Unit-05:Data Representation (6 Hrs.)

- Introduction; Number System;
- Conversion from Decimal to Binary, Octal, Hexadecimal;
- Conversion of Binary, Octal, Hexadecimal to Decimal;
- Conversion of Binary to Octal, Hexadecimal;
- Conversion of Octal, Hexadecimal to Binary;
- Binary Arithmetic;
- Signed and Unsigned Numbers;
- Binary Data Representation;
- Binary Coding Schemes;
- Logic Gates

Course Contents

- Unit-05:Data Representation
- Introduction; Number System;
- > Conversion from Decimal To Binary, Octal, Hexadecimal;
- > Conversion of Binary, Octal, Hexadecimal To Decimal;
- Conversion of Binary To Octal, Hexadecimal;
- Conversion of Octal, Hexadecimal To Binary;
- Binary Arithmetic;
- Signed and Unsigned Numbers;
- Binary Data Representation;
- Binary Coding Schemes;
- Logic Gates

Course Contents

Introduction:

- We use computer to process data and get desire output.
- The data input can be in the form of alphabets, digits, symbols, audio, video etc but computer can only understand 0 and 1 so data must be represented in the computer in 0's and 1's.
- We will study data representation in this chapter.
- Numeric data(0,1,2..9)
- Alphabetic data(A,B,C,.....Z)
- Alphanumeric data Combination of any symbols (A,BC,...Z), (0,1,2..9), or special characters (+,-, blank etc)

Course Contents

Number System:

- > There are infinite ways to represent a number.
- The four commonly associated with modern computers and digital electronics are: Decimal, Binary, Octal, and Hexadecimal.
- Decimal (base 10) is the way most human beings represent numbers. Decimal is sometimes abbreviated as dec.
- Decimal counting goes:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and so on.

Course Contents

Number System:

- Binary (base 2) is the natural way most digital circuits represent and manipulate numbers.
- > Binary is sometimes abbreviated as bin.
- Binary counting goes:
 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, and so on.

Course Contents

Number System:

- Octal (base 8) was previously a popular choice for representing digital circuit numbers in a form that is more compact than binary.
- > Octal is sometimes abbreviated as oct.
- Octal counting goes:
 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, and so on.

Number System:

- Hexadecimal (base 16) is currently the most popular choice for representing digital circuit numbers in a form that is more compact than binary.
- > Hexadecimal is sometimes abbreviated as hex.
- Hexadecimal counting goes:
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, and so on.

Course Contents

Number System:

- Base number: The base of the number decides the valid digits that are used to make a number. Decimal number has a base 10, Octal is 8 and Hexadecimal is 16
- Face Value : The face value of a digit is the digit located at that position. E.g. in decimal 52, face value at position 0 is 2 and face value at position 1 is 5
- Position Value: The position value of a digit is (base^{position}). E.g. in decimal number 52, the position value of digit 2 is 10⁰ and position value of digit 5 is 10¹.

Course Contents

Number System:

We are concerned with 4 kinds of number.

- 1. Decimal Number System Base 10
- 2. Binary Number System Base 2
- 3. Octal Number System Base 8
- 4. Hexadecimal Number System Base 16
- Number given as input to computer and output from computer are generally in decimal number system and are most understood by humans.
- But computer understand binary number system (0's and 1's). Binary data also represented internally as in Octal and Hexa due to their ease of use.

Course Contents

Number System:

- All four number systems are equally capable of representing any number.
- A number can be perfectly converted between the various number systems without any loss of numeric value.
- Since the job of electrical and software engineers is to work with digital circuits, engineers require number systems that can best transfer information between the human world and the digital circuit world.

Course Contents

Number System:

- An octal number (base 8) can be up to 1/3 the length of a binary number (base 2). 8 is a whole power of 2 (2³=8). That means three binary digits convert neatly into one octal digit.
- A hexadecimal number (base 16) can be up to 1/4 the length of a binary number. 16 is a whole power of 2 (2⁴=16). That means four binary digits convert neatly into one hexadecimal digit.
- > Unfortunately, decimal (base 10) is not a whole power of 2. So, it is not possible to simply chunk groups of binary digits to convert the raw state of a digital circuit into the human-centric format.

	Course Contents						
¥01+	for any	Not the r	0 0 v	e cali			
10 ¹ +	DECIMAL	BINARY	OCTAL	HEXADECIMAL			
	0	0	0	0			
	1	1	1	1			
	2	10	2	2			
	3	11	3	3			
	4	100	4	4			
	5	101	5	5			
	6	110	6	6			
	7	111	7	7			
	8	1000	10	8			
	9	1001	11	9			
	10	1010	12	А			
	11	1011	13	В			
	12	1100	14	С			
	13	1101	15	D			
	14	1110	16	E			
	15	1111	17	F			

	Course Contents						
Conversio	on from Dec	cimal to B	inary: Exar	nple of 1792			
Decimal Number	Operation	Quotient	Remainder	Binary Result			
1792	÷ 2 =	896	0	0			
896	÷ 2 =	448	0	00			
448	÷ 2 =	224	0	000			
224	÷ 2 =	112	0	0000			
112	÷ 2 =	56	0	00000			
56	÷ 2 =	28	0	000000			
28	÷ 2 =	14	0	0000000			
14	÷ 2 =	7	0	0000000			
7	÷ 2 =	3	1	10000000			
3	÷ 2 =	1	1	110000000			
1	÷ 2 =	0	1	11100000000			
0	done.						

	Course Contents				
	on from Deci mal to octal:	mal to Octal	: Example t	o convert	
Decimal Number	Operation	Quotient	Remainder	Octal Result	
1792	÷ 8 =	224	0	0	
224	÷ 8 =	28	0	00	
28	÷ 8 =	3	4	400	
3	÷ 8 =	0	3	3400	
0	done.				

Course Contents								
Conversion	Conversion from Decimal to Hexadecimal:							
Decimal Number	Operation	Quotient	Remainder	Hexadecimal Result				
1792	÷ 16 =	112	0	0				
112	÷ 16 =	7	0	00				
7	÷ 16 =	0	7	700				
0	done.							

Course Contents					
Conversio	on from Deci	mal to He	xadecimal:		
Decimal Number	Operation	Quotient	Remainder	Hexadecimal Result	
48879	÷ 16 =	3054	15	F	
3054	÷ 16 =	190	14	EF	
190	÷ 16 =	11	14	EEF	
11	÷ 16 =	0	11	BEEF	
0	done.				

Conversion of Binary to Decimal:

Convert binary number $1010_{(base 2)}$ into decimal form

$$1010_{(base 2)} = 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = 8 + 0 + 2 + 0 = 10$$

So, the required decimal number is $110101_{(base 2)} = 53_{(base 10)}$

Alternatively, $(110101)_2 = (53)_{10}$ Where, (base 10) means the number is in decimal number system and (base 2) means the number is in binary number system.

Course Contents

Conversion of Octal to Decimal:

Convert octal number 156_(base 8) into decimal form

Conversion of Hexadecimal to Decimal:

Convert hexadecimal number $A1_{(base 16)}$ into decimal form $A1_{(base 16)} = Ax16^{1} + 1x16^{0} = 10x16^{1} + 1x16^{0} = 160 + 1 = 161$

So, the required decimal number is

 $A1_{(base 16)} = 161_{(base 10)}$

Alternatively, $(A1)_{16} = (161)_{10}$

Where, (base 10) means the number is in decimal number system and (base 16) means the number is in hexadecimal number system.

Course Contents

Conversion of Binary to Octal:

Steps:

- 1. Divide the binary digits into groups of 3 digits, starting from the right.
- 2. Convert each group of 3 binary digits into 1 octal digit. Convert Binary number 100101_2 into Octal form

Step 1. Make groups of 3 digits from right 100101₂ Groups: 100₂ 101₂

Step 2. Convert each 3 digits group into 1 octal digit $101_{2} = 5_8 100_2 = 4_8 \text{ so}, 100101_2 = 45_8$

Course Contents

Conversion of Binary to Hexadecimal:

Steps:

- 1. Divide the binary digits into groups of 4 digits, starting from the right
- Convert each group of 4 binary digits into 1 hexadecimal digit
- Convert Binary number 101001012 into Hexadecimal form

Step 1. Make groups of 4 digits from right 10100101_2 Groups: $1010_2 0101_2$ $0101_2 = 5_{16}$ $1010_2 = 4_{16}$ Step 2. Combine the groups so, $10100101_2 = 45_{16}$

Course Contents

Conversion of Octal to Binary:

Steps

- 1. Convert each octal digits into 3 digits binary group
- 2. Combine the groups

Convert Octal number 45₈ into Binary form

Step 1. Convert each octal digit into 3 digits binary group

45₈ Groups: 4₈ 5₈

- 5₈ = 101₂
- 4₈ = 100₂

Step 2. Combine the groups

so, 45₈ = 100101₂

Course Contents

Conversion of Hexadecimal to Binary:

Steps

- 1. Convert each hexadecimal digit into group of 4 digits binary
- 2. Combine the groups

so, A5₁₆ = 10100101₂

```
Convert Hexadecimal number A5_{16} into Binary form

Step 1. Convert each hexadecimal digit into group of 4 digits binary

A5_{16}

Groups: A_{16} 5_{16}

5_{16} = 0101_2

A_{16} = 1010_2

Step 2. Combine the groups
```

Course Contents

Octal to Hexadecimal conversion:

Steps

- 1. Convert each octal digit into groups of 3 digits binary
- 2. Combine the groups from step 1
- Divide the binary digits from step 2 into groups of 4 digits, starting from the right
- 4. Convert each group of 4 binary digits into 1 hexadecimal digit

Octal to Hexadecimal conversion:

Convert Octal number 25₈ into Hexadecimal form

Step 1. Convert each octal digit into groups of 3 digits binary 25_8 Groups: $2_8 5_8$ $5_8 = 101_2$ $2_8 = 010_2$ Step 2. Combine the groups so, $25_8 = 010101_2$ Step 3. Divide the binary digits from step 2 into groups of 4 digits, starting from the right Groups: $0001_2 0101_2$ Step 4. Convert each group of 4 binary digits into 1 hexadecimal digit $0101_2 = 5_{16}$ $0001_2 = 1_{16}$ so, $25_8 = 15_{16}$

Course Contents

Hexadecimal to Octal conversion:

Steps:

- 1. Convert each hexadecimal digit into groups of 4 digits binary
- 2. Combine the groups from step 1
- Divide the binary digits from step 2 into groups of 3 digits, starting from the right
- 4. Convert each group of 3 binary digits into 1 octal digit

Course Contents					
Hexadecimal to Octal conversion:					
Convert Hexadecimal number 15 ₁₆ into Octal form Step 1. Convert each hexadecimal digit into groups of 4 digits binary 15 ₁₆					
Groups: $1_{16} 5_{16}$					
$5_{16} = 0101_2$ $1_{16} = 0001_2$					
Step 2. Combine the groups					
so, 15 ₁₆ = 00010101 ₂					
Step 3. Divide the binary digits from step 2 into groups of 3 digits, starting from the right					
Groups: 000 ₂ 010 ₂ 101 ₂					
Step 4. Convert each group of 3 binary digits into 1 octal digit					
$101_2 = 5_8$					
010 ₂ = 2 ₈					
$000_2 = 0_8$					
so, $15_{16} = 025_8 = 25_8$					

Course Contents

Unit-05:Data Representation (6 Hrs.)

- Binary Arithmetic;
- Signed and Unsigned Numbers;
- Binary Data Representation;
- Binary Coding Schemes;
- Logic Gates

Course Contents

Binary Arithmetic:

Decimal Number System

- > Uses digits 0-9
- Digits combined to form numbers like 104, 4561
- Decimal arithmetic operations

• Addition, subtraction, multiplication, division

For e.g., a chocolate costs Rs. 5/-. Total cost of 2 chocolates will be Rs. 10/- i.e. (5*2) or (5+5)

Course Contents

Binary Arithmetic:

Binary Number System

- > Used in computer systems
- > Uses digits 0's and 1's only
- Digits combined to form numbers like 1001, 11000110
- > A digit 0 or 1 is called a bit (binary digit)
- 1001 is a 4-bit number.
- 11000110 is an 8-bit number

Binary Arithmetic:

Binary Number System

- All data is represented internally in a computer by a combination of bits.
- Each symbol is represented by a combination of bits.

Course Contents

Binary Arithmetic:

Binary Arithmetic

- Arithmetic operations performed on binary numbers is called *binary arithmetic*.
 - addition, subtraction, multiplication, division.
- Computer systems actually perform only Binary Addition and Binary Subtraction.
- Binary Multiplication and Division is performed using some simple operations

Course Contents

Binary Arithmetic:

Binary Addition

- Involves addition of two or more binary numbers.
- Uses Binary addition rules

	Course Contents					
Binary A	Arithmetic	:				
Bir	ıary Ad	dition F	Rules: T	wo Inpu	ts	
	Input 1	Input 2	Sum	Carry		
	0	0	0	No carry		
	0	1	1	No carry		
	1	0	1	No carry		
	1	1	0	1		
		,	,			

	Course Contents						
inary /	Arithme	tic:					
Bin	ary A	dditio	n Rule	es: Thi	ee In	puts	
	Input 1	Input 2	Input 3	Sum	Carry		
	1	1	1	1	1		

Cours	e Contents
Binary Arithmetic:	
Binary Additior	i: Example
Example 2. Add 01 and 1 help of decima	11. Verify answer with the al addition.
Binary Addition 1 0 1 <u>+ 1 1</u> 1 0 0	Decimal Addition 1 + 3 4
100	$0_2 = 4_{10}$

ary Arithmetic:Binary Addition: Examplexample 3. Add 11 and 11. Verify answer with the help of decimal addition.Binary Addition1111111011 <th>Cours</th> <th>se Contents</th>	Cours	se Contents
xample 3. Add 11 and 11. Verify answer with the help of decimal addition. Binary Addition 1 1 1 + 1 1 1 1 0 	ary Arithmetic:	
Binary Addition 1Decimal Addition11 1 13 $+$ 1 $-$ 10	Binary Addition:	Example
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$110_2 = 6_{10}$	1 11 <u>+11</u>	3 + 3
	1102	= 6 ₁₀

		Cour	se Con	tents		
Bina	ary Arithm	etic:				
В	linary Su	ıbtractio	n			
A	Uses Binary	subtraction	rules			
		Binary Subt	raction Rules	5		
	Input 1	Input 2	Difference	Borrow		
	0	0	0	No borrow		
	0	1	1	1		
	1	0	1	No borrow		
	1 1 0 No borrow					

Cours	e Contents
inary Arithmetic:	
Binary Subtracti	on: Example
Example 1. Subtract 01 fro with the help of	om 11. Verify answer decimal subtraction.
Binary Subtraction	Decimal Subtraction
1 1 - 0 1 1 0	$\begin{array}{c c} & 3 \\ \hline & - & 1 \\ \hline & 2 \end{array}$
102	= 2 ₁₀

Course	Contents
Arithmetic:	
Binary Subtraction	on: Example
Example 4 Subtract 10010 answer with the subtraction.	from 10101. Verify help of decimal
Binary Subtraction 0 10 1 0 1⁄7 0 1 <u>- 1 0 0 1 0</u> 0 0 0 1 1	Decimal Subtraction 2 1 - 1 8 3
000112	= 3 ₁₀

Binary Arithmetic:

Signed and Unsigned numbers

- A binary number may be positive or negative.
- Generally, symbols "+" and "-" represent positive and negative numbers, respectively.
- In computer, sign of a binary number has to be represented using 0 and 1.

Course Contents

Binary Arithmetic:

Signed and Unsigned numbers

- > Data range for 8-bit *signed number* is:
- -128 to +127 (-2⁷ to +2⁷-1).
- Leftmost bit is sign bit.
- In n-bit unsigned binary number, magnitude of number n is stored in n bits.
- > Data range for 8-bit *unsigned number is:*
 - 0 to 255 (2⁸= 256).

- > Used in computer for simplification of subtraction operation.
- > Two types of complements
 - 1's complement, and
 - 2's complement.

Binary Arithmetic:

Binary Data Representation

- > Two ways of representing position of binary point in a register
 - Fixed Point Number Representation, and
 - Floating Point Number Representation.

Course Contents

Binary Arithmetic:

Fixed Point Number Representation

- > Assumes binary point is fixed at one position.
- > Represents +ve integer binary signed number as-
- Sign bit is 0. Magnitude is a positive binary number.
- Represents -ve integer binary signed number as-
 - Sign bit is 1
 - Magnitude is represented in any one of three ways-
 - Signed Magnitude representation
 - Signed 1's complement representation
 - Signed 2's complement representation

Course Contents

Binary Arithmetic:

Fixed Point Number Representation..

- > Signed Magnitude representation
 Magnitude is positive binary number itself.
- > Signed 1's complement representation
 - Magnitude is 1's complement of positive binary number.
- > Signed 2's complement representation
 Magnitude is 2's complement of positive binary number.

Binary Arithmetic:

Fixed Point Number Representation

- Signed magnitude and signed 1's complement representation are rarely used in computer arithmetic.
- Signed 2's complement representation is used to represent negative numbers.

Course Contents

Binary Arithmetic:

Signed Binary Number: Addition

- Represent positive number in binary form.
- For e.g., +5 is 0000 0101, +10 is 0000 1010
- Represent negative number in 2's complement form.
- For e.g., -5 is 111 1 1011, -10 is 1111 0110
- Add bits of the two signed binary numbers.
- Ignore any carry out from sign bit position.

Course Contents

Binary Arithmetic:

Signed Binary Number: Addition

- Negative output is automatically in 2's complement form.
- Get decimal equivalent of negative output number
 - Find its 2's complement, and
 - Attach a negative sign to the obtained result.

Course ContentsBinary Arithmetic:Signed Binary Number: AdditionExample 1. Add binary +5 and +10. Verify answer
with the help of decimal addition.Binary AdditionDecimal Addition0 0 0 0 0 1 0 1 0 1
+ 0 0 0 0 1 1 1 1 1+ 5
+ 1 0
+ 1 5 $0000 1111_2 = +15_{10}$

Course C	Contents
Arithmetic:	
Signed Binary Nu	mber: Addition
Example 2. Add binary -5 a with the help of	and +10. Verify answer decimal addition.
Binary Addition	Decimal Addition
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5 +10 + 5
0000 0101	₂ = +5 ₁₀

Course Contents				
nary Arithmetic:				
Signed Binary Nu	mber: Addition			
Example 3. Add binary +5 with the help of	and -10. Verify answer decimal addition.			
Binary Addition 1 0 0 0 0 0 1 0 1 <u>+ 1 1 1 0 1 1 0</u> 1 1 1 1 1 0 1 1	Decimal Addition + 5 - 1 0 - 5			
1111 1011	₂ = -5 ₁₀			

Binary Coding Schemes:

Binary Coding Schemes...

- > Represents symbols in a standard code.
- Combination of bits represents a unique symbol.
- Standard code enables programmers to use same combination of bits to represent a symbol in data.

Course Contents

Binary Coding Schemes:

Binary Coding Schemes...

- Commonly used binary coding schemes:
 - ASCII,
 - EBCDIC, and
 - Unicode

Binary Coding Schemes:

EBCDIC

- EBCDIC stands for Extended Binary Coded Decimal Interchange Code
- > 8-bit code. 4 bits for zone; 4 bits for digit.
- > Allows $2^8 = 256$ combinations.
- > Represents 256 unique symbols.
- > Used mainly in mainframe computers.

Course Contents

Binary Coding Schemes:

ASCII

- Solution American Standard Code for Information Interchange
- > Two types of ASCII codes
 - ASCII-7 and
 - ASCII-8.

Course Contents

Binary Coding Schemes:

ASCII-7

- > Standard ASCII code.
- > 7-bit code. 3 bits for zone; 4 bits for digits.
- > Allows $2^7 = 128$ combinations.
- > Represents 128 unique symbols.
- > ASCII-7 modified by IBM to ASCII-8.

The **zone** used by **ASCII** for alphabets is 0100. For e.g. A is represented as 0100(zone)0001(digit). The hex equivalent is 41 for A. Character A = 0100 0001; Character B = 0100 0010

Course Contents

Binary Coding Schemes:

ASCII-8

- > Extended version of ASCII-7.
- > 8-bit code. 4 bits for zone; 4 bits for digit.
- > Allows $2^8 = 256$ combinations.
- > Represents 256 unique symbols.
- > Widely used to represent data in computer.

Course Contents

Binary Coding Schemes:

ASCII-8

> ASCII-8 code represents 256 symbols.

- 0-31 for control characters.
- Non-printable. Carriage Return (CR), Bell (BEL).
- 48-57 for numeric 0-9.
- 65-90 for uppercase letters A-Z.
- 97-122 for lowercase letters a-z.
- 128-255 are extended ASCII codes.

Course Contents

Binary Coding Schemes:

Unicode

- > Universal character encoding standard
 - Represents text, symbols, characters in multilingual environments.
 - Uniquely represent a symbol in languages like Chinese, Japanese etc.
 - Represents mathematical and scientific symbols.
- > 32 bit code.
- Allows 2³² = approx. 4 billion combinations.

Binary Coding Schemes:

UTF encodings include:

- UTF-1, a retired predecessor of UTF-8, maximizes compatibility with ISO 2022, no longer part of The Unicode Standard;
- UTF-7, a 7-bit encoding sometimes used in e-mail, often considered obsolete (not part of The Unicode Standard, but only documented as an informational RFC, i.e., not on the Internet Standards Track);
- UTF-8, an 8-bit variable-width encoding which maximizes compatibility with ASCII;
- UTF-EBCDIC, an 8-bit variable-width encoding similar to UTF-8, but designed for compatibility with EBCDIC (not part of The Unicode Standard);
- ➤ UTF-16, a 16-bit, variable-width encoding;
- ▶ UTF-32, a 32-bit, fixed-width encoding.

Course Contents

Unit-05:Data Representation (6 Hrs.)

- Signed and Unsigned Numbers;
- Binary Data Representation;
- Binary Coding Schemes;
- Logic Gates

Course Contents		
Converting Decimal Fraction to Binary, Octal and Hexa	a:	
Example 5: Convert 0.2345 from Base 10 to Base 2. 0.2345 x.2 0.4690		
.4690 		
.9380 		
.8760 <u>x 2</u> 1.7520		
.7520 		
$\begin{array}{c} .5040 \\ \underline{-x.2} \\ 1.0060 \\ \end{array}$ The binary equivalent of (0.2345) ₁₀ is (0.001111) ₂	Ļ	

	Course Conter	nts
onverting Decim	al Fraction to Bina	ry, Octal and Hexa:
Example 5a: Convert 0.80	55 fromBase 10 to Base 2, 8 and 10	6.
0.865	0.865	0.865
x2	<u>x 8</u>	<u>x 16</u>
1.730	6.920	5190
x 2	<u>x 8</u>	865 x
1.460	7.360	13.840
x 2	x 8	<u>x 16</u>
0.920	2.880	5040
<u>x2</u>	<u>x 8</u>	<u>840 x</u>
1.840	7.040	13 .440
<u>x 2</u>		<u>x 16</u>
1.680	The octal equivalent of	2640
<u>x 2</u>	(0.865) ₁₀ is (.6727) ₈	_440 x
1.360		7.040
The binary equivalent of		The number 13 in hexadeci-
(.865)10 is (.110111)2		mal is D.
		The hexadecimal equivalent of (0.865) ₁₀ is (.DD7) ₁₆

Course Contents				
Converting Hexa:	Dec	imal I	nteger, l	Fraction to Binary, Octal and
Example	6: Co	nvert 34.46	74 from Base 10	0 to Base 2.
	to Base	Number (Quotient)	Remainder	0.4674 x 2
	2	34		0.9348
	2	17	0	<u>x2</u> 1.8696
	2	8	1	X2
	2	4	0	1.7392
	2	2	0	<u>x2</u> 1.4784
	2	1	0	
		0	1	0.9568
The b	inary equ	ivalent of (3	(4) ₁₀ is (100010)	<u>1.8136</u>
				The binary equivalent of (0.4674) ₁₀ is (.011101) ₂
		The bina	ry equivalent of	(34.4674),, is (100010.011101),
		The office	y equivalent of	(31.10) 1/10 (100010.011101/2

		Сс	ourse C	Contents
Converti Hexa:	ng Dec	imal	Integer, I	Fraction to Binary, Octal and
Exa	mple 8: Con	vert 34.46	74 from Base 10 to B	ase 16.
-	to Base		Remainder	0.4674
		(Quotie	ent)	<u></u>
	16	34		4674x
	16	4	2	9.4784
		0	2	<u>x 16</u>
1	The hexadecim	al equivale	nt of (34),, is (22),	28704
			10 01 (0 1)10 10 (mm/16	<u>4784x</u> 7.6544
				x 16
				39264
				6544x
				10.4904
				<u>x 16</u>
				29424 4904x
				7.8464
				The hexadecimal equivalent of (0.4674) ₁₀ is (.97A7) ₁₆
		The here	decimal equivalent o	f (34.4674), is (22.97A7),

	Cou	Irse Conte	nts
Conve	rting Fraction B	inary, Octal an	d Hexa to Decima
	Convert .345 fr	= 6*8 + 2*1 = 48 + 2 = 50	C15 fromBase 16 toBase 10 C15 = C*16' + 1*16' + 5*16' + = 12*256 + 1*16 + 5*1 = 1072 + 16 + 5*1 = 1072 + 16 + 5*1 = 1073 The decimal equivalent of (C15) ₁₆ is 3093
	.1101 fromBase 2 toBase 10	.345 fromBase 8 toBase 10	.15 fromBase 16 toBase 10
	$.1101 = 1^{\circ}2^{-1} + 1^{\circ}2^{-2} + 0^{\circ}2^{-3} + 1^{\circ}2^{-4}$ $= 1/2 + 1/4 + 0 + 1/16$ $= 13/16$ $= .8125$.345 = 3*8 ⁻¹ + 4*8 ⁻² + 5*8 ⁻³ = 3/8 + 4/64 + 5/512 = 229/512 = .447	.15 = 1*16 ⁻¹ + 5*16 ⁻² = 1/16 + 5/256 = 21/256 = .082
	The decimal equivalent of	The decimal equivalent of (.345), is .447	The decimal equivalent of (.15), is .082

Course Contents Converting Fraction Binary, Octal and Hexa to Decimal

Course Contents

Binary Data Representation;

A binary number may also have a binary point, in addition to the sign. The binary point is used for representing fractions, integers and integer-fraction numbers. *Registers* are high-speed storage areas within the Central Processing Unit (CPU) of the computer. All data are brought into a register before it can be processed. For example, if two numbers are to be added, both the numbers are brought in registers, added, and the result is also placed in a register. There are two ways of representing the position of the binary point in the register—fixed point number representation and floating point number representation.

The fixed point number representation assumes that the binary point is fixed at one position either at the extreme left to make the number a fraction, or at the extreme right to make the number an integer. In both cases, the binary point is not stored in the register, but the number is treated as a fraction or integer. For example, if the binary point is assumed to be at extreme left, the number 1100 is actually treated as 0.1100.

The *floating point number representation* uses two registers. The first register stores the number without the binary point. The second register stores a number that indicates the position of the binary point in the first register.

We shall now discuss representation of data in the fixed point number representation and floating point number representation.