,  is the main connective with  
 

Common mistake: using  as the main connective with : 
x At(x, UAB)  Smart(x) is true even if there is anyone who is not at UAB! 

 
FOPL: Semantic 
 
An interpretation is required to give semantics to first-order logic. The interpretation is a 
non-empty ―domain of discourse‖ (set of objects). The truth of any formula depends on the 
interpretation. 
 
The interpretation provides, for each: 

constant symbol an object in the domain 
function symbols a function from domain tuples to the domain 
predicate symbol a relation over the domain (a set of tuples) 

 
Then we define: 

universal quantifier ∀xP(x) is True iff P(a) is True for all assignments of domain 
elements a to x 

existential quantifier ∃xP(x) is True iff P(a) is True for at least one assignment of 
domain element a to x 

 
FOPL: Inference (Inference in first-order logic) 

 
First order inference can be done by converting the knowledge base to PL and using 
propositional inference. 

– How to convert universal quantifiers? 
– Replace variable by ground term. 

– How to convert existential quantifiers? 
– Skolemization. 

 
Universal instantiation (UI) 
 
Substitute ground term (term without variables) for the variables. 
 
For example consider the following KB 
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 x King (x)  Greedy (x)  Evil(x) 
King (John) 
Greedy (John) 
Brother (Richard, John) 

It‘s UI is: 
King (John)  Greedy (John)  Evil(John) 
King (Richard)  Greedy (Richard)  Evil(Richard) 
King (John) 
Greedy (John) 
Brother (Richard, John) 

Note: Remove universally quantified sentences after universal instantiation. 
 

Existential instantiation (EI) 
 
For any sentence  and variable v in that, introduce a constant that is not in the KB (called 
skolem constant) and substitute that constant for v. 

 
E.g.: Consider the sentence,  x Crown(x)  OnHead(x, John) 

 
After EI,  

Crown(C1)  OnHead(C1, John)     where C1 is Skolem Constant. 
 
 
Towards Resolution for FOPL: 
 

- Based on resolution for propositional logic 
- Extended syntax: allow variables and quantifiers 
- Define ―clausal form‖ for first-order logic formulae (CNF) 
- Eliminate quantifiers from clausal forms 
- Adapt resolution procedure to cope with variables (unification) 

 
Conversion to CNF: 
 
1. Eliminate implications and bi-implications as in propositional case 
2. Move negations inward using De Morgan‘s laws 

plus rewriting ￢∀xP as ∃x￢P and ￢∃xP as ∀x￢P 

3. Eliminate double negations 
4. Rename bound variables if necessary so each only occurs once 

e.g. ∀xP(x)∨∃xQ(x) becomes ∀xP(x)∨∃yQ(y) 

5. Use equivalences to move quantifiers to the left 
e.g. ∀xP(x)∧Q becomes ∀x (P(x)∧Q) where x is not in Q 

e.g. ∀xP(x)∧∃yQ(y) becomes ∀x∃y(P(x)∧Q(y)) 

6. Skolemise (replace each existentially quantified variable by a new term) 
∃xP(x) becomes P(a0) using a Skolem constant a0 since ∃x occurs at the outermost level 
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∀x∃yP(x, y) becomes P(x, f0(x)) using a Skolem function f0 since ∃y occurs within ∀x 

7. The formula now has only universal quantifiers and all are at the left of the formula: drop them 
8. Use distribution laws to get CNF and then clausal form 
 
 
Example: 
 
1.) ∀x [∀yP(x, y)→￢∀y(Q(x, y)→R(x, y))] 
 

Solution: 

1. ∀x [￢∀yP(x, y)∨￢∀y(￢Q(x, y)∨R(x, y))] 

2, 3. ∀x [∃y￢P(x, y)∨∃y(Q(x, y)∧￢R(x, y))] 

4. ∀x [∃y￢P(x, y)∨∃z (Q(x, z)∧￢R(x, z))] 

5. ∀x∃y∃z [￢P(x, y)∨(Q(x, z)∧￢R(x, z))] 

6. ∀x [￢P(x, f (x))∨(Q(x, g(x))∧￢R(x, g(x)))] 

7. ￢P(x, f (x))∨(Q(x, g(x))∧￢R(x, g(x))) 

8. (￢P(x, f (x))∨Q(x, g(x)))∧(￢P(x, f (x))∨￢R(x, g(x))) 

8. {￢P(x, f (x))∨Q(x, g(x)), ￢P(x, f (x))∨￢R(x, g(x))} 
 
2.) ￢∃x∀y∀z ((P(y)∨Q(z))→(P(x)∨Q(x))) 

 

Solution: 

1. ￢∃x∀y∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x￢∀y∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x∃y￢∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x∃y∃z￢(￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x∃y∃z ((P(y)∨Q(z))∧￢(P(x)∨Q(x))) 

6. ∀x ((P( f (x))∨Q(g(x)))∧￢P(x)∧￢Q(x)) 

7. (P( f (x))∨Q(g(x))∧￢P(x)∧￢Q(x) 

8. {P( f (x))∨Q(g(x)), ￢P(x), ￢Q(x)} 
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Unification: 
 
A unifier of two atomic formulae is a substitution of terms for variables that makes them 
identical. 

- Each variable has at most one associated term 
- Substitutions are applied simultaneously 

Unifier of P(x, f (a), z) and P(z, z, u) : {x/ f (a), z/ f (a), u/ f (a)} 
 
We can get the inference immediately if we can find a substitution  such that King(x) and 
Greedy(x) match King(John) and Greedy(y) 

 
 = {x/John,y/John} works 

 
Unify( ,) =  if  =   

   
  p    q      
  Knows(John,x)  Knows(John,Jane)   {x/Jane} 
  Knows(John,x) Knows(y,OJ)   {x/OJ,y/John} 
  Knows(John,x)  Knows(y,Mother(y)) {y/John,x/Mother(John)}} 
  Knows(John,x) Knows(x,OJ)    {fail} 

 
Last unification is failed due to overlap of variables. x can not take the values of John and OJ 
at the same time. 
 
We can avoid this problem by renaming to avoid the name clashes (standardizing 
apart) 

E.g. 
  Unify{Knows(John,x)  Knows(z,OJ) } = {x/OJ, z/John} 

 
Let C1 and C2 be two clauses. If C1 and C2 have no variables in common, then they are said 
to be standardized apart. Standardized apart eliminates overlap of variables to avoid clashes 
by renaming variables. 
 
Another complication: 
 
To unify Knows(John,x) and Knows(y,z), 
Unification of Knows(John,x) and Knows(y,z) gives  ={y/John, x/z } or ={y/John, x/John, 
z/John} 

 
First unifier gives the result Knows(John,z) and second unifier gives the resultKnows(John, 
John). Second can be achieved from first by substituting john in place of z. The first unifier is 
more general than the second. 

 
There is a single most general unifier (MGU) that is unique up to renaming of variables. 

MGU = { y/John, x/z } 
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Towards Resolution for First-Order Logic 
 

 Based on resolution for propositional logic 
 Extended syntax: allow variables and quantifiers 
 Define ―clausal form‖ for first-order logic formulae 
 Eliminate quantifiers from clausal forms 
 Adapt resolution procedure to cope with variables (unification) 

 
 
First-Order Resolution 
 
For clauses P∨Q and ￢Q′ ∨R with Q,Q′ atomic formulae 

P∨Q     ￢Q′ ∨R 

 
 
 
 
 

(P∨R)

  

where is a most general unifier for Q and Q′ 

(P∨R)is the resolvent of the two clauses 
 
 
Applying Resolution Refutation 
 

 Negate query to be proven (resolution is a refutation system) 
 Convert knowledge base and negated query into CNF and extract clauses 
 Repeatedly apply resolution to clauses or copies of clauses until either the empty 

clause (contradiction) is derived or no more clauses can be derived (a copy of a clause 
is the clause with all variables renamed) 

 If the empty clause is derived, answer ‗yes‘ (query follows from knowledge base), 
otherwise answer ‗no‘ (query does not follow from knowledge base) 

 
Resolution: Examples 
 
1.) ⊢ ∃x (P(x)→∀xP(x)) 

 
Solution: 
 Add negation of the conclusion and convert the predicate in to CNF: 

(￢∃x(P(x)→∀xP(x))) 

1, 2. ∀x￢(￢P(x)∨∀xP(x)) 

2. ∀x (￢￢P(x)∧￢∀xP(x)) 

2, 3. ∀x (P(x)∧∃x￢P(x)) 
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4. ∀x (P(x)∧∃y ￢P(y)) 

5. ∀x∃y(P(x)∧￢P(y)) 

6. ∀x (P(x)∧￢P( f (x))) 

8. P(x), ￢P( f (x)) 

_______________________ 
Now, we can use resolution as; 

1. P(x) [￢ Conclusion] 

2. ￢P( f (y)) [Copy of ￢ Conclusion] 

3. _ [1, 2 Resolution {x/ f (y)}] 
 
 
2.) ⊢ ∃x∀y∀z ((P(y)∨Q(z))→(P(x)∨Q(x))) 

 
Solution: 

1. P( f (x))∨Q(g(x)) [￢ Conclusion] 

2. ￢P(x) [￢ Conclusion] 

3. ￢Q(x) [￢ Conclusion] 

4. ￢P(y) [Copy of 2] 

5. Q(g(x)) [1, 4 Resolution {y/ f (x)}] 

6. ￢Q(z) [Copy of 3] 

7. _ [5, 6 Resolution {z/g(x)}] 
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3.) 
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Q.) Anyone passing his history exams and winning the lottery is happy. But anyone who 
studies or is lucky can pass all his exams. John did not study but John is lucky. Anyone who 
is lucky wins the lottery. Is John happy? 
 

 
Now, Convert the KB to CNF: 
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Now, the KB contains: 

 
Standardize the variables apart: 

 
5.                            (Negation of the conclusion added) 
 
Now Use resolution as below: 
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 Empty 
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Symbolic versus statistical reasoning: 

The (Symbolic) methods basically represent uncertainty belief as being  

 True,  
 False, or  
 Neither True nor False.  

Some methods also had problems with  

 Incomplete Knowledge  
 Contradictions in the knowledge.  

Statistical methods provide a method for representing beliefs that are not certain (or 
uncertain) but for which there may be some supporting (or contradictory) evidence.  

Statistical methods offer advantages in two broad scenarios:  

Genuine Randomness  
-- Card games are a good example. We may not be able to predict any outcomes with 
certainty but we have knowledge about the likelihood of certain items (e.g. like being 
dealt an ace) and we can exploit this.  

Exceptions  
-- Symbolic methods can represent this. However if the number of exceptions is large 
such system tend to break down. Many common sense and expert reasoning tasks for 
example. Statistical techniques can summarise large exceptions without resorting 
enumeration.  

 
Uncertain Knowledge: 
 
Let action At = leave for airport t minutes before flight.  Will At get me there on time? 
 
Problems: 

1. Partial observability (road state, other drivers' plans, etc.) 
2. Noisy sensors (radio traffic reports) 
3. Uncertainty in action outcomes (flat tyre, etc.) 
4. Complexity of modeling and predicting traffic 

 
Hence a purely logical approach either 

1. Risks falsehood: ―A25 will get me there on time‖ or 
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2. Leads to conclusions that are too weak for decision making: ―A25 will    get me there 
on time if there's no accident on the bridge and it doesn't rain and my tires remain 
intact etc etc.‖ 

A1440 might reasonably be said to get me there on time but I'd have to stay overnight in the 
airport… 
 
Handling Uncertainty: 
 
Instead of providing all condition it can express with degree of beliefs in the relevant 
sentences. 

Example: 
Say we have a rule 
if toothache then problem is cavity 

But not all patients have toothaches because of cavities (although perhaps most do) 
 

So we could set up rules like 
if toothache and not(gum disease) and not(filling) and ......then problem is cavity 

 
This gets very complicated! a better method would be to say 

if toothache then problem is cavity with probability 0.8 

Given the available evidence, 
A25 will get me there on time with probability 0.04 

A most important tool for dealing with degree of beliefs is probability theory, which assigns 
to each sentence a numerical degree of belief between 0 & 1. 
 
Making decisions under uncertainty: 
 
Suppose I believe the following: 

P(A25 gets me there on time|…) = 0.04 

P(A90 gets me there on time|…) = 0.70 

P(A120 gets me there on time|…) = 0.95 

P(A1440 gets me there on time|…) = 0.9999 

Which action to choose? 
- Depends on my preferences for missing flight vs. length of wait at airport, etc. Utility 

theory is used to represent and infer preferences 
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Decision theory = utility theory + probability theory 
The rational decision depends on both the relative importance of various goals and the 

likelihood that, and degree to which, they will be achieved. 

Basic Statistical methods – Probability: 

The basic approach statistical methods adopt to deal with uncertainty is via the axioms of 
probability:  

 Probabilities are (real) numbers in the range 0 to 1.  
 A probability of P(A) = 0 indicates total uncertainty in A, P(A) = 1 total certainty and 

values in between some degree of (un)certainty.  
 Probabilities can be calculated in a number of ways.  

Very Simply  

Probability = (number of desired outcomes) / (total number of outcomes)  

So given a pack of playing cards the probability of being dealt an ace from a full 
normal deck is 4 (the number of aces) / 52 (number of cards in deck) which is 1/13. 
Similarly the probability of being dealt a spade suit is 13 / 52 = 1/4.  

Conditional probability, P(A|B), indicates the probability of of event A given that we know 
event B has occurred. 
 
The aim of a probabilistic logic (or probability logic) is to combine the capacity of 
probability theory to handle uncertainty with the capacity of deductive logic to exploit 
structure. The result is a richer and more expressive formalism with a broad range of possible 
application areas. Probabilistic logic is a natural extension of traditional logic truth tables: the 
results they define are derived through probabilistic expressions instead. The difficulty with 
probabilistic logics is that they tend to multiply the computational complexities of their 
probabilistic and logical components. 
 
Random Variables: 

In probability theory and statistics, a random variable (or stochastic variable) is a way of 
assigning a value (often a real number) to each possible outcome of a random event. These 
values might represent the possible outcomes of an experiment, or the potential values of a 
quantity whose value is uncertain (e.g., as a result of incomplete information or imprecise 
measurements.) Intuitively, a random variable can be thought of as a quantity whose value is 
not fixed, but which can take on different values; normally, a probability distribution is used 
to describe the probability of different values occurring. Random variables are usually real-
valued, but one can consider arbitrary types such as boolean values, complex numbers, 
vectors, matrices, sequences, trees, sets, shapes, manifolds and functions. The term random 

element is used to encompass all such related concepts. 
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For example: There are two possible outcomes for a coin toss: heads, or tails. The possible 
outcomes for one fair coin toss can be described using the following random variable: 

 

and if the coin is equally likely to land on either side then it has a probability mass function 
given by: 

 
 
 
Example:  A simple world consisting of two random variables: 
Cavity– a Boolean variable that refers to whether my lower left wisdom tooth has a cavity 
Toothache- a Boolean variable that refers to whether I have a toothache or not 
 
We use the single capital letters to represent unknown random variables  
P induces a probability distribution for any random variables X. 
 
Each RV has a domain of values that it can take it, e. g. domain of Cavity is {true, false} 
 
RVs domain are: Boolean, Discrete and Continuous 
 
Atomic Event: 
 
 
An atomic eventis a complete specification of the state of the world about which the agent is 
uncertain. 
 
Example: 
In the above world with two random variables (Cavity and Toothache) there are only four 
distinct atomic events, one being: 

Cavity = false, Toothache = true 
Which are the other three atomic events? 
 
Propositions: 
 
Think of a proposition as the event (set of sample points) where the proposition is true 
 
Given Boolean random variables A and B: 
 
event α = set of sample points where A(ω) = true 
event ¬α = set of sample points where A(ω) = false 
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event a ^ b = points where A(ω) = true and B(ω) = true 
 
Often in AI applications, the sample points are defined by the values of a set of random 
variables, i.e., the sample space is the Cartesian product of the ranges of the variables. 
 
With Boolean variables, sample point = propositional logic model 

e.g., A = true, B = false, or a ^ ¬b. 
 
Proposition = disjunction of atomic events in which it is true 

e.g., (a ∨ b)  ≡ (¬a ^ b) ∨(a ^ ¬b) ∨(a ^ b) 
                   P(a ∨ b) = P(¬a^ b) + P(a^ ¬b) + P(a^ b) 
 
Propositional or Boolean random variables 

e.g., Cavity(do I have a cavity?) 
Discrete random variables (finite or infinite) 

e.g., Weather is one of (sunny, rain, cloudy, snow) 
Weather = rain is a proposition 
 
Values must be exhaustive and mutually exclusive 
Continuous random variables (bounded or unbounded) 
e.g., Temp = 21.6, also allow, e.g., Temp < 22.0. 
 
Prior Probability: 
 
The prior or unconditional probability associated with a proposition is the degree of belief 
accorded to it in the absence of any other information. 
 
Example: 
P(Weather= sunny) = 0.72,  P(Weather= rain) = 0.1, P(Weather= cloudy) = 0.08, 

P(Weather= snow) = 0.1 
 
Probability distribution gives values for all possible assignments: 

P(Weather) = (0.72, 0.1, 0.08, 0.1) 
 
Joint probability distribution for a set of  r.v.s gives the probability of every atomic event 
on those r.v.s (i.e., every sample point) 
 
P(Weather, Cavity) = a 4 ×2 matrix of values.  

Weather= sunny rain cloudy snow 
Cavity=true 0.144 0.02 0.016 0,02 
Cavity=false 0.576 0.08 0.064 0.08 

 
Every question about a domain can be answered by the joint distribution because every event 
is a sum of sample points.  
 

Jagdish Bhatta 90 Downloaded from: http://CSITauthority.blogspot.com



Unit- 5: Knowledge Representation  Artificial Intelligence 

Conditional Probability: 
 
The conditional probability ―P(a|b)‖ is the probability of ―a‖ given that all we know is ―b‖. 
 
Example: P(cavity|toothache) = 0.8 means if a patient have toothache and no other 
information is yet available, then the probability of patient‘s having the cavity is 0.8. 
 
Definition of conditional probability: 

P(a|b) = P(a^ b)/P(b) if P(b) ≠0 
Product rule gives an alternative formulation: 

P(a^ b) = P(a|b)P(b) = p(b|a)P(a) 
 
Inference using full joint probability distribution: 
 
We use the full joint distribution as the knowledge base from which answers to all questions 
may be derived. The probability of a proposition is equal to the sum of the probabilities of 
the atomic events in which it holds. 

P(a) = ΣP(ei) 
Therefore, given a full joint distribution that specifies the probabilities of all the atomic 
events, one can compute the probability of any proposition. 
 
Full Joint probability distribution : an example 
 
We consider the following domain consisting of three Boolean variables: Toothache, Cavity, 
and Catch (the dentist‘s nasty steel probe catches in my tooth). 
 
The full joint distribution is the following 2x2x2 table: 
 

 toothache ¬toothache 
 catch ¬catch catch ¬catch 
Cavity 0.108 0.012 0.072 0.008 
¬cavity 0.016 0.064 0.144 0.576 

 
The probability of any proposition can be computed from the probabilities in the table. The 
probabilities in the joint distribution must sum to 1. 
 
Each cell represents an atomic event and these are all the possible atomic events. 
 
P(cavity or toothache) =  P(cavity, toothache, catch) + P(cavity, toothache, ¬catch) + 

P(cavity, ¬toothache, catch) + P(cavity, ¬toothache, ¬catch) + 
P(¬cavity, toothache, catch) + P(¬cavity, toothache, ¬catch) 

= 0.108+0.012+0.072+0.008+0.016+0.064=0.28  
 
We simply identify those atomic events in which the proposition is true and add up their 
probabilities 
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Marginalization or summing out: 
 
Distribution over Y can be obtained by summing out all the other variables from any joint 
distribution containing Y. This process is called marginalization. 
  P(Y) = ∑P(Y, z) 
Examples: 

P(cavity) = 0.108 +0.012 +0.072 + 0.008 = 0.2 
P(¬Toothache) = 0.072 + 0.008 + 0.144 + 0.576 = 0.8 
P(Cavity, ¬Toothache) = 0.072 + 0.008 = 0.08 
 

P(Y) = S P(Y, z) 
P(Y, z) = P(Y|z)P(z) 
 
Therefore, for any set of variables Yand Z: 

P(Y) = S P(Y|z)P(z) - This  rule is the conditioning rule 
 
Calculating Conditional Probability: 
P(¬cavity | Toothache) = P(¬cavity ^ Toothache)/ P(Toothache) 

 =  (0.016 + 0.064)/(0.108 + 0.012 + 0.016 + 0.064) 
 = 0.4 

Again let‘s calculate 
P(cavity | Toothache) = P(cavity ^ Toothache)/ P(Toothache) 

 =  (0.108 + 0.012)/(0.108 + 0.012 + 0.016 + 0.064) 
 = 0.6 

Notice that in above two calculations the term 1/ P(Toothache) remain constant no matter 
which value of cavity is calculated. This constant term is called normalization constant for 
the distribution P(cavity | Toothache), ensuring that it adds up to 1. 
 
Independence: 
A and B are independent iff 
P(A|B) = P(A) or P(B|A) = P(B) or P(A, B) = P(A)P(B) 
 
Example: 
 P(Toothache,Catch,Cavity,Weather) = P(Toothache,Catch,Cavity)P(Weather) 

Here weather is independent of other three variables. 
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Bayes’ Rule (Theorem) : 
 

 
 
Proof of bays rule: 
We know that: 
 P(a|b) = P(a ^ b)/ P(b) 
 P(a ^ b) = P(a|b) P(b)……………….(1) 
Similarly 
 P(b|a) = P(a ^ b)/ P(a) 
 P(a ^ b) = P(b|a) P(a) ……………….(2) 
 
Equating 1 and 2 

P(a|b) P(b) = P(b|a) P(a) 
 i.e. P(b|a) = P(a|b) P(b)/P(a) 
 
 
Why is the Bayes’ rule is useful in practice?  

 

Bayes‘ rule is useful in practice because there are many cases where we have good 
probability estimates for three of the four probabilities involved, and therefore can compute 
the fourth one. 
 
Useful for assessing diagnostic probability from causal probability: 
 

 
 Diagnostic knowledge is often more fragile than causal knowledge. 
 

 

 

Example of Bayes' rule: 
   

A doctor knows that the disease meningitis causes the patient tohave a stiff neck 50% of the 
time. The doctor also knows that the probability that a patient has meningitis is 1/50,000, and 
the probability that any patient has a stiff neck is 1/20. 
 
Find the probability that a patient with a stiff neck has meningitis. 
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Here, we are given;  
p(s|m) = 0.5 
p(m) = 1/50000 
p(s) = 1/20 

 
Now using Bayes‘ rule; 
 

P(m|s) = P(s|m)P(m)/P(s) = (0.5*1/50000)/(1/20) = 0.0002  

 
Uses of Bayes' Theorem : 

In doing an expert task, such as medical diagnosis, the goal is to determine identifications 
(diseases) given observations (symptoms). Bayes' Theorem provides such a relationship.  

P(A | B) = P(B | A) * P(A) / P(B)  

Suppose: A = Patient has measles, B = has a rash  

Then: P(measles/rash) =          P(rash/measles) * P(measles) / P(rash)  

The desired diagnostic relationship on the left can be calculated based on the known 
statistical quantities on the right.  

Bayesian networks: 

 
- A data structure to represent the dependencies among variables and to give a concise 

specification of any full joint probability distribution. 
- Also called belief networks or probabilistic network or casual network or knowledge 

map.   

The basic idea is:  

 Knowledge in the world is modular -- most events are conditionally independent of 
most other events.  

 Adopt a model that can use a more local representation to allow interactions between 
events that only affect each other.  

 Some events may only be unidirectional others may be bidirectional -- make a 
distinction between these in model.  

 Events may be causal and thus get chained together in a network.  

A Bayesian network is a directed acyclic graph which consists of:  
 

 A set of random variables which makes up the nodes of the network. 
 A set of directed links (arrows) connecting pairs of nodes. If there is an arrow from 

node X to node Y, X is said to be a parent of Y. 
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 Each node Xi has a conditional probability distribution P(Xi| Parents(Xi)) that 
quantifies the effect of the parents on the node. 

 
Intuitions:  

 A Bayesian network models our incomplete understanding of the causal relationships 
from an application domain. 

 A node represents some state of affairs or event. 
 A link from X to Y means that X has a direct influence on Y. 

Implementation: 

 A Bayesian Network is a directed acyclic graph:  
o A graph where the directions are links which indicate dependencies that exist 

between nodes.  
o Nodes represent propositions about events or events themselves.  
o Conditional probabilities quantify the strength of dependencies.  

Our existing simple world of variables toothache, cavity, catch & weather is represented as: 
 

 
 
 
 
Weather is independent of the other variables 

Example: 

Sample Domain: 

You have a burglar alarm installed in your home. It is fairly reliable at detecting a burglary, 
but also responds on occasion to minor earthquakes. You also have two neighbors, John and 
Mary, who have promised to call you at work when they hear the alarm. John always calls 
when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and 
calls then, too. Mary, on the other hand, likes rather loud music and sometimes misses the 
alarm altogether. 
 

Weather 

Toothach
e 

Cavity 

Catch 
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We would like have to estimate the probability of a burglary with given evidence who has or 
has not call. 

Variables:Burglary, Earthquake, Alarm, JohnCalls, MaryCalls 

 
 

The probabilities associated with the nodes reflect our representation of the causal 
relationships. 

A Bayesian network provides a complete description of the domain in the sense that one can 
compute the probability of any state of the world (represented as a particular assignment to 
each variable). 

Example: What is the probability that the alarm has sounded, but neitherburglary nor an 
earthquake has occurred, and both John and Mary call?  

P(j, m, a, ¬b, ¬e) = P(j|a) P(m|a) P(a|, ¬b, ¬e) P(¬b) P(¬e) 

= 0.90*0.70*0.001*0.999*0.998 = 0.00062 

Burglary Earthquake 

Alarm 

JohnCalls 
MaryCalls 

P(B) 
.001 
 

P(E) 
.002 
 

A P(J) 
T .90 
F .05 
 

A P(M) 
T .70 
F .01 
 

B E P(A) 
T T .95 
T F .94 
F T .29 
F F .001 
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Consider the following example:  

 The probability, P(S1) that my car won't start.  
 If my car won't start then it is likely that  

o The battery is flat or  
o The staring motor is broken.  

In order to decide whether to fix the car myself or send it to the garage I make the following 
decision:  

 If the headlights do not work then the battery is likely to be flat so i fix it myself.  
 If the starting motor is defective then send car to garage.  
 If battery and starting motor both gone send car to garage.  

The Bayesian network to represent this is as follows:  
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 What is Learning? 
 
“Learning denotes changes in the system that are adaptive in the sense that they enable the 
system to do the same task (or tasks drawn from the same population) more effectively the 
next time.”  --Herbert Simon  

"Learning is constructing or modifying representations of what is being experienced." --
Ryszard Michalski  

"Learning is making useful changes in our minds." --Marvin Minsky  

Types of Learning: 

The strategies for learning can be classified according to the amount of inference the 
system has to perform on its training data. In increasing order we have 
 
1. Rote learning – the new knowledge is implanted directly with no inference at all, e.g. 
simple memorisation of past events, or a knowledge engineer’s direct programming of 
rules elicited from a human expert into an expert system. 
 
2. Supervised learning – the system is supplied with a set of training examples consisting 
of inputs and corresponding outputs, and is required to discover the relation or mapping 
between then, e.g. as a series of rules, or a neural network. 
 
3. Unsupervised learning – the system is supplied with a set of training examples 
consisting only of inputs and is required to discover for itself what appropriate outputs 
should be, e.g. a Kohonen Network or Self Organizing Map. 
 
Early expert systems relied on rote learning, but for modern AI systems we are generally 
interested in the supervised learning of various levels of rules. 
 
The need for  Learning: 
 
As with many other types of AI system, it is much more efficient to give the system 
enough knowledge to get it started, and then leave it to learn the rest for itself. We may 
even end up with a system that learns to be better than a human expert. 
 
The general learning approach is to generate potential improvements, test them, and 
discard those which do not work. Naturally, there are many ways we might generate the 
potential improvements, and many ways we can test their usefulness. At one extreme, there 
are model driven (top-down) generators of potential improvements, guided by an 
understanding of how the problem domain works. At the other, there are data driven 
(bottom-up) generators, guided by patterns in some set of training data. 
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Machine Learning: 

As regards machines, we might say, very broadly, that a machine learns whenever it 
changes its structure, program, or data (based on its inputs or in response to external 
information) in such a manner that its expected future performance improves. Some of 
these changes, such as the addition of a record to a data base, fall comfortably within the 
province of other disciplines and are not necessarily better understood for being called 
learning. But, for example, when the performance of a speech-recognition machine 
improves after hearing several samples of a person's speech, we feel quite justified in that 
case saying that the machine has learned. 
 
Machine learning usually refers to the changes in systems that perform tasks associated 
with artificial intelligence (AI). Such tasks involve recognition, diagnosis, planning, robot 
control, prediction, etc. The changes might be either enhancements to already performing 
systems or synthesis of new systems.  
 
Learning through Examples: (A type of Concept learning) 
 
Concept learning also refers to a learning task in which a human or machine learner is 
trained to classify objects by being shown a set of example objects along with their class 
labels. The learner will simplify what has been observed in an example. This simplified 
version of what has been learned will then be applied to future examples. Concept learning 
ranges in simplicity and complexity because learning takes place over many areas. When a 
concept is more difficult, it will be less likely that the learner will be able to simplify, and 
therefore they will be less likely to learn. This learning by example consists of the idea of 
version space. 

A version space is a hierarchical representation of knowledge that enables you to keep 
track of all the useful information supplied by a sequence of learning examples without 
remembering any of the examples. 

The version space method is a concept learning process accomplished by managing 
multiple models within a version space. 

Version Space Characteristics 

In settings where there is a generality-ordering on hypotheses, it is possible to represent the 
version space by two sets of hypotheses: (1) the most specific consistent hypotheses and 
(2) the most general consistent hypotheses, where "consistent" indicates agreement with 
observed data. 

The most specific hypotheses (i.e., the specific boundary SB) are the hypotheses that cover 
the observed positive training examples, and as little of the remaining feature space as 
possible. These are hypotheses which if reduced any further would exclude a positive 
training example, and hence become inconsistent. These minimal hypotheses essentially 
constitute a (pessimistic) claim that the true concept is defined just by the positive data 
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already observed: Thus, if a novel (never-before-seen) data point is observed, it should be 
assumed to be negative. (I.e., if data has not previously been ruled in, then it's ruled out.) 

The most general hypotheses (i.e., the general boundary GB) are those which cover the 
observed positive training examples, but also cover as much of the remaining feature space 
without including any negative training examples. These are hypotheses which if enlarged 
any further would include a negative training example, and hence become inconsistent. 

Tentative heuristics are represented using version spaces. A version space represents all the 
alternative plausible descriptions of a heuristic. A plausible description is one that is 
applicable to all known positive examples and no known negative example. 

A version space description consists of two complementary trees: 

1. One that contains nodes connected to overly general models, and 
2. One that contains nodes connected to overly specific models. 

Node values/attributes are discrete. 

Fundamental Assumptions 

1. The data is correct; there are no erroneous instances. 
2. A correct description is a conjunction of some of the attributes with values. 

Diagrammatical Guidelines 

There is a generalization tree and a specialization tree. 

Each node is connected to a model. 

Nodes in the generalization tree are connected to a model that matches everything in its 
subtree. 

Nodes in the specialization tree are connected to a model that matches only one thing in its 
subtree. 

Links between nodes and their models denote 

 generalization relations in a generalization tree, and 
 specialization relations in a specialization tree. 

Diagram of a Version Space 

In the diagram below, the specialization tree is colored red, and the generalization tree is 
colored green. 
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Generalization and Specialization Leads to Version Space Convergence 

The key idea in version space learning is that specialization of the general models and 
generalization of the specific models may ultimately lead to just one correct model that 
matches all observed positive examples and does not match any negative examples. 

That is, each time a negative example is used to specialilize the general models, those 
specific models that match the negative example are eliminated and each time a positive 
example is used to generalize the specific models, those general models that fail to match 
the positive example are eliminated. Eventually, the positive and negative examples may 
be such that only one general model and one identical specific model survive. 
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Candidate Elimination Algorithm: 

The version space method handles positive and negative examples symmetrically. 

Given: 

 A representation language. 
 A set of positive and negative examples expressed in that language. 

Compute: a concept description that is consistent with all the positive examples and none 
of the negative examples. 

Method: 

 Initialize G, the set of maximally general hypotheses, to contain one element: the 
null description (all features are variables). 

 Initialize S, the set of maximally specific hypotheses, to contain one element: the 
first positive example. 

 Accept a new training example.  
o If the example is positive:  

1. Generalize all the specific models to match the positive example, but 
ensure the following:  

 The new specific models involve minimal changes. 
 Each new specific model is a specialization of some general 

model. 
 No new specific model is a generalization of some other 

specific model. 
2. Prune away all the general models that fail to match the positive 

example. 
o If the example is negative:  

1. Specialize all general models to prevent match with the negative 
example, but ensure the following:  

 The new general models involve minimal changes. 
 Each new general model is a generalization of some specific 

model. 
 No new general model is a specialization of some other 

general model. 
2. Prune away all the specific models that match the negative example. 

o If S and G are both singleton sets, then:  
 if they are identical, output their value and halt. 
 if they are different, the training cases were inconsistent. Output this 

result and halt. 
 else continue accepting new training examples. 

 

Jagdish Bhatta 103 Downloaded from: http://CSITauthority.blogspot.com



Artificial Intelligence    Chapter- Machine Learning 

The algorithm stops when: 

1. It runs out of data. 
2. The number of hypotheses remaining is:  

o 0 - no consistent description for the data in the language. 
o 1 - answer (version space converges). 
o 2+ - all descriptions in the language are implicitly included. 

Problem 1: 

Learning the concept of "Japanese Economy Car" 

Features: ( Country of Origin, Manufacturer, Color, Decade, Type ) 

Origin Manufacturer Color Decade Type Example Type 
Japan Honda Blue 1980 Economy Positive 
Japan Toyota Green 1970 Sports Negative 
Japan Toyota Blue 1990 Economy Positive 
USA Chrysler Red 1980 Economy Negative 
Japan Honda White 1980 Economy Positive 

Solution: 

1. Positive Example: (Japan, Honda, Blue, 1980, Economy) 

Initialize G to a singleton 
set that includes everything. 
Initialize S to a singleton 
set that includes the first 
positive example.  

G = { (?, ?, ?, ?, ?) } 
S = { (Japan, Honda, Blue, 1980, 
Economy) }  

 

 

These models represent the most general and the most specific heuristics one might learn. 
The actual heuristic to be learned, "Japanese Economy Car", probably lies between them 
somewhere within the version space. 

2. Negative Example: (Japan, Toyota, Green, 1970, Sports) 

Specialize G to exclude the negative example. 
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G = 

{ (?, Honda, ?, ?, ?), 
(?, ?, Blue, ?, ?), 
(?, ?, ?, 1980, ?), 
(?, ?, ?, ?, Economy) }  

S = { (Japan, Honda, Blue, 1980, Economy) } 

 

 

Refinement occurs by generalizing S or specializing G, until the heuristic hopefully 
converges to one that works well. 

3. Positive Example: (Japan, Toyota, Blue, 1990, Economy) 

Prune G to exclude descriptions inconsistent with the positive example.  
Generalize S to include the positive example. 

G = { (?, ?, Blue, ?, ?), 
(?, ?, ?, ?, Economy) } 

S = { (Japan, ?, Blue, ?, Economy) } 

 

 

4. Negative Example: (USA, Chrysler, Red, 1980, Economy) 

Specialize G to exclude the negative example (but stay consistent with S) 
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G = { (?, ?, Blue, ?, ?), 
(Japan, ?, ?, ?, Economy) } 

S = { (Japan, ?, Blue, ?, Economy) } 

 

 

5. Positive Example: (Japan, Honda, White, 1980, Economy) 

Prune G to exclude descriptions inconsistent with positive example. 
Generalize S to include positive example. 

G = { (Japan, ?, ?, ?, Economy) } 
S = { (Japan, ?, ?, ?, Economy) }  

 

 

G and S are singleton sets and S = G. 
Converged. 
No more data, so algorithm stops. 
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Explanation Based Machine Learning: 
 
Explanation-based learning (EBL) is a form of machine learning that exploits a very 
strong, or even perfect, domain theory to make generalizations or form concepts from 
training examples. This is a type of analytic learning. The advantage of explanation-based 
learning is that, as a deductive mechanism, it requires only a single training example ( 
inductive learning methods often require many training examples) 

An Explanation-based Learning (EBL ) system accepts an example (i.e. a training 
example) and explains what it learns from the example. The EBL system takes only the 
relevant aspects of the training. 

EBL accepts four inputs: 

A training example : what the learning sees in the world. (specific facts that rule out some 
possible hypotheses) 

 
A goal concept : a high level description of what the program is supposed to learn. (the set 
of all possible conclusions)  
 
A operational criterion : a description of which concepts are usable. (criteria for 
determining which features in the domain are efficiently recognizable, e.g. which features 
are directly detectable using sensors) 
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A domain theory : a set of rules that describe relationships between objects and actions in 
a domain. (axioms about a domain of interest) 

From this EBL computes a generalization of the training example that is sufficient not only 
to describe the goal concept but also satisfies the operational criterion.  

This has two steps:  

Explanation: the domain theory is used to prune away all unimportant aspects of the 
training example with respect to the goal concept.  
 
Generalisation: the explanation is generalized as far possible while still describing the 
goal concept 
 
 
 
 
 
 
 
 
 
 
 
 
 
An example of EBL using a perfect domain theory is a program that learns to play chess by 
being shown examples. A specific chess position that contains an important feature, say, 
"Forced loss of black queen in two moves," includes many irrelevant features, such as the 
specific scattering of pawns on the board. EBL can take a single training example and 
determine what the relevant features are in order to form a generalization. 
 
Learning by Analogy: 
 
Reasoning by analogy generally involves abstracting details from a a particular set of 
problems and resolving structural similarities between previously distinct problems. 
Analogical reasoning refers to this process of recognition and then applying the solution 
from the known problem to the new problem. Such a technique is often identified as case-

based reasoning. Analogical learning generally involves developing a set of mappings 
between features of two instances. 
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The question in above figure represents some known aspects of a new case, which has 
unknown aspects to be determined. In deduction, the known aspects are compared (by a 
version of structure mapping called unification) with the premises of some implication. 
Then the unknown aspects, which answer the question, are derived from the conclusion of 
the implication. In analogy, the known aspects of the new case are compared with the 
corresponding aspects of the older cases. The case that gives the best match may be 
assumed as the best source of evidence for estimating the unknown aspects of the new 
case. The other cases show alternative possibilities for those unknown aspects; the closer 
the agreement among the alternatives, the stronger the evidence for the conclusion. 
 

1. Retrieve: Given a target problem, retrieve cases from memory that are relevant to 
solving it. A case consists of a problem, its solution, and, typically, annotations 
about how the solution was derived. For example, suppose Fred wants to prepare 
blueberry pancakes. Being a novice cook, the most relevant experience he can 
recall is one in which he successfully made plain pancakes. The procedure he 
followed for making the plain pancakes, together with justifications for decisions 
made along the way, constitutes Fred's retrieved case. 

2. Reuse: Map the solution from the previous case to the target problem. This may 
involve adapting the solution as needed to fit the new situation. In the pancake 
example, Fred must adapt his retrieved solution to include the addition of 
blueberries. 

3. Revise: Having mapped the previous solution to the target situation, test the new 
solution in the real world (or a simulation) and, if necessary, revise. Suppose Fred 
adapted his pancake solution by adding blueberries to the batter. After mixing, he 
discovers that the batter has turned blue – an undesired effect. This suggests the 
following revision: delay the addition of blueberries until after the batter has been 
ladled into the pan. 

4. Retain: After the solution has been successfully adapted to the target problem, 
store the resulting experience as a new case in memory. Fred, accordingly, records 
his newfound procedure for making blueberry pancakes, thereby enriching his set 
of stored experiences, and better preparing him for future pancake-making 
demands. 
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Transformational Analogy: 
Suppose you are asked to prove a theorem in plane geometry. You might look for a 
previous theorem that is very similar and copy its proof, making substitutions when 
necessary. The idea is to transform a solution to a previous problem in to solution for the 
current problem. The following figure shows this process, 
 
 
  
 
 
 
 
 
 
 
 
 
 

Fig: Transformational Analogy 
 

 
Derivational Analogy: 
Notice that transformational analogy does not look at how the old problem was solved, it 
only looks at the final solution. Often the twists and turns involved in solving an old 
problem are relevant to solving a new problem. The detailed history of problem solving 
episode is called derivation, Analogical reasoning that takes these histories into account is 
called derivational analogy. 
 
 
 
 
            New Derivation                                                                      Old derivation 
 
                                                                                                            
 
 
 
 

Fig: Derivational Analogy 
 

For details of the above mentioned theory,  Refer Book:-  E. Rich, K. Knight, S. 

B. Nair, Tata MacGraw Hill ( Pages 371-372)  
 
 

New 
 Problem 

Previously 
solved problem 

Solution to 
New Problem 

Solution to Old 
Solution 

New 
 Problem 

Previously 
solved problem 

Solution to 
New Problem 

Solution to Old 
Solution 
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Learning by Simulating Evolution: 
 
Refer Book:- P. H. Winston, Artificial Intelligence, Addison Wesley. (Around page 220) 

 
 
Learning by Training Perceptron: 

Below is an example of a learning algorithm for a single-layer (no hidden-layer) 

perceptron. For multilayer perceptrons, more complicated algorithms such as 

backpropagation must be used. Or, methods such as the delta rule can be used if the 

function is non-linear and differentiable, although the one below will work as well. 

The learning algorithm we demonstrate is the same across all the output neurons, therefore 

everything that follows is applied to a single neuron in isolation. We first define some 

variables: 

 x(j) denotes the j-th item in the n-dimensional input vector 

 w(j) denotes the j-th item in the weight vector 

 f(x) denotes the output from the neuron when presented with input x 

 α is a constant where (learning rate) 

Assume for the convenience that the bias term b is zero. An extra dimension n + 1 can be 

added to the input vectors x with x(n + 1) = 1, in which case w(n + 1) replaces the bias 

term. 

 
the appropriate weights are applied to the inputs, and the resulting weighted sum passed to 

a function which produces the output y 

Let be training set of m training examples, where xi 
is the input vector to the perceptron and yi is the desired output value of the perceptron for 
that input vector. 
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Learning algorithm steps: 

1. Initialize weights and threshold. 

 Set wi(t), (1 ≤ i ≤ m) to be the weight i at time t, and ø to be the threshold value in 
the output node. 

 Set w(0) to be -ø,the bias, and x(0) to be always 1. 
 Set wi(1) to small random values, thus initialising the weights and threshold. 

2. Present input and desired output 

 Present input x0 = 1 and x1,x2,...,xm and desired output d(t) 

3. Calculate the actual output 

 y(t) = fh[w0(t) + w1(t)x1(t) + w2(t)x2(t) + .... + wm(t)xm(t)] 

4. Adapts weights 

 wi(t + 1) = wi(t) + α[d(t) − y(t)]xi(t) , for . 

Steps 3 and 4 are repeated until the iteration error is less than a user-specified error 
threshold or a predetermined number of iterations have been completed. 
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Expert Systems: 

An Expert system is a set of program that manipulates encoded knowledge to solve 
problem in a specialized domain that normally requires human expertise.

A computer system  that simulates the decision- making process of a human expert in a 
specific domain. 

An expert system’s knowledge is obtained from expert sources and coded in a form 
suitable for the system to use in its inference or reasoning processes. The expert knowledge 
must be obtained from specialists or other sources of expertise, such as texts, journals, 
articles and data bases. 

An expert system is an “intelligent” program that solves problems in a narrow problem 
area by using high-quality, specific knowledge rather than an algorithm.  

Block Diagram 

There is currently no such thing as “standard” expert system. Because a variety of 
techniques are used to create expert systems, they differ as widely as the programmers who 
develop them and the problems they are designed to solve. However, the principal 
components of most expert systems are knowledge base, an inference engine, and a user 
interface, as illustrated in the figure. 

Fig: Block Diagram of expert system 

Knowledge 

Base 

Inference 

Engine 

User 

Interface 
User 

Jagdish Bhatta 114



Artificial Intelligence  Chapter- Application of AI 

1. Knowledge Base

The component of an expert system that contains the system’s knowledge is called its 
knowledge base. This element of the system is so critical to the way most expert 
systems are constructed that they are also popularly known as  knowledge-based

systems 

A knowledge base contains both declarative knowledge (facts about  objects, events 
and situations) and procedural knowledge (information about  courses of action). 
Depending on the form of knowledge representation chosen,  the two types of 
knowledge may be separate or integrated. Although many knowledge representation 
techniques have been used in expert systems, the most  prevalent form of knowledge 
representation currently used in expert systems is the rule-based production system 
approach. 

To improve the performance of an expert system, we should supply the system with 
some knowledge about the knowledge it posses, or in other words, meta-knowledge. 

2. Inference Engine

Simply having access to a great deal of knowledge does not make you an expert; you 
also must know how and when to apply the appropriate knowledge. Similarly, just 
having a knowledge base does not make an expert system intelligent. The system must 
have another component that directs the implementation of the knowledge. That 
element of the system is known variously as the control structure, the rule interpreter, 
or the inference engine. 

The inference engine decides which heuristic search techniques are used to determine 
how the rules in the knowledge base are to be applied to the problem. In effect, an 
inference engine “runs” an expert system, determining  which rules are to be invoked, 
accessing the appropriate rules in the knowledge base, executing  the rules , and 
determining when an acceptable solution has been found. 

3. User Interface

The component of an expert system that communicates with the user is known as the 
user interface. The communication performed by a user interface is bidirectional. At 
the simplest level, we must be able to describe our problem to the expert system, and 
the system must be able to respond with its  recommendations. We may want to 
ask the system to explain its “reasoning”, or the system may request additional 
information about the problem from us. 

Beside these three components, there is a Working Memory - a data structure which 
stores information about a specific run. It holds current facts and knowledge. 
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Stages of Expert System Development: 
 
Although great strides have been made in expediting the process of developing an expert 
system, it often remains an extremely time consuming task. It may be possible for one or 
two people to develop a small expert system in a few months; however the development of 
a sophisticated system may require a team of several people working together for more 
than a year. 
 
An expert system typically is developed and refined over a period of several years. We can 
divide the process of expert system development into five distinct stages. In practice, it 
may not be possible to break down the expert system development cycle precisely. 
However, an examination of these five stages may serve to provide us with some insight 
into the ways in which expert systems are developed. 
 

 
Fig: Different phases of expert system development 

 
 
Identification: 
 
Beside we can begin to develop an expert system, it is important that we describe, with as 
much precision as possible, the problem that the system is intended to solve. It is not 
enough simply to feel that the system would be helpful in certain situation; we must 
determine the exact nature of the problem and state the precise goals that indicate exactly 
how we expect the expert system to contribute to the solution. 
 
Conceptualization: 
 
Once we have formally identified the problem that an expert system is to solve, the next 
stage involves analyzing the problem further to ensure that its specifics, as well as it 
generalities, are understood. In the conceptualization stage the knowledge engineer 
frequently creates a diagram of the problem to depict graphically the relationships between 
the objects and processes in the problem domain. It is often helpful at this stage to divide 
the problem into a series of sub-problems and to diagram both the relationships among the 
pieces of each sub-problem and the relationships among the various sub-problems. 

Formulating 
Rules that 

Embody the 
Knowledge 

Conceptualization Formalization Implementation 

Designing 
structures to 
organize the 
knowledge 

Finding 
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represent the 
knowledge. 

 

 
Validating 
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Formalization: 
 
In the preceding stages, no effort has been made to relate the domain problem to the 
artificial intelligence technology that may solve it. During the identification and the 
conceptualization stages, the focus is entirely on understanding the problem. Now, during 
the formalization stage, the problem is connected to its proposed solution, an expert 
system, by analyzing the relationships depicted in the conceptualization stage. 
During formalization, it is important that the knowledge engineer be familiar with the 
following: 

 The various techniques of knowledge representation and heuristic search 
used in expert systems. 

 The expert system “tools” that can greatly expedite the development 
process. And 

 Other expert systems that may solve similar problems and thus may be 
adequate to the problem at hand. 

 
Implementation: 
 
During the implementation stage, the formalized concepts are programmed onto the 
computer that has been chosen for system development, using the predetermined 
techniques and tools to implement a “first pass” prototype of the expert system. 
 
Theoretically, if the methods of the previous stage have been followed with diligence and 
care, the implementation of the prototype should be as much an art as it is a science, 
because following all rules does not guarantee that the system will work the first time it is 
implemented. Many scientists actually consider the first prototype to be a “throw-away’ 
system, useful for evaluating progress but hardly a usable expert system. 
 
Testing: 
 
Testing provides opportunities to identify the weakness in the structure and 
implementation of the system and to make the appropriate corrections. Depending on the 
types of problems encountered, the testing procedure may indicate that the system was  
  
 
Features of an expert system: 
 
What are the features of a good expert system? Although each expert system has its own 
particular characteristics, there are several features common to many systems. The 
following list from Rule-Based Expert Systems suggests seven criteria that are important 
prerequisites for the acceptance of an expert system . 
 

1. “The program should be useful.” An expert system should be developed to meet a 
specific need, one for which it is recognized that assistance is needed. 
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2. “The program should be usable.” An expert system should be designed so that 
even a novice computer user finds it easy to use . 

 
3. “The program should be educational when appropriate.” An expert system may 

be used by non-experts, who should be able to increase their own expertise by 
using the system. 

 
4. “The program should be able to explain its advice.” An expert system should be 

able to explain the “reasoning” process that led it to its conclusions, to allow us to 
decide whether to accept the system’s recommendations. 

 
5. “The program should be able to respond to simple questions.” Because people 

with different levels of knowledge may use the system , an expert system should be 
able to answer questions about points that may not be clear to all users. 

 
6. “The program should be able to learn new knowledge.” Not only should an expert 

system be able to respond to our questions, it also should be able to ask questions to 
gain additional information. 

 
7. “The program’s knowledge should be easily modified.” It is important that we 

should be able to revise the knowledge base of an expert system easily to correct 
errors or add new information. 
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Neural Networks: 
 

A neuron is a cell in brain whose principle function is the collection, Processing, and 
dissemination of electrical signals. Brains Information processing capacity comes 
from networks of such neurons. Due to this reason some earliest AI work aimed to 
create such artificial networks. (Other Names are Connectionism; Parallel distributed 
processing and neural computing).  

What is a Neural Network? 

An Artificial Neural Network (ANN) is an information processing paradigm that is 
inspired by the way biological nervous systems, such as the brain, process information. 
The key element of this paradigm is the novel structure of the information processing 
system. It is composed of a large number of highly interconnected processing elements 
(neurones) working in unison to solve specific problems. ANNs, like people, learn by 
example. An ANN is configured for a specific application, such as pattern recognition or 
data classification, through a learning process.  

Why use neural networks? 

Neural networks, with their remarkable ability to derive meaning from complicated or 
imprecise data, can be used to extract patterns and detect trends that are too complex to be 
noticed by either humans or other computer techniques. A trained neural network can be 
thought of as an "expert" in the category of information it has been given to analyze. Other 
advantages include:  

1. Adaptive learning: An ability to learn how to do tasks based on the data given for 
training or initial experience.  

2. Self-Organisation: An ANN can create its own organisation or representation of the 
information it receives during learning time.  

3. Real Time Operation: ANN computations may be carried out in parallel, and 
special hardware devices are being designed and manufactured which take 
advantage of this capability.  

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a 
network leads to the corresponding degradation of performance. However, some 
network capabilities may be retained even with major network damage 
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Neural networks versus conventional computers 

Neural networks take a different approach to problem solving than that of conventional 
computers. Conventional computers use an algorithmic approach i.e. the computer follows 
a set of instructions in order to solve a problem. Unless the specific steps that the computer 
needs to follow are known the computer cannot solve the problem. That restricts the 
problem solving capability of conventional computers to problems that we already 
understand and know how to solve. But computers would be so much more useful if they 
could do things that we don't exactly know how to do.  

Neural networks process information in a similar way the human brain does. The network 
is composed of a large number of highly interconnected processing elements(neurones) 
working in parallel to solve a specific problem. Neural networks learn by example. They 
cannot be programmed to perform a specific task. The examples must be selected carefully 
otherwise useful time is wasted or even worse the network might be functioning 
incorrectly. The disadvantage is that because the network finds out how to solve the 
problem by itself, its operation can be unpredictable. 

On the other hand, conventional computers use a cognitive approach to problem solving; 
the way the problem is to solved must be known and stated in small unambiguous 
instructions. These instructions are then converted to a high level language program and 
then into machine code that the computer can understand. These machines are totally 
predictable; if anything goes wrong is due to a software or hardware fault. 

Units of Neural Network: 
 
Nodes(units): 

Nodes represent a cell of neural network. 
Links: 

Links are directed arrows that show propagation of information from one node to 
another node. 

Activation: 
Activations are inputs to or outputs from a unit. 

Weight: 
Each link has weight associated with it which determines strength and sign of the 
connection. 

Activation function: 
A function which is used to derive output activation from the input activations to a 
given node is called activation function. 

Bias Weight: 
Bias weight is used to set the threshold for a unit. Unit is activated when the 
weighted sum of real inputs exceeds the bias weight.   
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Simple Model of Neural Network 

A simple mathematical model of neuron is devised by McCulloch and Pit is given in the 
figure given below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It fires when a linear combination of its inputs exceeds some threshold. 
 
A neural network is composed of nodes (units) connected by directed links A link from 
unit j to i serve to propagate the activation aj from j to i. Each link has some numeric 
weight Wj,i associated with it, which determines strength and sign of connection. 
 
Each unit first computes a weighted sum of it’s inputs: 
                   n  

ini =  Wj,i  aj 
                 J=0  
 
Then it applies activation function g to this sum to derive the output: 
 
                         n  

ai = g( ini) =g(  Wj,i  aj) 
                                 J=0 
 
Here, aj  output activation from unit j and  Wj,i  is the weight on the link j to this node. 
Activation function typically falls into one of three categories:  

 Linear  
 Threshold (Heaviside function) 
 Sigmoid 
 Sign 
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For linear activation functions, the output activity is proportional to the total weighted 
output.  

g(x) = k x + c,  where k and x are constant 

 

 

 

For threshold activation functions, the output are set at one of two levels, depending on 
whether the total input is greater than or less than some threshold value. 

g(x) = 1 if x>= k 

         = 0 if x < k  

 

 

  
For sigmoid activation functions, the output varies continuously but not linearly as the 
input changes. Sigmoid units bear a greater resemblance to real neurons than do linear or 
threshold units. It has the advantage of differentiable. 
 
g(x) = 1/ (1 + e-x) 

 
 
 
 
 
 
 
 

Realizing logic gates by using Neurons: 
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Network structures: 
 

Feed-forward networks: 
Feed-forward ANNs  allow signals to travel one way only; from input to output. There is 
no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-
forward ANNs tend to be straight forward networks that associate inputs with outputs. 
They are extensively used in pattern recognition. This type of organization is also referred 
to as bottom-up or top-down. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Feedback networks (Recurrent networks:) 

Feedback networks (figure 1) can have signals traveling in both directions by introducing 
loops in the network. Feedback networks are very powerful and can get extremely 
complicated. Feedback networks are dynamic; their 'state' is changing continuously until 
they reach an equilibrium point. They remain at the equilibrium point until the input 
changes and a new equilibrium needs to be found. Feedback architectures are also referred 
to as interactive or recurrent.  

 

Outputs 
Inputs 

Outputs 
Inputs 
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Feed-forward example 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
Here; 
a5 = g(W3;5  a3 +W4;5  a4) 
    = g(W3;5  g(W1;3 a1 +W2;3 a2) + W4;5 g(W1;4 a1 +W2;4 a2) 
 
 
Types of Feed Forward Neural Network: 
 
Single-layer neural networks (perceptrons) 
 
A neural network in which all the inputs connected directly to the outputs is called a 
single-layer neural network, or a perceptron network. Since each output unit is independent 
of the others each weight affects only one of the outputs. 
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Multilayer neural networks (perceptrons) 
 
The neural network which contains input layers, output layers and some hidden layers also 
is called multilayer neural network. The advantage of adding hidden layers is that it 
enlarges the space of hypothesis. Layers of the network are normally fully connected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Once the number of layers, and number of units in each layer, has been selected, training is 
used to set the network's weights and thresholds so as to minimize the prediction error 
made by the network 
 
Training is the process of adjusting weights and threshold to produce the desired result for 
different set of data. 

 

Learning in Neural Networks: 

Learning: One of the powerful features of neural networks is learning. Learning in 
neural networks is carried out by adjusting the connection weights among neurons. It 
is similar to a biological nervous system in which learning is carried out by changing 
synapses connection strengths, among cells.  

The operation of a neural network is determined by the values of the interconnection 
weights. There is no algorithm that determines how the weights should be assigned in 
order to solve specific problems. Hence, the weights are determined by a learning process 

Learning may be classified into two categories: 

      (1) Supervised Learning 
      (2) Unsupervised Learning  

Jagdish Bhatta 125



Artificial Intelligence    Chapter- Application of AI 

Supervised Learning: 

In supervised learning, the network is presented with inputs together with the target 
(teacher signal) outputs. Then, the neural network tries to produce an output as close as 
possible to the target signal by adjusting the values of internal weights. The most common 
supervised learning method is the “error correction method”. 

Error correction method is used for networks which their neurons have discrete output 
functions. Neural networks are trained with this method in order to reduce the error 
(difference between the network's output and the desired output) to zero. 

 

 

 

 

 

 

Unsupervised Learning: 

In unsupervised learning, there is no teacher (target signal) from outside and the network 
adjusts its weights in response to only the input patterns. A typical example of 
unsupervised learning is Hebbian learning. 
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Consider a machine (or living organism) which receives some sequence of inputs x1, x2, 
x3, . . ., where xt is the sensory input at time t. In supervised learning the machine is given 
a sequence of input & a sequence of desired outputs y1, y2, . . . , and the goal of the 
machine is to learn to produce the correct output given a new input. While, in unsupervised 
learning the machine simply receives inputs x1, x2, . . ., but obtains neither supervised 
target outputs, nor rewards from its environment. It may seem somewhat mysterious to 
imagine what the machine could possibly learn given that it doesn’t get any feedback from 
its environment. However, it is possible to develop of formal framework for unsupervised 
learning based on the notion that the machine’s goal is to build representations of the input 
that can be used for decision making, predicting future inputs, efficiently communicating 
the inputs to another machine, etc. In a sense, unsupervised learning can be thought of as 
finding patterns in the data above and beyond what would be considered pure unstructured 
noise. 
 
Hebbian Learning: 
 
The oldest and most famous of all learning rules is Hebb’s postulate of learning: 
 
―When an axon of cell A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process or metabolic changes take 
place in one or both cells such that A’s efficiency as one of the cells firing B is 
increased‖ 

From the point of view of artificial neurons and artificial neural networks, Hebb's principle 
can be described as a method of determining how to alter the weights between model 
neurons. The weight between two neurons increases if the two neurons activate 
simultaneously—and reduces if they activate separately. Nodes that tend to be either 
both positive or both negative at the same time have strong positive weights, while those 
that tend to be opposite have strong negative weights. 

Hebb’s Algorithm: 

Step 0:  initialize all weights to 0 
 
Step 1:  Given a training input, s, with its target output, t, set the activations of the input  

  units:    xi = si 
 
Step 2:  Set the activation of the output unit to the target value:  y = t 
 
Step 3:  Adjust the weights:  wi(new) = wi(old) + xiy 
 
Step 4: Adjust the bias (just like the weights):  b(new) = b(old) + y 
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Example: 
 
PROBLEM:  Construct a Hebb Net which performs like an AND function, that is, only 
when both features are “active” will the data be in the target class. 
 
TRAINING SET (with the bias input always at 1): 
 
 
 
 
 
 
 
Training-First Input: 

 
 
Training- Second Input: 
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Training- Third Input:  
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Training- Fourth Input: 
 

 
 
 
Final Neuron:  
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Perceptron Learning Theory: 

The term "Perceptrons" was coined by Frank RosenBlatt in 1962 and is used to describe 
the connection of simple neurons into networks. These networks are simplified versions of 
the real nervous system where some properties are exagerrated and others are ignored. For 
the moment we will concentrate on Single Layer Perceptrons. 

So how can we achieve learning in our model neuron? We need to train them so they can 
do things that are useful. To do this we must allow the neuron to learn from its mistakes. 
There is in fact a learning paradigm that achieves this, it is known as supervised learning 
and works in the following manner. 

i. set the weight and thresholds of the neuron to random values. 
ii. present an input. 

iii. caclulate the output of the neuron. 
iv. alter the weights to reinforce correct decisions and discourage wrong decisions, 

hence reducing the error. So for the network to learn we shall increase the weights 
on the active inputs when we want the output to be active, and to decrease them 
when we want the output to be inactive. 

v. Now present the next input and repeat steps iii. - v. 

Perceptron Learning Algorithm:  

The algorithm for Perceptron Learning is based on the supervised learning procedure 
discussed previously.  

Algorithm: 

i. Initialize weights and threshold.  

Set wi(t), (0 <= i <= n), to be the weight i at time t, and ø to be the threshold value 
in the output node. Set w0 to be -ø, the bias, and x0 to be always 1. 

Set wi(0) to small random values, thus initializing the weights and threshold. 

ii. Present input and desired output 

Present input x0, x1, x2, ..., xn and desired output d(t) 

iii. Calculate the actual output 

y(t) = g [w0(t)x0(t) + w1(t)x1(t) + .... + wn(t)xn(t)] 

iv. Adapts weights 
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wi(t+1) = wi(t) + α[d(t) - y(t)]xi(t) , where 0 <= α <= 1 (learning rate) is a positive 
gain function that controls the adaption rate. 

Steps iii. and iv. are repeated until the iteration error is less than a user-specified error 
threshold or a predetermined number of iterations have been completed.  

Please note that the weights only change if an error is made and hence this is only when 
learning shall occur. 

Delta Rule: 

The delta rule is a gradient descent learning rule for updating the weights of the artificial 
neurons in a single-layer perceptron. It is a special case of the more general 
backpropagation algorithm. For a neuron  with activation function  the delta rule for 

's th weight is given by 

, 

where  is a small constant called learning rate,  is the neuron's activation function, 
is the target output,  is the weighted sum of the neuron's inputs,  is the actual output, 

and  is the th input. It holds  and . 

The delta rule is commonly stated in simplified form for a perceptron with a linear 
activation function as 

 
 
Backpropagation 
 
It is a supervised learning method, and is an implementation of the Delta rule. It requires a 
teacher that knows, or can calculate, the desired output for any given input. It is most 
useful for feed-forward networks (networks that have no feedback, or simply, that have no 
connections that loop). The term is an abbreviation for "backwards propagation of errors". 
Backpropagation requires that the activation function used by the artificial neurons (or 
"nodes") is differentiable. 

As the algorithm's name implies, the errors (and therefore the learning) propagate 
backwards from the output nodes to the inner nodes. So technically speaking, 
backpropagation is used to calculate the gradient of the error of the network with respect to 
the network's modifiable weights. This gradient is almost always then used in a simple 
stochastic gradient descent algorithm, is a general optimization algorithm, but is typically 

used to fit the parameters of a machine learning model, to find weights that minimize the 

error. Often the term "backpropagation" is used in a more general sense, to refer to the 
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entire procedure encompassing both the calculation of the gradient and its use in stochastic 
gradient descent. Backpropagation usually allows quick convergence on satisfactory local 
minima for error in the kind of networks to which it is suited. 

Backpropagation networks are necessarily multilayer perceptrons (usually with one input, 
one hidden, and one output layer). In order for the hidden layer to serve any useful 
function, multilayer networks must have non-linear activation functions for the multiple 
layers: a multilayer network using only linear activation functions is equivalent to some 
single layer, linear network.  

Summary of the backpropagation technique: 

1. Present a training sample to the neural network. 
2. Compare the network's output to the desired output from that sample. Calculate the 

error in each output neuron. 
3. For each neuron, calculate what the output should have been, and a scaling factor, 

how much lower or higher the output must be adjusted to match the desired output. 
This is the local error. 

4. Adjust the weights of each neuron to lower the local error. 
5. Assign "blame" for the local error to neurons at the previous level, giving greater 

responsibility to neurons connected by stronger weights. 
6. Repeat from step 3 on the neurons at the previous level, using each one's "blame" 

as its error. 

Characteristics: 

• A multi-layered perceptron has three distinctive characteristics 
– The network contains one or more layers of hidden neurons 
– The network exhibits a high degree of connectivity 
– Each neuron has a smooth (differentiable everywhere) nonlinear activation 

function, the most common is the sigmoidal nonlinearity: 

 

 
• The backpropagation algorithm provides a computational efficient method for 

training multi-layer networks 
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Algorithm: 
 
Step 0:  Initialize the weights to small random values 
 
Step 1:  Feed the training sample through the network and determine the final output 
 
Step 2:  Compute the error for each output unit, for unit k it is: 
 
 
 
 
 
Step 3:  Calculate the weight correction term for each output unit, for unit k it is: 
 
 
 
 
 
 
Step 4:  Propagate the delta terms (errors) back through the weights of the hidden units 
where the delta input for the jth hidden unit is: 
 
 
 
The delta term for jth hidden unit is: 
 
Step 5:  Calculate the weight correction term for the hidden units: 
 
Step 6:  Update the weights: 
 
Step 7:  Test for stopping (maximum cylces, small changes, etc) 
 
 
Note: There are a number of options in the design of a backprop system; 

– Initial weights – best to set the initial weights (and all other free parameters) 
to random numbers inside a small range of values (say –0.5 to 0.5) 

– Number of cycles – tend to be quite large for backprop systems 
– Number of neurons in the hidden layer – as few as possible 
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Natural Language Processing: 
 
Perception and communication are essential components of intelligent behavior. They 
provide the ability to effectively interact with our environment. Humans perceive and 
communicate through their five basic senses of sight, hearing, touch, smell and taste, and 
their ability to generate meaningful utterances. Developing programs that understand a 
natural language is a difficult problem. Natural languages are large. They contain infinity 
of different sentences. No matter how many sentences a person has heard or seen, new 
ones can always be produced. Also, there is much ambiguity in a natural language. Many 
words have several meanings and sentences can have different meanings in different 
contexts. This makes the creation of programs that understand a natural language, one of 
the most challenging tasks in AI.  
 
Developing programs to understand natural language is important in AI because a natural 
form of communication with systems is essential for user acceptance. AI programs must be 
able to communicate with their human counterparts in a natural way, and natural language 
is one of the most important mediums for that purpose. So, Natural Language Processing 
(NLP) is the field that deals with the computer processing of natural languages, mainly 
evolved by people working in the field of Artificial Intelligence.  
 
Natural Language Processing (NLP), is the attempt to extract the fuller meaning 
representation from the free text. Natural language processing is a technology which 
involves converting spoken or written human language into a form which can be processed 
by computers, and vice versa. Some of the better-known applications of NLP include:  

 Voice recognition software which translates speech into input for word processors 
or other applications; 

 Text-to-speech synthesizers which read text aloud for users such as the hearing-
impaired; 

 Grammar and style checkers which analyze text in an attempt to highlight errors 
of grammar or usage; 

 Machine translation systems which automatically render a document such as a 
web page in another language. 
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Natural Language Generation: 
 
"Natural Language Generation (NLG), also referred to as text generation, is a subfield of 
natural language processing (NLP; which includes computational linguistics) 

Natural Language Generation (NLG) is the natural language processing task of 
generating natural language from a machine representation system such as a knowledge 
base or a logical form. 

In a sense, one can say that an NLG system is like a translator that converts a computer 
based representation into a natural language representation. However, the methods to 
produce the final language are very different from those of a compiler due to the inherent 
expressivity of natural languages. 
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NLG may be viewed as the opposite of natural language understanding. The difference can 
be put this way: whereas in natural language understanding the system needs to 
disambiguate the input sentence to produce the machine representation language, in NLG 
the system needs to make decisions about how to put a concept into words. 

The different types of generation techniques can be classified into four main categories:  

 Canned text systems constitute the simplest approach for single-sentence and multi-
sentence text generation. They are trivial to create, but very inflexible.  

 Template systems, the next level of sophistication, rely on the application of pre-
defined templates or schemas and are able to support flexible alterations. The 
template approach is used mainly for multi-sentence generation, particularly in 
applications whose texts are fairly regular in structure.  

 Phrase-based systems employ what can be seen as generalized templates. In such 
systems, a phrasal pattern is first selected to match the top level of the input, and 
then each part of the pattern is recursively expanded into a more specific phrasal 
pattern that matches some subportion of the input. At the sentence level, the 
phrases resemble phrase structure grammar rules and at the discourse level they 
play the role of text plans.  

 Feature-based systems, which are as yet restricted to single-sentence generation, 
represent each possible minimal alternative of expression by a single feature. 
Accordingly, each sentence is specified by a unique set of features. In this 
framework, generation consists in the incremental collection of features appropriate 
for each portion of the input. Feature collection itself can either be based on 
unification or on the traversal of a feature selection network. The expressive power 
of the approach is very high since any distinction in language can be added to the 
system as a feature. Sophisticated feature-based generators, however, require very 
complex input and make it difficult to maintain feature interrelationships and 
control feature selection.  

Many natural language generation systems follow a hybrid approach by combining 
components that utilize different techniques. 
 
Natural Language Understanding: 
 

Developing programs that understand a natural language is a difficult problem. Natural 
languages are large. They contain infinity of different sentences. No matter how many 
sentences a person has heard or seen, new ones can always be produced. Also, there is 
much ambiguity in a natural language. Many words have several meaning such as can, 
bear, fly, bank etc, and sentences have different meanings in different contexts.  
 
Example :-  A can of juice.  I can do it. 
 
This makes the creation of programs that understand a natural language, one of the most 
challenging tasks in AI. Understanding the language is not only the transmission of words. 
It also requires inference about the speakers’ goal, knowledge as well as the context of the 
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interaction. We say a program understand natural language if it behaves by taking the 
correct or acceptable action in response to the input. A word functions in a sentence as a 
part of speech. Parts of the speech for the English language are nouns, pronouns, verbs, 
adjectives, adverbs, prepositions, conjunctions and interjections. Three major issues 
involved in understanding language. 
 

 A large amount of human knowledge is assumed. 

 Language is pattern based, phonemes are components of the words and words make 

phrases and sentences. Phonemes, words and sentences order are not random. 

 Language acts are the product of agents (human or machine). 

 

Levels of knowledge used in Language Understanding 
A language understanding knowledge must have considerable knowledge about the 
structures of the language including what the words are and how they combine into phrases 
and sentences. It must also know the meanings of the words and how they contribute to the 
meanings of the sentence and to the context within which they are being used. The 
component forms of knowledge needed for an understanding of natural languages are 
sometimes classified according to the following levels. 
 

 Phonological 

 Relates sound to the words we recognize. A phoneme is the smallest 

unit of the sound. Phones are aggregated to the words. 

 Morphological 

 This is lexical knowledge which relates to the word construction 

from basic units called morphemes. A morpheme is the smallest unit 

of meaning. Eg:- friend + ly = friendly 

 Syntactic 

 This knowledge relates to how words are put together or structure 

red together to form grammatically correct sentences in the 

language. 

 Semantic 

 This knowledge is concerned with the meanings of words and 

phrases and how they combine to form sentence meaning. 

 Pragmatic 
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 This is high – level knowledge which relates to the use of sentences 

in different contexts and how the context affects the meaning of the 

sentence. 

 World 

 Includes the knowledge of the physical world, the world of human 

social interaction, and the roles of goals and intentions in 

communication. 

 
Basic Parsing Techniques 
 
Before the meaning of a sentence can be determined, the meanings of its constituent parts 
must be established. This requires knowledge of the structure of the sentence, the meaning 
of the individual words and how the words modify each other. The process of determining 
the syntactical structure of a sentence is known as parsing. Parsing is the process of 
analyzing a sentence by taking it apart word – by – word and determining its structure 
from its constituent parts and sub parts. The structure of a sentence can be represented with 
a syntactic tree. When given an input string, the lexical parts or terms (root words), must 
first be identified by type and then the role they play in a sentence must be determined. 
These parts can be combined successively into larger units until a complete tree has been 
computed. 
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To determine the meaning of a word, a parser must have access to a lexicon. When the 
parser selects the word from the input stream, it locates the world in the lexicon and 
obtains the word’s possible functions and features, including the semantic information. 

 
Lexeme (Lexicon) & word forms: 
 
The distinction between these two senses of "word" is arguably the most important one in 
morphology. The first sense of "word", the one in which dog and dogs are "the same 

Input String Parser Output representation 
structure 

Input String 

Figure :- Parsing an input to create an output structure 
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word", is called a lexeme. The second sense is called word form. We thus say that dog and 
dogs are different forms of the same lexeme. Dog and dog catcher, on the other hand, are 
different lexemes, as they refer to two different kinds of entities. The form of a word that is 
chosen conventionally to represent the canonical form of a word is called a lemma, or 
citation form. 
 
A lexicon defines the words of a language that a system knows about. This is includes 
common words and words that are specific to the domain of the application. Entries 
include meanings for each word and its syntactic and morphological behavior. 
 
Morphology: 
 
Morphology is the identification, analysis and description of the structure of words (words 
as units in the lexicon are the subject matter of lexicology). While words are generally 
accepted as being (with clitics) the smallest units of syntax, it is clear that in most (if not 
all) languages, words can be related to other words by rules. For example, English speakers 
recognize that the words dog, dogs, and dog catcher are closely related. English speakers 
recognize these relations from their tacit knowledge of the rules of word formation in 
English. They infer intuitively that dog is to dogs as cat is to cats; similarly, dog is to dog 

catcher as dish is to dishwasher (in one sense). The rules understood by the speaker reflect 
specific patterns (or regularities) in the way words are formed from smaller units and how 
those smaller units interact in speech. In this way, morphology is the branch of linguistics 
that studies patterns of word formation within and across languages, and attempts to 
formulate rules that model the knowledge of the speakers of those languages. 
 
Morphological analysis is the process of recognizing the suffixes and prefixes that 
have been attached to a word. 
 
We do this by having a table of affixes and trying to match the input as:  
    prefixes +root + suffixes. 

– For example: adjective + ly -> adverb. E.g.: [Friend + ly]=friendly 
– We may not get a unique result. 
– “-s, -es” can be either a plural noun or a 3ps verb 
– “-d, -ed” can be either a past tense or a perfect participle 

 
Morphological Information: 
 

• Transform part of speech 
– green, greenness (adjective, noun) 
–  walk, walker (verb, noun) 

 
• Change features of nouns 

– boat, boats (singular, plural) 
 

• Bill slept , Bill’s bed 
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– (subjective case, possessive case) 
 

• Change features of verbs 
– Aspect 

• I walk. I am walking. (present, progressive) 
– Tense 

• I walked. I will walk. I had been walking. (past, future, past 

progressive) 
– Number and person 

• I walk. They walk. (first person singular, third person plural) 
 
Syntactic Analysis: 
 
Syntactic analysis takes an input sentence and produces a representation of its grammatical 
structure. A grammar describes the valid parts of speech of a language and how to combine 
them into phrases. The grammar of English is nearly context free. 
 
A computer grammar specifies which sentences are in a language and their parse trees. A 
parse tree is a hierarchical structure that shows how the grammar applies to the input. Each 
level of the tree corresponds to the application of one grammar rule. 
 
It is the starting point for working out the meaning of the whole sentence. Consider the 
following two sentences.  
 

1. “The dog ate the bone.” 
2. “The bone was eaten by the dog.” 

 
Understanding the structure (via the syntax rules) of the sentences help us work out that 
it’s the bone that gets eaten and not the dog. Syntactic analysis determines possible 
grouping of words in a sentence. In other cases there may be many possible groupings of 
words. Consider the sentence “John saw Mary with a telescope”. Two different readings 
based on the groupings. 
 

1. John saw (Mary with a telescope). 
2. John (saw Mary with a telescope). 

 
A sentence is syntactically ambiguous if there are two or more possible groupings. 
Syntactic analysis helps determining the meaning of a sentence by working out possible 
word structure. Rules of syntax are specified by writing a grammar for the language. A 
parser will check if a sentence is correct according to the grammar. It returns a 
representation (parse tree) of the sentence’s structure. A grammar specifies allowable 
sentence structures in terms of basic categories such as noun and verbs. A given grammar, 
however, is unlikely to cover all possible grammatical sentences. Parsing sentences is to 
help determining their meanings, not just to check that they are correct. Suppose we want a 
grammar that recognizes sentences like the following. 
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  John ate the biscuit. 
 The lion ate the zebra. 
 The lion kissed John 
 
But reject incorrect sentences such as 
 Ate John biscuit the. 
 Zebra the lion the ate. 
 Biscuit lion kissed. 
 

A simple grammar that deals with this is given below 

sentence --> noun_phase, verb phrase. 
noun_phrase --> proper_noun. 
noun_phrase --> determiner, noun. 
verb_phrase --> verb, noun_phrase. 
proper_noun --> [mary]. 
proper_noun --> [john]. 
noun --> [zebra]. 
noun --> [biscuit]. 
verb --> [ate]. 
verb --> [kissed]. 
determiner --> [the]. 
 

 
 
Incorrect sentences like “biscuit lion kissed” will be excluded by the grammar.  
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Semantic Analysis: 
 
Semantic analysis is a process of converting the syntactic representations into a meaning 
representation. 
 
This involves the following tasks: 

– Word sense determination 
– Sentence level analysis 
–  Knowledge representation 

 
- Word sense  

Words have different meanings in different contexts.  

Mary had a bat in her office. 

• bat = `a baseball thing’ 

• bat = `a flying mammal’ 

 

- Sentence level analysis  

Once the words are understood, the sentence must be assigned some meaning 

I saw an astronomer with a telescope. 

 

- Knowledge Representation 

Understanding language requires lots of knowledge. 
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Parameters in Natural Language Processing: 
 

 Auditory Inputs 
 Segmentation 
 Syntax Structure 
 Semantic Structure 
 Pragmatic Analysis 

- Auditory Inputs: 

Three of our five senses – sight, hearing and touch – are used as major inputs. These are 
usually referred to as the visual, auditory and tactile inputs respectively. They are 
sometimes called input channels; however, as previously mentioned, the term "channel" is 
used in various ways, so I will avoid it. 
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In the fashion of video devices, audio devices are used to either capture or create sound. In 
some cases, an audio output device can be used as an input device, in order to capture 
produced sound. 

 Microphone 
 MIDI keyboard or other digital musical instrument 

- Segmentation: 

Text segmentation is the process of dividing written text into meaningful units, such as 
words, sentences, or topics. The term applies both to mental processes used by humans 
when reading text, and to artificial processes implemented in computers, which are the 
subject of natural language processing. The problem is non-trivial, because while some 
written languages have explicit word boundary markers, such as the word spaces of written 
English and the distinctive initial, medial and final letter shapes of Arabic, such signals are 
sometimes ambiguous and not present in all written languages. 

Word segmentation is the problem of dividing a string of written language into its 
component words. In English and many other languages using some form of the Latin 
alphabet, the space is a good approximation of a word delimiter. (Some examples 
where the space character alone may not be sufficient include contractions like can't 
for can not.) 

However the equivalent to this character is not found in all written scripts, and without it 
word segmentation is a difficult problem. Languages which do not have a trivial word 
segmentation process include Chinese, Japanese, where sentences but not words are 
delimited, and Thai, where phrases and sentences but not words are delimited. 

In some writing systems however, such as the Ge'ez script used for Amharic and Tigrinya 
among other languages, words are explicitly delimited (at least historically) with a non-
whitespace character. 

Word splitting is the process of parsing concatenated text (i.e. text that contains no spaces 
or other word separators) to infer where word breaks exist. 

Sentence segmentation is the problem of dividing a string of written language into its 
component sentences. In English and some other languages, using punctuation, 
particularly the full stop character is a reasonable approximation. However, even in 
English this problem is not trivial due to the use of the full stop character for 
abbreviations, which may or may not also terminate a sentence. For example Mr. is 
not its own sentence in "Mr. Smith went to the shops in Jones Street." When 
processing plain text, tables of abbreviations that contain periods can help prevent 
incorrect assignment of sentence boundaries. As with word segmentation, not all 
written languages contain punctuation characters which are useful for approximating 
sentence boundaries. 
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Other segmentation problems: Processes may be required to segment text into 
segments besides words, including morphemes (a task usually called morphological 
analysis), paragraphs, topics or discourse turns. 

A document may contain multiple topics, and the task of computerized text segmentation 
may be to discover these topics automatically and segment the text accordingly. The topic 
boundaries may be apparent from section titles and paragraphs. In other cases one needs to 
use techniques similar to those used in document classification. Many different approaches 
have been tried. 

- Syntax Structure:  

Same concept as in the syntactic analysis above 

- Semantic Structure:  

Same concept as in the semantic analysis above 

- Pragmatic Analysis: 

This is high level knowledge which relates to the use of sentences in different contexts and 
how the context affects the meaning of the sentences. It is the study of the ways in which 
language is used and its effect on the listener. Pragmatic comprises aspects of meaning that 
depend upon the context or upon facts about real world. 

Pragmatics – Handling Pronouns 

Handling pronouns such as “he”, “she” and “it” is not always straight forward. Let us see 
the following paragraph. 
 
“John buys a new telescope. He sees Mary in the distance. He gets out his telescope. He 
looks at her through it”. 
 
Here, “her” refers to Mary who was not mentioned at all in the previous sentences. John’s 
telescope was referred to as “a new telescope”, “his telescope” and “it”. 
 
Let us see one more example 
 

“When is the next flight to Sydney?” 
“Does it have any seat left?” 

 
Here, “it”, refers to a particular flight to Sydney, not Sydney itself. 
 
Pragmatics – Ambiguity in Language 

A sentence may have more than one structure such as 
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“I saw an astronomer with a telescope.” 

This English sentence has a prepositional phrase “with a telescope” which may be attached 
with either with verb to make phrase “saw something with telescope” or to object noun 
phrase to make phrase “a astronomer with a telescope”. If we do first, then it can be 
interpreted as “I saw an astronomer who is having a telescope”, and if we do second, it can 
be interpreted as “Using a telescope I saw an astronomer”. 

Now, to remove such ambiguity, one possible idea is that we have to consider the context. 
If the knowledge base (KB) can prove that whether the telescope is with astronomer or not, 
then the problem is solved. 

Next approach is that; let us consider the real scenario where the human beings 
communicate. If A says the same sentence “I saw an astronomer with a telescope.” To B, 
then in practical, it is more probable that, B (listener) realizes that “A has seen astronomer 

who is having a telescope”. It is because, normally, the word “telescope” belongs to 
“astronomer”, so it is obvious that B realizes so.  

If A has says that “I saw a lady with a telescope.” In this case, B realizes that “A has seen 

the lady using a telescope”, because the word “telescope” has not any practical relationship 
with “lady” like “astronomer”. 

So, we may be able to remove such ambiguity, by defining a data structure, which can 
efficiently handle such scenario. This idea may not 100% correct but seemed more 
probable. 
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Machine Vision: 
 
Machine vision (MV) is the application of computer vision to industry and manufacturing. 
Whereas computer vision is the general discipline of making computers see (understand 
what is perceived visually), machine vision, being an engineering discipline, is interested 
in digital input/output devices and computer networks to control other manufacturing 
equipment such as robotic arms and equipment to eject defective products. 
 
Machine vision is the ability of a computer to "see." A machine-vision system 
employs one or more video cameras, analog-to-digital conversion ( ADC ), and digital 
signal processing ( DSP ). The resulting data goes to a computer or robot controller. 
Machine vision is similar in complexity to voice recognition . The machine vision 
systems use video cameras, robots or other devices, and computers to visually analyze an 
operation or activity. Typical uses include automated inspection, optical character 
recognition and other non-contact applications.  

Two important specifications in any vision system are the sensitivity and the resolution. 
Sensitivity is the ability of a machine to see in dim light, or to detect weak impulses at 
invisible wavelengths. Resolution is the extent to which a machine can differentiate 
between objects. In general, the better the resolution, the more confined the field of vision. 
Sensitivity and resolution are interdependent. All other factors held constant, increasing the 
sensitivity reduces the resolution, and improving the resolution reduces the sensitivity. 

One of the most common applications of Machine Vision is the inspection of 
manufactured goods such as semiconductor chips, automobiles, food and 
pharmaceuticals. Just as human inspectors working on assembly lines visually inspect 
parts to judge the quality of workmanship, so machine vision systems use digital 
cameras, smart cameras and image processing software to perform similar 
inspections. 
 
Machine vision systems have two primary hardware elements: the camera, which 
serves as the eyes of the system, and a computer video analyser.  The recent rapid 
acceleration in the development of machine vision for industrial applications can be 
attributed to research in the areas of computer technologies. The first step in vision 
analysis is the conversion of analog pixel intensity data into digital format for 
processing. Next, an appropriate computer algorithm is employed to understand the 
image data and provide appropriate analysis or action. 
 
Machine vision encompasses computer science, optics, mechanical engineering, and 
industrial automation. Unlike computer vision which is mainly focused on machine-based 
image processing, machine vision integrates image capture systems with digital 
input/output devices and computer networks to control manufacturing equipment such as 
robotic arms. Manufacturers favour machine vision systems for visual inspections that 
require high-speed, high-magnification, 24-hour operation, and/or repeatability of 
measurements. 
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A typical machine vision system will consist of most of the following components: 

 One or more digital or analogue cameras (black-and-white or colour) with suitable 
optics for acquiring images, such as lenses to focus the desired field of view onto 
the image sensor and suitable, often very specialized, light sources 

 Input/Output hardware (e.g. digital I/O) or communication links (e.g. network 
connection or RS-232) to report results 

 A synchronizing sensor for part detection (often an optical or magnetic sensor) to 
trigger image acquisition and processing and some form of actuators to sort, route 
or reject defective parts 

 A program to process images and detect relevant features. 

The aim of a machine vision inspection system is typically to check the compliance of a 
test piece with certain requirements, such as prescribed dimensions, serial numbers, 
presence of components, etc. The complete task can frequently be subdivided into 
independent stages, each checking a specific criterion. These individual checks typically 
run according to the following model: 

1. Image Capture 
2. Image Preprocessing 
3. Definition of one or more (manual) regions of interest 
4. Segmentation of the objects 
5. Computation of object features 
6. Decision as to the correctness of the segmented objects 

Naturally, capturing an image, possible several for moving processes, is a pre-requisite for 
analysing a scene. In many cases these images are not suited for immediate examination 
and require pre-processing to change certain sizing specific structures etc. In most cases it 
is at least approximately known which image areas have to be analysed, i.e. the location of 
a mark to be read or a component to be verified. These are called Regions of Interest 
(ROIs) (sometimes Area of Interest or AOIs). Of course, such a region can also comprise 
the entire image if required. 

Machine vision is used in various industrial and medical applications. Examples include: 

 Electronic component analysis 
 Signature identification 
 Optical character recognition 
 Handwriting recognition 
 Object recognition 
 Pattern recognition 
 Materials inspection 
 Currency inspection 
 Medical image analysis 
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Computer Vision: 
 

Computer vision is the science and technology of machines that see, where see in this 
case means that the machine is able to extract information from an image that is necessary 
to solve some task. As a scientific discipline, computer vision is concerned with the theory 
behind artificial systems that extract information from images. The image data can take 
many forms, such as video sequences, views from multiple cameras, or multi-dimensional 
data from a medical scanner. 

As a technological discipline, computer vision seeks to apply its theories and models to the 
construction of computer vision systems. Examples of applications of computer vision 
include systems for: 

 Controlling processes (e.g., an industrial robot or an autonomous vehicle). 
 Detecting events (e.g., for visual surveillance or people counting). 
 Organizing information (e.g., for indexing databases of images and image 

sequences). 
 Modeling objects or environments (e.g., industrial inspection, medical image 

analysis or topographical modeling). 
 Interaction (e.g., as the input to a device for computer-human interaction). 

Computer vision is closely related to the study of biological vision. The field of biological 
vision studies and models the physiological processes behind visual perception in humans 
and other animals. Computer vision, on the other hand, studies and describes the processes 
implemented in software and hardware behind artificial vision systems. Interdisciplinary 
exchange between biological and computer vision has proven fruitful for both fields. 

Computer vision is, in some ways, the inverse of computer graphics. While computer 
graphics produces image data from 3D models, computer vision often produces 3D models 
from image data. There is also a trend towards a combination of the two disciplines, e.g., 
as explored in augmented reality. 

Sub-domains of computer vision include scene reconstruction, event detection, video 
tracking, object recognition, learning, indexing, motion estimation, and image restoration. 
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