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Context Free Grammars and Languages 

 
Grammars are used to generate the words of a language and to determine whether a word is in a 

language. Formal languages, which are generated by grammars, provide models for both natural 

languages, such as, English, and for programming languages, such as C, JAVA. 

 

Context free grammars are used to define syntax of almost all programming languages, in 

context of computer science. Thus an important application of context free grammars occurs in 

the specification and compilation of programming languages. 

 

Formal Description of Context Free Grammar: 

 

A context free grammar is defined by 4-tuples (V, T, P,S) where, 

V= set of variables 

T= set of terminal symbols 

P= set of rules and productions  

S= start symbol and S ε V 

 

There are four components in CFG. 

1. There is a finite set of symbol that form the strings of language being defined. We call 

this alphabet the terminal or terminal symbols. In above tuples, it is represented by T 

2. There is a finite set of variables, also called sometimes non-terminals or non-terminal 

symbols or syntactic categories‟. Each variable represents a language i.e a set of strings. 

3. One of the variables represents the language being defined. It is called the start symbol. 

4. There is a finite set of productions or rules that represent the recursive definition of a 

language. Each production consists of : 

a. A variable that is being defined by the production. This is called head of 

production. 

b. The production symbol  

c. A string of Zero or more terminals and Variables. This string is called the body of 

the production, represents one way to form the string in the language of the head. 

 

Note: The variable symbols are after represented by capital letters. The terminals are analogous 

to the input alphabet and are often represented by lower case letters. One of the variables is 

designed as a start variable. It usually occurs on the left hand side of the topmost rule. 

 

For example, 

S Є 

S 0S1 

 

This is a CFG defining the grammar of all the strings with equal no of 0‟s followed by equal no 

of 1‟s. 

 

Here,  
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the two rules define the production P, 

Є, 0, 1 are the terminals defining T, 

S is a variable symbol defining V 
And S is start symbol from where production starts. 

CFG Vs RE 

The CFG are more powerful than the regular expressions as they have more expressive power 

than the regular expression. Generally regular expressions are useful for describing the structure 

of lexical constructs as identical keywords, constants etc. But they do not have the capability to 

specify the recursive structure of the programming constructs. However, the CFG are capable to 

define any of the recursive structure also. Thus, CFG can define the languages that are regular as 

well as those languages that are not regular. 

 

Compact Notation for the Productions 

It is convenient to think of a production as “belonging” to the variable of head. we may use the 

terms like A-production or the production of A to refer to the production whose head is A. We 

write the production for a grammar by listing each variable once and then listing all the bodies of 

the production for that variable, separated by |. This is called compact Notation. 

 

Example 

CFG representing the language over Σ = {a, b} which is palindrome language. 

S Є | a | b …………………………..Grammar (1) 

Sa S a 

Sb S b 

 

Here the first production is written in compact notation. The detail of this production look like as 

S Є 

Sa 

Sb 

 

Meaning of context free: 

 

Consider an example: 

S  a M b 

M A | B 

A Є | aA 

B Є | bB 

 

How, consider a String aaAb, which is an intermediate stage in the generating of aaab. It is 

natural to call the strings “aa” and “b” that surround the symbol A, the “context” of A in this 

particular string. Now, the rule A aA says that we can replace A by the string aA no matter 

what the surrounding strings are; in other words, independently of the context of A. 
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When there is a production of form lw1rlw2r (but not of the form w1w2), the grammar is 

context sensitive since w1 can be replaced by w2 only when it is surrounded by the strings “l” 

and”r”. 

 

Derivation Using Grammar Rule: 
 We apply the production rule of a CFG to infer that certain strings are in the language of a certain 

variable. This is the process of deriving strings by applying productions rules of the CFG. 

 

General Convention used in Derivation 

  Capital letters near the beginning of the alphabet A, B and so on are used as variables. 

 Capital letters near the end of the alphabet such as X, Y are used as either terminals or 

variables. 

 Lower case letters near the beginning of the alphabet, a, b and so on are used for 

terminals. 

 Lower case letters near the end of alphabet, such as „w‟ or „z‟ are used for string of 

terminals. 

 Lower case Greek letters such as α and β are used for string of terminal or variables. 

 
Derivation: 

A derivation of a context free grammar is a finite sequence of strings β0 β1 β2………βn such that: 

 For 0 ≤ i ≤ n, the string βi ε (V U T)* 

Β0 = S 

For 0 ≤ i ≤ n, there is a production of P that applied to βi yields βi+1 

Βn ε T* 
 

There are two possible approaches of derivation: 

 Body to head (Bottom Up) approach. 

 Head to body (Top Down) approach. 

 

Body to head 

Here, we take strings known to be in the language of each of the variables of the body, 

concatenate them, in the proper order, with any terminals appearing in the body, and infer that 

the resulting string is the language of the variables in the head. 

 

Consider grammar, 

SS + S 

S S/S   ………………………..Grammer(2) 

S (S) 

SS-S 

SS*S 

Sa 

 

Here given a + (a*a) / a – a 

 

Now, by this approach. 
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SN String Inferred Variable(For 

Language of) 

Production String Used 

1 a S Sa  

2 a*a S SS*S String 1 

3 (a*a) S S(S) String 2 

3 (a*a)/a S SS/S String 3 and string 1 

4 a+(a*a)/a S SS+S String 1 and 3 

5 a+(a*a)/a-a S SS-S String 4 and 1 

 

Thus, in this process we start with any terminal appearing in the body and use the available rules 

from body to head. 
 

Head to Body 

Here, we use production from head to body. We expand the start symbol using a production, whose head 

is the start symbol. Here we expand the resulting string until all strings of terminal are obtained. Here we 

have two approaches: 
 

Leftmost Derivation: Here leftmost symbol (variable) is replaced first. 

Rightmost Derivation: Here rightmost symbol is replaced first. 
 

For example: consider the previous example of deriving string 

a+ (a*a)/a-a  with the grammar(2) 

 
 

Now leftmost derivation for the given string is: 

 

S S + S    rule  S + S 

Sa + S    rule S a [Note here we have replaced left symbol of the body] 

Sa + S – S    rule SS - S 

Sa + S / S – S   rule S S / S 

Sa + (S) /S – S   rule S(S) 

S(S*S) / S – S;   rule SS*S 

S a + (a*S) / S – S   rule Sa 

S a + (a*a) / S – S    “  “ 

S a + (a*a) / a – S   “   “ 

Sa + (a*a) / a – a   “  “ 
 

And rightmost derivation is; 

 

S S – S;   rule SS - S 

S S – a;    rule S a 

SS + S – a;   rule S S + S 

SS + S / S – a;   rule SS / S 

SS + S / a –a;  rule S a 

SS + (S) / a – a;   rule S (S) 

SS + (S*S) / a – a;  rule S S*S 
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SS + (S*a) / a – a;   rule S a 

SS + (a*a) / a – a; 

S a + (a*a) / a – a; 

 

Direct Derivation: 

α1 α2 : If α2 can be derived directly from α1, then it is direct derivation. 

α1* α2 : If α2 can be derived from α1 with zero or more steps of the derivation, then it is just 

derivation. 

 

Example 

SaSa | ab| a| b| Є 

 

Direct derivation: 

S  ab 

S aSa 

S aaSaa 

Saaabaa 

 

Thus S* aaabaa is just a derivation. 

 

Language of Grammar (Context Free Grammar): 

 

Let G = (V, T, P and S) is a context free grammar. Then the language of G denoted by L(G) is 

the set of terminal strings that have derivation from the start symbol in G. 

i.e. L (G) = {x ε T* | S* x} 

The language generated by a CFG is called the Context Free Language (CFL). 

 

Sentential forms 

Derivations from the start symbol produce strings that have a special role. We call these 

“sentential forms”. i.e. if G=(V,T,P,S) is a CFG, then any string α is in (V U T)* such that S* 

α is a sentential form. If Slm* α, then α is a left sentential forms, and if Srm
*
 α, then α is a 

right sentential form. 
 

Note: The language L(G) is those sentential forms that are in T* i.e. they consist solely of 

terminals.  

 

Derivation Tree / Parse Tree: 

Parse tree is a tree representation of strings of terminals using the productions defined by the 

grammar. A parse tree pictorially shows how the start symbol of a grammar derives a string in 

the language. 

 

Parse tree may be viewed as a graphical representation for a derivation that filters out the choice 

regarding the replacement order. 
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Formally, given a Context Free Grammar G = (V, T, P and S), a parse tree is a n-ary tree having 

following properties: 

 The root is labeled by the start symbol. 

 Each interior node of parse tree are variables. 

 Each leaf node of parse is labeled by a terminal symbol or Є. 

 If an interior node is labeled with a non terminal A and its childrens are x1, x2 

…………….xn from left to right then there is a production P as: 

A x1, x2, ……………….xn for each xi ε T. 

 

Example 

Consider the grammer 

S aSa | a | b| Є 

 

Now for string S* aabaa 

We have,  

S aSa 

SaaSaa 

Saabaa So the parse tree is:  
 

 

 
 

 

Exercise 

 

a)Consider the Grammar G: 

S A1B 

A0A | Є 

B0B | 1B | Є 

 

1.Construct the parse tree for 00101 

2.Construct the parse tree for 1001 
3.Construct the parse tree for 00011 

b) Consider the grammer for the arithematic expression 

E EOPE | (E) |id 

OP + | - | * | / | ↑ 
 

1. Construct the parse tree for id + id *id 

2. Construct the parse tree for (id +id)*(id + id) 
 

c) Construct a CFG that generates language of balanced parentheses: 

-Show the parse tree computation for 

1.( ) ( ) 

2.( ( ( ) ) ) ( ) 

 

Solution: 
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The CFG is G=(V,T,P,S) 

S SS 

S(S) 

S Є 

Where, 

V = {S} 

S = {S} 

T = {(,)} 

& P = as listed above 
 

Now the parse tree for ( ) ( ) is: 

 

And the parse tree for ( ( ( ( ) ) ) ) ( ) 

 

Ambiguity in Grammar: 

A Grammar G = (V, T, P and S) is said to be ambiguous if there is a string w ε L (G) for which 

we can derive two or more distinct derivation tree rooted at S and yielding w. In other words, a 

grammar is ambiguous if it can produce more than one leftmost or more than one rightmost 

derivation for the same string in the language of the grammar. 

 

Example 

S AB |aaB 

A a | Aa 

B  b 

 

For any string aab; 

 

We have two leftmost derivations as; 

SAB    the parse tree for this derivation is: 

 AaB 

  aaB 

   aab 

 

Also, 

S aaB  the parse tree for this derivation is: 

 aab 

 

Normal forms and Simplification of CFG 

 
The goal of this section is to show that every context free language (without Є) is generated by a 

CFG in which all production are of the form A� BC or A� a, where A,B and c are variables, 

and a is terminal. This form is called Chomsky Normal Form. To get there, we need to make a 

number of preliminary simplifications, which are themselves useful in various ways; 

 

For more notes visit https://collegenote.pythonanywhere.com



Context Free Grammars Unit 2  chapter 4 

Theory of Computation (Compiled by Ganesh Dhami St.Xavier College) Page 8 

 

1. We must eliminate “useless symbols”: Those variables or terminals that do not appear in any 

derivation of a terminal string from the start symbol.  

 

2. We must eliminate “Є-production”: Those of the form A Є for some variable A. 

3. We must eliminate “unit production”: Those of the form A� B for variables A and B. 

 

Eliminating Useless Symbols: 
 

We say a symbol x is useful for a grammar G = (V, T, P, S) if there is some derivation of 

the form S * αxβ *w, where w is in T*. Here, x may be either variable or terminal and the 

sentential form αxβ might be the first or last in the derivation. If x is not useful, we say it is 

useless. 

 

Thus useful symbols are those variables or terminals that appear in any derivation of a terminal 

string from the start symbol. Eliminating a useless symbol includes identifying whether or not 

the symbol is “generating” and “reachable”. 

 

Generating Symbol:  We say x is generating if x*w for some terminal string w: Note that 

every terminal is generated since w can be that terminal itself, which is derived by zero steps. 

 

Reachable symbol: We say x is reachable if there is derivation S * αxβ for some α and β. 

 

Thus if we eliminate the non generating symbols and then non-reachable, we shall have only the 

useful symbols left. 

 

Example 

Consider a grammar defined by following productions: 

SaB | bX 

A Bad | bSX | a 

B aSB | bBX 

XSBd | aBX | ad 

 

Here; 

A  and X can directly generate terminal symbols. So, A and X are generating symbols. As we 

have the productions A a and X ad. 

 

Also, 

S bX and X generates terminal string so S can also generate terminal string. Hence, S is also 

generating symbol. 

B can not produce any terminal symbol, so it is non-generating. 

Hence, the new grammar after removing non-generating symbols is: 

S bX 

A bSX | a 

X ad  

Here, 
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A is non-reachable as there is no any derivation of the form S* α A β in the grammar. Thus 

eliminating the non-reachable symbols, the resulting grammar is: 

S bX 

X ad 

This is the grammar with only useful symbols. 

 

Exercise 

1) Remove useless symbol from the following grammar: 

S xyZ | XyzZ 

XXz | xYZ 

YyYy | XZ 

Z Zy | z 

 

2) Remove useless symbol from the following grammar 

S aC | SB 

A bSCa 

BaSB | bBC 

C aBc | ad 

 

Eliminating Є-productions: 
A grammar is said to have Є-productions if there is a production of the form A� Є. Here our 

strategy is to begin by discovering which variables are “nullable”. A variable ‟A‟ is “nullable” if 

A* Є. 

 

Algorithm (Steps to remove Є-production from the grammar): 

 If there is a production of the form A� Є, then A is “nullable”. 

 If there is production of the form B� X1, X2………. And each Xi‟s are nullable 

then B is also nullable. 

 Find all the nullable variables. 

 If BX1, X2……………. Xn is a production in P  then add all productions P‟ formed by 

striking out some subsets of there Xi‟s that are nullable. 

 Do not include B� Є if there is such production. 

 

Example: 

Consider the grammar: 

SABC 

A BB | Є 

B CC | a 

C AA | b 

 

Here, 

A Є   A is nullable. 

CAA* Є,  C is nullable 

B CC* Є,   B is nullable 

SABC* Є,  S is nullable 
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Now for removal of Є –production: 

In production 

SABC, all A, B and C are nullable. So, striking out subset of each the possible combination of 

production gives new productions as: 

S ABC | AB | BC | AC | A | B | C 

 

Similarly for other can be done and the resulting grammar after removal of e-production is: 

 

SABC | AB | BC | AC | A | B | C 

ABB | B 

BCC | C | a 

CAA | A | b 

 

Exercise: 

Remove Є-productions for each of grammar; 

1)  

S AB 

A aAA | Є 

B  bBB | Є 

 

 

Eliminating Unit Production: 
 

A unit production is a production of the form A B, where A  and B are both variables. 

 

Here, if A B, we say B is A-derivable. B C, we say C is B-derivable. 

Thus if both of two A B and BC, then A* C, hence C is also A-derivable. 

Here pairs (A, B), (B, C) and (A, C) are called the unit pairs. 

 

To eliminate the unit productions, first find all of the unit pairs. The unit pairs are; 

 (A, A) is a unit pair for any variable A as A* A 

 If we have A B then (A, B) is unit pair. 

 If (A, B) is unit pair i.e. AB, and if we have B C then (A, C) is also a unit pair. 

 

Now, to eliminate those unit productions for a, gives grammar say G = (V, T, P, S), we have to 

find another grammar G‟ = (V, T, P‟, S) with no unit productions. For this, we may workout as 

below; 

 Initialize P‟ = P 

 For each A ε V, find a set of A-derivable variables. 

 For every pair (A, B) such that B is A-derivable and for every non-unit production 

B α, we add production A  α is P‟ if it is not in P‟ already. 

 Delete all unit productions from P‟. 

Example 

Remove the unit production for grammar G defined by productions: 
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P = {S S + T | T 

T T* F | F 

F (S) | a 

}; 

 

Initialize  

1) P‟ = {S S + T | T 

T t*F | F 

F (S) | a } 

2) Now, find unit pairs; 

Here,  S T So, (S, T) is unit pair. 

T F So, (T, F) is unit pair. 

Also,  ST and T F So, (S, F) is unit pair. 

 

3) Now, add each non-unit productions of the form B α for each pair (A, B); 

P‟ = {  

 SS + T |T * F| (S) | a 

TT * F | (S) | a | F 

F (S) | a  

        } 

4) Delete the unit productions from the grammar; 

P‟ = { 

       S S + T | T * F | (S) | a 

T T * F | (S) | a 

F (S) | a 

} 

 

Exercise 

 

1) Simply the grammar G = (V, T, P, S) defined by following productions. 

S ASB | Є 

A aAS | a 

B SbS | A | bb | Є 

Note: Here simplify means you have to remove all the useless symbol, Unit production and Є- 

productions. 

2) Simplify the grammar defined by following production: 

S 0A0 | 1B1 | BB 

A C 

B S | A 

CS | Є 
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Chomsky Normal Form 

 

A context free grammar G = (V, T, P, S) is said to be in Chomsky‟s Normal Form (CNF) if every 

production in G are in one of the two forms; 

A BC and 

A a where A, B, C ε V and a ε T 

Thus a grammar in CNF is one which should not have; 

Є-production 

Unit production 

Useless symbols. 
 

Theorem: Every context free language (CFL) without Є-production can be generated by grammar 

in CNF. 

 

Proof: 
If all the productions are of the form A a and A BC with A, B, C ε V and a ε T, we have done.  

 

Otherwise, we have to do two task as: 

1. Arrange that all bodies of length 2 or more consist only of variable 
2. Break bodies of length 3 or more into a cascade of production , each with a body consisting of 

two variable. 

The construction for task (1) is as follows 
if the productions are of the form: A X1, X2, ………………Xm,  m>2  and if some Xi is terminal a, 

then we replace the Xi by Ca having Ca a where Ca is a variable itself. 

 

Thus  as result we will  have all productions of the form: 
A B1B2…………Bm, m>2; where all Bi‟s are non-terminal. 

 

The construction for task (2) is as follows 
We break those production A B1B2…………Bm for m>=3, into group of production with two variables 

in each body. We introduce m-2 new variables C1,C2,…………Cm-2. The original production is replaced 

by the m-1 productions 
AB1C1, 

C1B2C2, 

…….. 

…….. 
… 

Ck-2Bk-1Bk 

 
Finally, all of the productions are achieved in the form as: 

A BC or Aa 

This is certainly a grammar in CNF and generates a language without Є-productions. 
 

Consider an example: 

S AAC 

A aAb | Є 
C  aC | a 

1) Now, removing Є- productions; 
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Here, A is nullable symbol as AЄ 
So, eliminating such Є-productions, we have; 

S AAC | AC | C 

A aAb | ab 

C aC | a 
 

2) Removing unit-productions; 

 
Here, the unit pair we have is (S, C) as S C 

So, removing unit-production, we have; 

S AAC | AC | aC| a 
A aAb | ab 

C aC | a 

Here we do not have any useless symbol. Now, we can convert the grammar to CNF. For this; 

 
First replace the terminal by a variable and introduce new productions for those which are not as the 

productions in CNF. 

i.e. 
SAAC | AC |C1C | a 

C1 a 

A C1AB1 | C1B1 
B1 b 

C C1C | a 

 

Now, replace the sequence of non-terminals by a variable and introduce new productions. 
Here, replace S AAC by SAC2, C2 AC 

Similarly, replace A C1AB1 by A C1C3, C3 AB1 

 
Thus the final grammar in CNF form will be as; 

S AC2 | AC | C1C | a 

A C1C3 | C1b1 

C1 a 
B1 b 

C2 AC 

C3 AB1 
C C1C | a 

 

Exercise 

Simplify following grammars and convert to CNF; 

1)  

SASB | Є 

A aAS | a 
B SbS | A | bb 

 

2) S AACD 
A aAb | Є 

C aC | a 

DaDa | bDa | Є 
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3) 

S aaaaS | aaaa 
 

 

Left recursive Grammar 

A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation (A * A α) 

for some string   (which may variable or terminal). 

The top down parsing methods can not handle left recursive grammars, so a transformation that eliminates 

left recursion is needed. 
 

Removal of immediate left recursion: 

Let A Aα | β, where β does not start with A. Then, the left-recursive pair of productions could be 

replaced by the non-left-recursive productions as; 
A βA‟ 

A‟ α A‟ | Є;  without changing the set of strings derivable from A. 

 
Or equvalnetly, these production can be rewritten as with out Є- production 

A βA‟| β 

A‟ α A‟ | α;   
 

No matter how many A-productions there are, we can eliminate immediate left recursion from them. 

 

So, in general, 
If A A α1 |A α2 | …………………….|A αm | β1 | β2 | ……………| βn; With βi does not start with A. 

 

Then 
we can remove left recursion as: 

A β1A‟ | β2A‟| …………………. | βnA‟ 

A‟ α1A‟ | α2A‟ | ………………... | αmA‟ | Є 
 

Equivalently, these productions can be rewritten as: 

A β1A‟ | β2A‟| …………………. | βnA‟ | β1 | β2 |………..| βn 

A‟ α1A‟ | α2A‟ | ………………... | αmA‟ | α1 | α2| ………..| αm 
 

Consider an example 

 

SAA | 0 

A AAS | 0S | 1 (Where AS is of the form = α1, 0S of the form =β1 and 1of the form=β2) 

 

Here, the production A AAS is immediate left recursive. So removing left recursion, 
 

we have; 

SAA | 0 
A0SA‟ | 1A‟ 

A‟  ASA‟ | Є 

 
 

Equivalently, we can write it as: 
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S AA | 0 

A 0SA‟ | 1A‟ | 0S | 1 
A‟ ASA‟ | AS 

 

Exercise 

 
For the following grammar 

EE+T |T 

T T*F |F 
F (E) | a 

Remove the Left recursion. 

 

Greibach Normal Form (GNF) 

A grammar G = (V, T, P and S) is said to be in Greibach Normal Form, if all the productions of the 

grammar are of the form: 

 
A a α, where a is a terminal, i.e. a ε T* and α is a string of zero or more variables. i.e. α ε V* 

So we can rewrite as: 

 
AaV* with a ε T* 

Or, 

 
A aV+ 

A a with a ε T 

 

This form called Greibach Normal Form, after Sheila Greibach, Who first gave a way to construct such 
grammars. Converting a grammar to this form is complex, even if we simplify the task by, say, starting 

with a CNF grammar. 

 
To convert a grammar into GNF; 

� Convert the grammar into CNF at first. 

� Remove any left recursions. 

� Let the left recursion tree ordering is A1, A2, A3, ……………… Ap 
� Let Ap is in GNF  

� Substitute Ap in first symbol of Ap-1, if Ap-1 contains Ap. Then Ap-1 is also in GNF. 

� Similarly substitute first symbol of Ap-2 by Ap-1 production and Ap production and 
so on………… 

 

Consider an Example; 

SAA | 0 

ASS | 1 

This Grammar is already in CNF. 

Now to remove left recursion, first replace symbol of A-production by S-production (since we do not 
have immediate left recursion) as: 

 

S AA | 0 
A AAS | 0S | 1 (Where AS is of the form = α1, 0S of the form =β1 and 1of the form=β2) 

 

Now, removing the immediate left recursion; 
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SAA | 0 

A0SA‟ | 1A‟ 
A‟ ASA‟ | Є 

 

Equivalently, we can write it as: 

S AA | 0 
A 0SA‟ | 1A‟ | 0S | 1 

A‟ASA‟ | AS 

 
Now we replace first symbol of S-production by A-production as; 

SAASA‟ | 1A‟A | 0SA | 1A | 0 

A 0SA‟ | 1A‟ | 0S | 1 
A‟ ASA‟ | AS 

 

Similarly replacing first symbol of A‟-production by A-production, we get the grammar 

in GNF as; 
S0SA‟A | 1A‟A | 0SA | 1A | 0 

A 0SA‟ | 1A‟ | 0S | 1 

A‟ 0SA‟SA‟ | 1A‟SA‟ | 0SSA‟ | 1SA‟| 0SA‟S | 1A‟S | 0SS | 1S 

 

Regular Grammar: 

A regular grammar represents a language that is accepted by some finite automata called regular 
language. A regular grammar is a CFG which may be either left or right linear. A grammar in which all of 

the productions are of the form A wB (wB is of  the form α) or A w for A, B ε V and w ε T* is called 

left linear. 

 

Equivalence of Regular Grammar and Finite Automata 

1. Let G = ( V, T, P and S) be a right linear grammar of a language L(G). we can construct a finite 

automata M accepting L(G) as; 
M = ( Q, T, δ, [S]. {[Є]}) 

 

Where, 

Q – consists of symbols [α] such that α is either S or a suffix from right hand side of a  production in P. 
T - is the set of input symbols which are terminal symbols of G. 

[S] – is a start symbol of G which is start state of finite automata. 

{[Є]} – is the set of final states in finite automata. 
 

And δ is defined as: 

If A is a variable then, δ([A], Є) = [α] such that A α is a production. 
If „a‟ is a terminal and α is in T* U T*V then δ([aα], a) = [α]. 

 

For example; 

S 00B | 11C | Є 

B 11C | 11 

C00B | 00 

Now the finite automata can be configured as; 
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Another way: 

 
If the regular grammar is of the form in which all the productions are in the form as; 

A aB or A a, where A, B ε V and a ε T Then, following steps can be followed to obtain an equivalent 

finite automaton that accepts the language represented by above set of productions. 
 

a. The number of states in finite automaton will be one more than the number of variables in the 

grammar.(i.e. if grammar contain 4 variables then the automaton will have 5 states) 

 Such one more additional state in the final state of the automaton. 

 Each state in the automaton is a variable in the grammar. 
b. The start symbol of regular grammar is the start state of the finite automaton. 

c. If the grammar contains Є as S*Є, S being start symbol of grammar, then start state of the automaton 

will also be final state. 

 
d. The transition function for the automaton is defined as; 

 For each production A aB, we write δ(A, a) = B. So there is an arc from state A to B labeled 

with a. 

 For each production A a, δ(A, a) = final state of automaton 

 For each production A Є, make the state A as finite state. 

 

Exercise 

Write the equivalent finite automata 

 

1. 

S abA | bB | aba 

A b | aB | bA 

BaB | aA 
 

2. 

S0B | 111C | Є 

B 00C | 11 

C 00B | 0D 

D0B | 00 
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3. 

S 0A | 1B | 0 | 1 

A 0S | 1B | 1 

B0A | 1S 

 

4. 

A 0B | 1D | 0 

B0D | 1C | Є 

C0B | 1D | 0 

D0D | 1D 

 

5. 

A0B | E | 1C 

B0A | F | Є 

C0C | 1A | 0 

E0C | 1A | 1 

F0A | 1B | Є 

 

Pumping lemma for context free Language: 
The “pumping lemma for context free languages” says that in any sufficiently long string in a CFL, it is 

possible to find at most two short, nearby substrings that we can “pump” in tandem (one behind another). 

i.e. we may repeat both of the strings I times, for any integer I, and the resulting string will still be in the 
language. We can use this lemma as a tool for showing that certain languages are not context free. 

 

Size of Parse tree: Our first step in pumping lemma for CFL‟s is to examine the size of parse trees, 

During the lemma, we will use the grammar in CNF form. One of the uses of CNF is to turn parses into 
binary trees. Any grammar in CNF produces a parse tree for any string that is binary tree. These trees 

have some convenient properties, one of which can be exploited by following theorem. 

 
Theorem: Let a terminal string w be a yield of parse tree generated by a grammar G = (V, T, P and S) in 

CNF. If length path is n, then |w| ≤2
n-1

 

 

Proof: Let us prove this theorem by simple induction on n. 

 

Basis Step: Let n = 1, then the tree consists of only the root and a leaf labeled with a terminal. 

So, string w is a simple terminal. 
Thus |w| = 1 =2

1-1
 = 2

0
 which is true. 

 

Inductive Step: Suppose n is the length of longest path and n>1. Then the root of the tree uses a 
production of the form; ABC, since n>1 

 

No path is the sub-tree rooted at B and C can have length greater than n-1 since B&C are child of A. 

Thus, by inductive hypothesis, the yield of these sub-trees are of length almost 2
n-2

. 
The yield of the entire tree is the concatenation of these two yields and therefore has length at most, 

2
n-2

 + 2
n-2

 = 2
n-1

 

|w|<=2
n-1

. Hence proved. 

 

Pumping Lemma 
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It states that every CFL has a special value called pumping length such that all longer strings in the 

language can be pumped. This time the meaning of pumped is a bit more complex. It means the string can 
be divided into five parts so that the second and the fourth parts may be repeated together any number of 

times and the resulting string still remains in the language. 

 

Theorem: Let L be a CFL. Then there exists a constant n such that if z is any string in L such that |z| is at 
least n then we can write z=uvwxy, satisfying following conditions. 

I) | vx| >0 

II) |vwx| ≤ n 
III) For all i ≥ 0, uv

i
wx

i
y ε L. i.e. the two strings v & x can be “pumped” nay number of times, including 

„0‟ and the resulting string will be still a member of L. 

 
Proof: First we can find a CNF grammar for the grammar G of the CFL L that generates L-{Є}. 

Let m be the number of variables in this grammar choose n= 2
m
. Next suppose z in L is of length at least 

n. i.e. |z| ≥ n 

Any parse tree for z must have height m+1, other if it would be less than m+1, i.e. say m then by the 
lemma for size of parse tree, |z| = 2

m-1
 = 2

m
/2= n/2 is contradicting. So it 

should be m+1. 

Let us consider a path of maximum length in tree for z, as shown below, where k is the least m and path is 
of length k. 

 
Since k ≥ m. there are at least m+1 occurrence of variables A0, A1, A2………. Ak on the path. But there 

are only m variables in the grammar, so at least two of the last m+1 variable on the path must be same, 
(by pigeonhole principle). 

Suppose Ai = Aj, then it is possible to divide tree, 

 
String w is the yield of sub-tree noted at Aj, string v and x are to left and right of w in yield of larger sub-
tree rooted at Ai. If u and y represent beginning and end z i.e. to right and left of sub-tree rooted at Ai, 

then 

Z= uvwxy 

Since, there are not unit productions so v & x both could not be Є, i.e. empty. Means that Ai has always 
two children corresponding to variables. If we let B denotes the one tree is not ancestor of Aj, then since 
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w is derived from Aj then strings of terminal derived from B does not overlap x. it follows that either v or 

x is not empty. So, 
|vx| > 0 

Now, we know Ai = Aj = A say, as we found any two variables in the tree are same. Then, we can 

construct new parse tree where we can replace sub-tree rooted at Ai, which has yield vwx, by sub-tree 

rooted at Aj, which has yield w. the reason we can do so is that both of these trees have root labeled A. 
the resulting tree yields uv

0
wx

0
y as; 

 

             
             

             

             
             

    

 

 
 

 

 
 

 

Another option is to replace sub-tree rooted at Aj by entire sub-tree rooted at Ai. Then the yield can be of 
pattern uv

2
wx

2
y as 

 
Hence, we can find any yield of the form uv

i
wx

i
y ε L for any i ≥ 0 Now, to show |vwx| ≤ n. the Ai in the 

tree is the portion of path which is root of vwx. 
Since we begin with maximum path of length with height m+1. this sub-tree rooted at Ai also have height 

of less than m+1. 

So by lemma for height of parse tree, 
|vwx| ≤ 2

m+1-1
 = 2

m
 = n 

|vwx| ≤ n 

Thus, this completes the proof of pumping lemma. 
 

Example 

Show that L = {a
n
b

n
c

n
:n≥0} is not a CFL 

 
To prove L is not CFL, we can make use of pumping lemma for CFL. Let L be CFL. Let any string in the 

language is a
m
b

m
c

m
 

z = uvwxy, |vwx| ≤ m, |vx| > 0 
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Case I: 

vwx is in a
m
 

 
v = a

k1
, x = a

k2
; k1+k2 >0 i.e. k1+k2 ≥ 1 

 
Now pump v and x then 

 
But by pumping lemma, uv

2
xy

2
z = a

m+K1+k2
b

m
c

m
 does not belong to L as, k1+k2. Hence, it shows 

contradiction that L is CFL. So, L is not CFL. 

Note: other cases can be done similarly. 

 

Bakus-Naur Form 

 

This is another notation used to specify the CFG. It is named so after John Bakus, who invented it, and 
Peter Naur, who refined it. The Bakus-Naur form is used to specify the syntactic rule of many computer 

languages, including Java. Here, concept is similar to CFG, only the difference is instead of using symbol 

“‟‟ in production, we use symbol ::=. We enclose all non-terminals in angle brackets, < >. 

 
For example: 

 

The BNF for identifiers is as; 
<identifier> ::= <letter or underscore> | <identifier> | <symbol> 

<letter or underscore> ::= <letter> | <_> 

<symbol> ::= <letter or underscore> | <digit> 
<letter> ::= a | b | ……………….. | z 

<digit> ::= 0 | 1| 2 | ……………….|3 

 

Closure Property of Context Free Languages 
Given certain languages are context free, and a language L is formed from them by certain operation, like 

union of the two, then L is also context free. These theorem lemma are often called closure properties of 

context free languages, since they show whether or not the class of context free language is called under 
the operation mentioned. 

Closure properties express the idea that one (or several) languages are context free, and then certain 

related languages are also context free or not. 
 

Here are some of the principal closure properties for context free languages; 

 

A. The context free language are closed under union 
i.e. Given any two context free languages L1 and L2, their union L1 U L2 is also context free language. 

 

Proof 
The inductive idea of the proof is to build a new grammar from the original two, and from start symbol of 

the new grammar have productions to the start symbols of the original two grammars. 

For more notes visit https://collegenote.pythonanywhere.com



Context Free Grammars Unit 2  chapter 4 

Theory of Computation (Compiled by Ganesh Dhami St.Xavier College) Page 22 

 

Let G1 = (V1, T1, P1 and S1) and G2 = (V2, T2, P2 and S2) be two context free grammars defining the 

languages L(G1) and L(G2). Without loss of generality, let us assume that they have common terminal set 

T, and disjoint set of nonterminals. Because, the non-terminals are distinct so the productions P1 

and P2.  
Let S be a new non-terminal not in V1 and V2. Then, construct a new grammar G = (V, T, P, S) where; 

V = V1 U V2 U {S} 

P = P1 U P2 U {SS1, S S2} 

G is clearly a context free grammar because the two new productions so added are also of the correct 
form, we claim that L (G) = L (G1) U L (G2). 

 

For this, Suppose that x ε L (G1). Then there is a derivation of x ; 

S1*x 
But in G we have production, S S1 

So there is a derivation of x also in G as: 

S S1*x 
Thus,  x ε L (G). Therefore, L (G1)     L (G).A similar argument shows L (G2)    L (G). 

So, we have, 

L (G1) U L (G2) is subset of  L (G) 

Conversely, suppose that x ε L (G). Then there is a derivation of x in G as: 

S β * x 

Because of the way in which P is constructed, β must be either S1 or S2. 

Suppose β =S1. Any derivation in G of the form S1*x must involve only productions of G1 so, S1*x 

is a derivation of x in G1. 

Hence, β = S1  x ε L(G1). A simpler argument proves that β = S1 implies x ε L (G1).  

Thus L(G) is subset of  L(G1) U L(G2). 

It follows that L(G) = L(G1) U L(G2) 

Similarly following two closure properties of CFL can be proved as for the union we have proved. 

B. The CFLs are closed under concatenation 

C. The CFLs are closed under kleen closure [ prove yourself] 

However context free languages are not closed under some cases like, intersection and complementation. 

The context free languages are not closed under intersection. 

To prove this, the idea is to exhibit two CFLs whose intersection results in the language which is not 

CFL. 
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For this as we learned in pumping lemma that 

L = {a
n
b

n
c

n
 | n≥1} is not CFL 

However following two languages are context free; 

L1 = {a
n
b

n
c

i
 | n ≥1 i ≥ 1} 

L2 = {a
i
b

n
c

n
 | n ≥1 i ≥ 1} 

Clearly, 

L = L1∩L2. to see why, observe that L1 requires that there be the same number of a‟s + b‟s, while L2 

requires the number of b‟s and c‟s to be equal. A string in both must have equal number of all three 

symbols and thus to be in L. 

If the CFL‟s were closed under intersection, then we could prove the false statement that L is context free. 

Thus, we conclude by contradiction that the CFL‟s are not closed under intersection. 
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