Unit-04:Data Representation (5 Hrs.)

- Introduction; Number System;
- Conversion from Decimal to Binary, Octal, Hexadecimal;
- Conversion of Binary, Octal, Hexadecimal to Decimal; Conversion of Binary to Octal, Hexadecimal; Conversion of Octal, Hexadecimal to Binary;
- Binary Arithmetic;

Unit-05:Data Representation

- Introduction; Number System;
- Conversion from Decimal To Binary, Octal, Hexadecimal;
- Conversion of Binary, Octal, Hexadecimal To Decimal;
- Conversion of Binary To Octal, Hexadecimal;
- Conversion of Octal, Hexadecimal To Binary;
- > Binary Arithmetic;
- Signed and Unsigned Numbers;
- » Binary Data Representation;
- Binary Coding Schemes;
- Logic Gates

Introduction:

- We use computer to process data and get desire output.
- The data input can be in the form of alphabets, digits, symbols, audio, video etc but computer can only understand 0 and 1 so data must be represented in the computer in 0's and 1's.
- We will study data representation in this chapter. Numeric data(0,1,2..9)
- > Alphabetic data(A,B,C,....Z)

 Alphanumeric data – Combination of any symbols (A,BC,...Z), (0,1,2..9), or special characters (+,-, blank etc)

- There are infinite ways to represent a number.
 The four commonly associated with modern computers and digital electronics are: Decimal, Binary, Octal, and Hexadecimal.
- Decimal (base 10) is the way most human beings represent numbers. Decimal is sometimes abbreviated as dec.
- > Decimal counting goes:
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and so on.

- Binary (base 2) is the natural way most digital circuits represent and manipulate numbers.
- Binary is sometimes abbreviated as bin.
- Binary counting goes:
 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, and so on.

- Octal (base 8) was previously a popular choice for representing digital circuit numbers in a form that is more compact than binary.
- Octal is sometimes abbreviated as oct.
- Octal counting goes:
 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, and so on.

- Hexadecimal (base 16) is currently the most popular choice for representing digital circuit numbers in a form that is more compact than binary.
- > Hexadecimal is sometimes abbreviated as hex.
- Hexadecimal counting goes:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, and so on.

- Base number: The base of the number decides the valid digits that are used to make a number. Decimal number has a base 10, Octal is 8 and Hexadecimal is 16
- Face Value : The face value of a digit is the digit located at that position. E.g. in decimal 52, face value at position 0 is 2 and face value at position 1 is 5
- Position Value: The position value of a digit is (base^{position}). E.g. in decimal number 52, the position value of digit 2 is 10⁰ and position value of digit 5 is 10¹.

- We are concerned with 4 kinds of number.
- 1. Decimal Number System Base 10
- 2. Binary Number System Base 2
- 3. Octal Number System Base 8
- 4. Hexadecimal Number System Base 16
- Number given as input to computer and output from computer are generally in decimal number system and are most understood by humans.
- But computer understand binary number system (0's and 1's). <u>Binary data also represented internally as in Octal</u> and Hexa due to their ease of use.

- All four number systems are equally capable of representing any number.
- A number can be perfectly converted between the various number systems without any loss of numeric value.
- Since the job of electrical and software engineers is to work with digital circuits, engineers require number systems that can best transfer information between the human world and the digital circuit world.

- An octal number (base 8) can be up to 1/3 the length of a binary number (base 2). 8 is a whole power of 2 (2³=8).
 That means three binary digits convert neatly into one octal digit.
- A hexadecimal number (base 16) can be up to 1/4 the length of a binary number. 16 is a whole power of 2 (2⁴=16). That means four binary digits convert neatly into one hexadecimal digit.
- Unfortunately, decimal (base 10) is not a whole power of 2. So, it is not possible to simply chunk groups of binary digits to convert the raw state of a digital circuit into the human-centric format.

DECIMAL	BINARY	OCTAL	HEXADECIMAL
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion from Decimal to Binary: Example of 1792

Decimal Number	Operation	Quotient	Remainder	Binary Result
1792	÷2 =	896	0	0
896	÷2 =	448	0	00
448	÷2 =	224	0	000
224	÷2 =	112	0	0000
112	÷2 =	56	0	00000
56	÷2 =	28	0	000000
28	÷2 =	14	0	000000
14	÷2 =	7	0	0000000
7	÷2 =	3	1	10000000
3	÷2 =	1	1	1100000000
1	÷2 =	0	1	11100000000
0	done.			

Conversion from Decimal to Octal : Example to convert 1792 decimal to octal:

Decimal Number	Operation	Quotient	Remainder	Octal Result
1792	÷ 8 =	224	0	0
224	÷ 8 =	28	0	00
28	÷ 8 =	3	4	400
3	÷ 8 =	0	3	3400
0	done.			

Conversion from Decimal to Hexadecimal:

Decimal Number	Operation	Quotient	Remainder	Hexadecimal Result
1792	÷ 16 =	112	0	0
112	÷ 16 =	7	0	00
7	÷ 16 =	0	7	700
0	done.			

Conversion from Decimal to Hexadecimal:

Decimal Number	Operation	Quotient	Remainder	Hexadecimal Result
48879	÷ 16 =	3054	15	F
3054	÷ 16 =	190	14	EF
190	÷ 16 =	11	14	EEF
11	÷ 16 =	0	11	BEEF
0	done.			

Conversion of Binary to Decimal:

Convert binary number 1010_(base 2) into decimal form

$$1010_{(base 2)} = 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = 8 + 0 + 2 + 0 = 10$$

So, the required decimal number is $110101_{(base 2)} = 53_{(base 10)}$

Alternatively, $(110101)_2 = (53)_{10}$

Where, (base 10) means the number is in decimal number system and (base 2) means the number is in binary number system.

Conversion of Octal to Decimal:

Convert octal number 156_(base 8) into decimal form

$156 = 1 \times 8^2 + 5 \times 8^1 + 6 \times 8^0 = 64 + 40 + 6 = 110$

Conversion of Hexadecimal to Decimal:

Convert hexadecimal number A1_(base 16) into decimal form

 $A1_{(base 16)} = Ax16^{1} + 1x16^{0} = 10x16^{1} + 1x16^{0} = 160 + 1 = 161$

So, the required decimal number is $A1_{(base \ 16)} = 161_{(base \ 10)}$

Alternatively, $(A1)_{16} = (161)_{10}$

Where, (base 10) means the number is in decimal number system and (base 16) means the number is in hexadecimal number system.

Conversion of Binary to Octal:

Steps:

- 1. Divide the binary digits into groups of 3 digits, starting from the right.
- 2. Convert each group of 3 binary digits into 1 octal digit. Convert Binary number 100101_2 into Octal form

Step 1. Make groups of 3 digits from right 100101_2
Groups: $100_2 \ 101_2$ Step 2. Convert each 3 digits group into 1 octal digit
 $101_2 = 5_8$ $100_2 = 4_8$ so, $100101_2 = 45_8$

Conversion of Binary to Hexadecimal:

Steps:

- 1. Divide the binary digits into groups of 4 digits, starting from the right
- 2. Convert each group of 4 binary digits into 1 hexadecimal digit

Convert Binary number 101001012 into Hexadecimal form

Step 1. Make groups of 4 digits from right 10100101_2 Groups: 1010_2 0101_2 $0101_2 = 5_{16}$ $1010_2 = A_{16}$ Step 2. Combine the groups so, $10100101_2 = A5_{16}$

Conversion of Octal to Binary:

Steps

- 1. Convert each octal digits into 3 digits binary group
- 2. Combine the groups
- Convert Octal number 45₈ into Binary form

Step 1. Convert each octal digit into 3 digits binary group 45_8 Groups: $4_8 5_8$ $5_8 = 101_2$ $4_8 = 100_2$ Step 2. Combine the groups so, $45_8 = 100101_2$

Conversion of Hexadecimal to Binary:

Steps

- 1. Convert each hexadecimal digit into group of 4 digits binary
- 2. Combine the groups

Convert Hexadecimal number A5₁₆ into Binary form

Step1. Convert each hexadecimal digit into group of 4 digits binary $A5_{16}$ Groups: $A_{16} 5_{16}$ $5_{16} = 0101_2$ $A_{16} = 1010_2$ Step2. Combine the groups so, $A5_{16} = 10100101_2$

Octal to Hexadecimal conversion:

Steps

- 1. Convert each octal digit into groups of 3 digits binary
- 2. Combine the groups from step 1
- 3. Divide the binary digits from step 2 into groups of 4 digits, starting from the right
- 4. Convert each group of 4 binary digits into 1 hexadecimal digit

Octal to Hexadecimal conversion:

Convert Octal number 25₈ into Hexadecimal form

Step 1. Convert each octal digit into groups of 3 digits binary 25_8 Groups: $2_8 5_8$ $5_8 = 101_2$ $2_8 = 010_2$ Step 2. Combine the groups so, $25_8 = 010101_2$ Step 3. Divide the binary digits from step 2 into groups of 4 digits, starting from the right Groups: 0001, 0101, Step 4. Convert each group of 4 binary digits into 1 hexadecimal digit $0101_2 = 5_{16}$ $0001_2 = 1_{16}$ $s_{0}, 25_{8} = 15_{16}$

Hexadecimal to Octal conversion:

Steps:

- 1. Convert each hexadecimal digit into groups of 4 digits binary
- 2. Combine the groups from step 1
- 3. Divide the binary digits from step 2 into groups of 3 digits, starting from the right
- 4. Convert each group of 3 binary digits into 1 octal digit

Hexadecimal to Octal conversion:

Convert Hexadecimal number 15₁₆ into Octal form

Step 1. Convert each hexadecimal digit into groups of 4 digits binary 15₁₆ Groups: 1₁₆ 5₁₆ $5_{16} = 0101_2$ $1_{16} = 0001_2$ Step 2. Combine the groups so, $15_{16} = 00010101_2$ Step 3. Divide the binary digits from step 2 into groups of 3 digits, starting from the right Groups: 000, 010, 101, Step 4. Convert each group of 3 binary digits into 1 octal digit $101_2 = 5_8$ $010_2 = 2_8$ $000_2 = 0_8$ so, $15_{16} = 025_8 = 25_8$

Converting Decimal Fraction to Binary, Octal and Hexa:

Example 5:	Convert 0.2345 from Base 10 to Base 2. 0.2345 <u>x 2</u> 0.4690
	.4690
	.9380
	.8760 <u>x 2</u> 1.7520
	.7520 <u>x 2</u> 1 .5040
The binary	.5040 <u>x 2</u> 1 .0080 equivalent of (0.2345) ₁₀ is (0.001111) ₂

Converting Decimal Fraction to Binary, Octal and Hexa:

Example 5a: Convert 0.8	65 fromBase 10 to Base 2, 8 and 16.	
0.865	0.865	0.865
x 2	<u>x 8</u>	<u>x 16</u>
1.730	6.920	5190
<u>x 2</u>	<u>x 8</u>	865 x
1.460	7.360	13.840
<u>x 2</u>	<u>x 8</u>	<u>x 16</u>
0.920	2.880	5040
<u>x 2</u>	<u>x 8</u>	<u>840 x</u>
1.840	7.040	13.440
<u>x2</u>		<u>x 16</u>
1.680	The octal equivalent of	2640
<u>x2</u>	(0.865) ₁₀ is (.6727) ₈	<u>440 x</u>
1.360		7.040

The binary equivalent of (.865)₁₀ is (.110111)₂

The number 13 in hexadecimal is D. The hexadecimal equivalent of (0.865)₁₀ is (.DD7)₁₆

Converting Decimal Integer, Fraction to Binary, Octal and Hexa:

	to Base	Number (Quotient)	Remainder	0.4674 x 2
	2	34		0.9348
	2	17	0	<u>x 2</u> 1.8696
•	2	8	1	<u>x 2</u>
	2	4	0	1.7392
	2	2	0	<u>x 2</u> 1.4784
	2	1	0	x2
		0	1	0.9568
: bii	nary equ	ivalent of (3	(100010) is (100010)	<u>x 2</u> 1.8136
				The binary equivalent of (0.4674) ₁₀ is (.011101),

Converting Decimal Integer, Fraction to Binary, Octal and Hexa:

Example 7: Convert 34.4674 from Base 10 to Base 8.					
to B	lase	Number (Quotient)	Remainder	0.4674 x 8	
_	8	34		3.7392 x 8	
_	8	4	2	5.9136	
_		0	4	<u>x 8</u>	
The octal equivalent of (34)10 is (42)8) ₁₀ is (42) ₈	7.3088 <u>x 8</u> 2.4704		
				The octal equivalent of (0.4674)10 is	

(.3572)₈

The octal equivalent of (34.4674)10 is (42.3572)8

Converting Decimal Integer, Fraction to Binary, Octal and Hexa:

	to Base	Number	Remainder	0.4674
		(Quotier	nt)	<u>x 16</u>
	16	34		28044
	16	4	2	<u>4674x</u> 9.4784
		0	2	x 16
				28704
he h	exadecim	al equivalen	it of (34) ₁₀ is (2	2) ₁₆ 4784x
				7.6544
				<u>x 16</u>
				<u>x 16</u>
				<u>x 16</u> 39264 6544x
				<u>x 16</u> 39264 <u>6544x</u> 10 .4904
				<u>x 16</u> 39264 <u>6544x</u> 10.4904 <u>x 16</u>
				<u>x 16</u> 39264 <u>6544x</u> 10 .4904 <u>x 16</u> 29424
				<u>x 16</u> 39264 <u>6544x</u> 10.4904 <u>x 16</u> 29424 <u>4904x</u>
				<u>x 16</u> 39264 <u>6544x</u> 10 .4904 <u>x 16</u> 29424

Converting Fraction Binary, Octal and Hexa to Decimal

1.0			
	1011 fromBase 2 toBase 10	62 fromBase 8 toBase 10	C15 fromBase 16 toBase 10
	$1011 = 1^{\circ}2^{\circ} + 0^{\circ}2^{\circ} + 1^{\circ}2^{\circ} + 1^{\circ}2^{\circ}$	$62 = 6^{\circ}8^{\circ} + 2^{\circ}8^{\circ}$	$C15 = C^{*}16^{2} + 1^{*}16^{1} +$
	= 1*8 + 0*4 + 1*2 + 1*1	= 6*8 + 2*1	5*16°
	= 8 + 0 + 2 + 1	= 48 + 2	= 12*256 + 1*16 + 5*1
	= 11	= 50	= 3072 + 16 + 5
	The decimal equivalent of (1011),	The decimal equivalent of	= 3093
	is 11.	(62) ₈ is 50.	The decimal equivalent of
		-	(C15) ₁₆ is 3093

mple 10:	Convert .1101 from Base 2 to Base 10.	
	Convert .345 from Base 8 to Base 10.	
	Convert .15 from Base 16 to Base 10.	

.1101 fromBase 2 toBase 10	.345 fromBase 8 toBase 10	.15 fromBase 16 toBase 10
$.1101 = 1^{\circ}2^{-1} + 1^{\circ}2^{-2} + 0^{\circ}2^{-3} + 1^{\circ}2^{-4}$ $= 1/2 + 1/4 + 0 + 1/16$ $= 13/16$ $= .8125$	$.345 = 3^{\circ}8^{-1} + 4^{\circ}8^{-2} + 5^{\circ}8^{-3}$ = 3/8 + 4/64 + 5/512 = 229/512 = .447	$\begin{array}{rl} .15 &= 1^{*}16^{-1} + 5^{*}16^{-2} \\ &= 1/16 + 5/256 \\ &= 21/256 \\ &= .082 \end{array}$
The decimal equivalent of (.1101), is .8125	The decimal equivalent of (.345) ₈ is .447	The decimal equivalent of (.15) ₁₆ is .082

Converting Fraction Binary, Octal and Hexa to Decimal

Example 11: Convert 1011.1001 from Base 2 to Base 10. Convert 24.36 from Base 8 to Base 10. Convert 4D.21 from Base 16 to Base 10.			
1011.1001 fromBase 2 toBase	24.36 fromBase 8 toBase	4D.21 fromBase 16 toBase 10	
10	10		
		4D.21 = 4*161 + D*160 +	
$1011.1001 = 1^{\circ}2^{3} + 0^{\circ}2^{2}$	24.36 = 2*81 + 4*8° +	2*16 ⁻¹ + 1*16 ⁻²	
+ 1*21 + 1*20	3*8 ⁻¹ + 6*8 ⁻²		
+ 1*2 ⁻¹ + 0*2 ⁻²		= 64 + 13 + 2/16	
+ 0*2-3 + 1*2-4		+ 1/256	
	= 16 + 4 + 3/8 + 6/64	= 77 + 33/256	
= 8 + 0 + 2 + 1 +			
1/2 + 0 + 0 + 1/16	= 20 + 30/64		
= 11 + 9/16		= 77.1289	
. = 11.5625	= 20.4687		
The decimal equivalent of (1011.1001) ₂ is 11.5625	The decimal equivalent of (24.36) ₈ is 20.4687	The decimal equivalent of (4D.21) ₁₆ is 77.1289	

Unit-05:Data Representation (6 Hrs.)

- Binary Arithmetic;
- Signed and Unsigned Numbers;
- Binary Data Representation;
- Binary Coding Schemes;
- Logic Gates

Binary Arithmetic:

Decimal Number System

> Uses digits 0-9

Digits combined to form numbers like 104, 4561

> Decimal arithmetic operations

Addition, subtraction, multiplication, division

For e.g., a chocolate costs Rs. 5/-. Total cost of 2 chocolates will be Rs. 10/- i.e. (5*2) or (5+5)

Binary Arithmetic:

- **Binary Number System**
- > Used in computer systems
- > Uses digits 0's and 1's only
- Digits combined to form numbers like 1001, 11000110
- > A digit 0 or 1 is called a bit (binary digit)
 - 1001 is a 4-bit number.
 - 11000110 is an 8-bit number

Binary Arithmetic:

Binary Number System

All data is represented internally in a computer by a combination of bits.
 Each symbol is represented by a combination of bits.

Binary Arithmetic: Binary Arithmetic

Arithmetic operations performed on binary numbers is called *binary arithmetic*.

addition, subtraction, multiplication, division.

Computer systems actually perform only Binary Addition and Binary Subtraction.

Binary Multiplication and Division is performed using some simple operations

Binary Arithmetic:

Binary Addition

Involves addition of two or more binary numbers.

> Uses Binary addition rules

Binary Arithmetic:

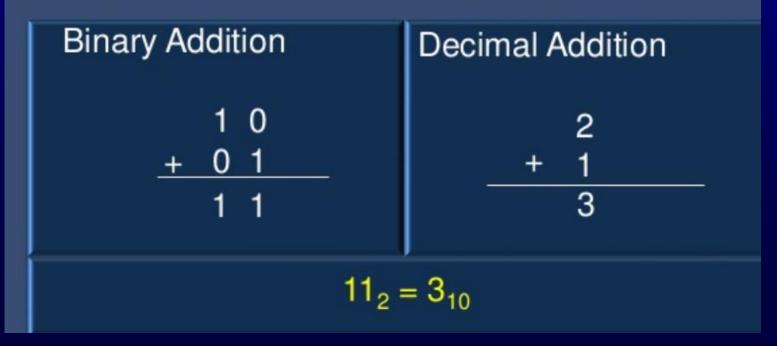
Binary Addition Rules: Two Inputs

Input 1	Input 2	Sum	Carry
0	0	0	No carry
0	1	1	No carry
1	0	1	No carry
1	1	0	1

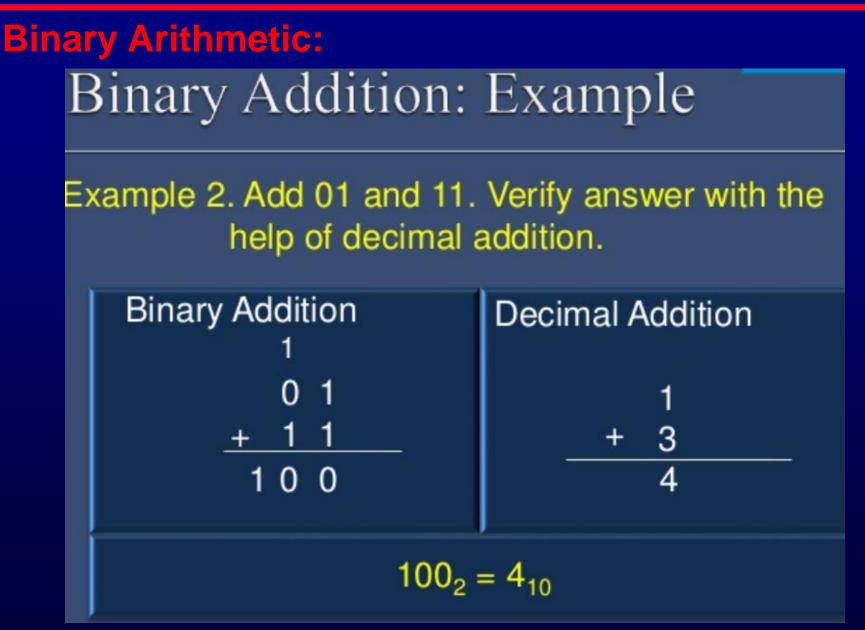
Binary Arithmetic:

Input 1	Input 2	Input 3	Sum	Carry
1	1	1	1	1

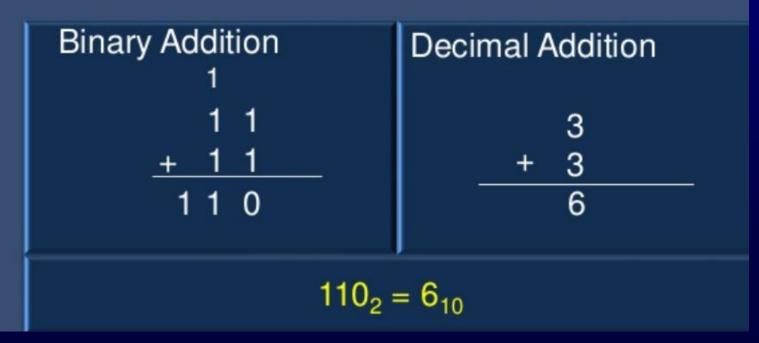
Binary Arithmetic:


Addition of Binary Numbers

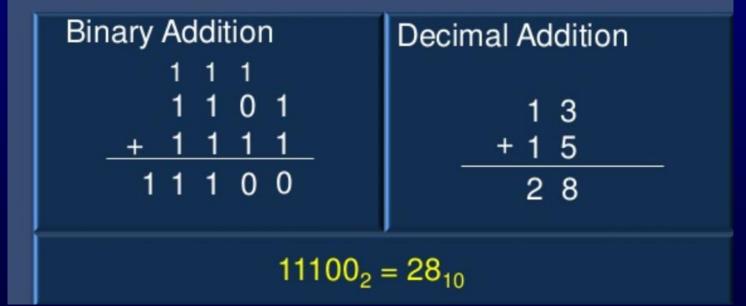
- Start by adding bits in unit column (rightmost column)
- Result of adding bits of a column is a sum with or without a carry.
- 3. Write sum in result of that column.
- If carry is present, carry is carried-over to addition of the adjacent left column.
- Then repeat the above steps, for each of the columns, i.e., tens column, hundreds column and so on.

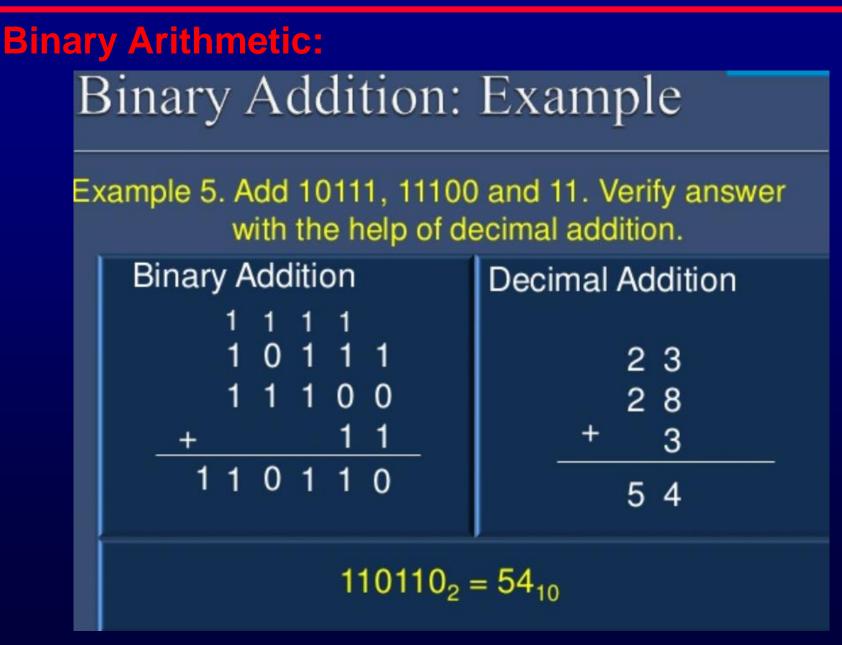

Binary Arithmetic:

Example 1. Add 10 and 01. Verify answer with the help of decimal addition.



Binary Arithmetic:


Example 3. Add 11 and 11. Verify answer with the help of decimal addition.

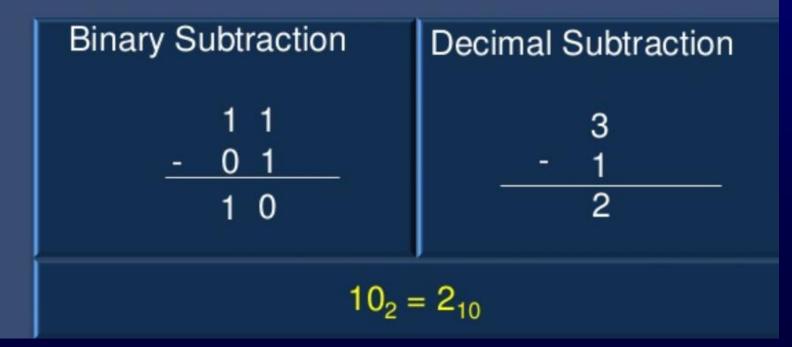


Binary Arithmetic:

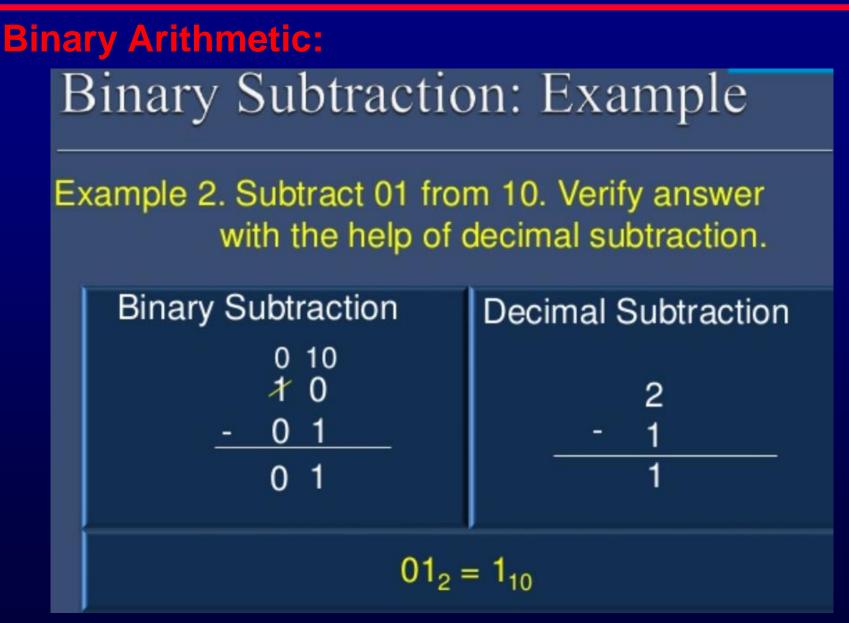
Example 4. Add 1101 and 1111. Verify answer with the help of decimal addition.

Bin	Binary Arithmetic:									
H	Binary Subtraction									
- ^	Uses Binary subtraction rules									
	Binary Subtraction Rules									
	Input 1	Input 2	Difference	Borrow						
	0	0	0	No borrow						
	0	1	1	1						
	1	0	1	No borrow						
	1	1	0	No borrow						

Binary Arithmetic:

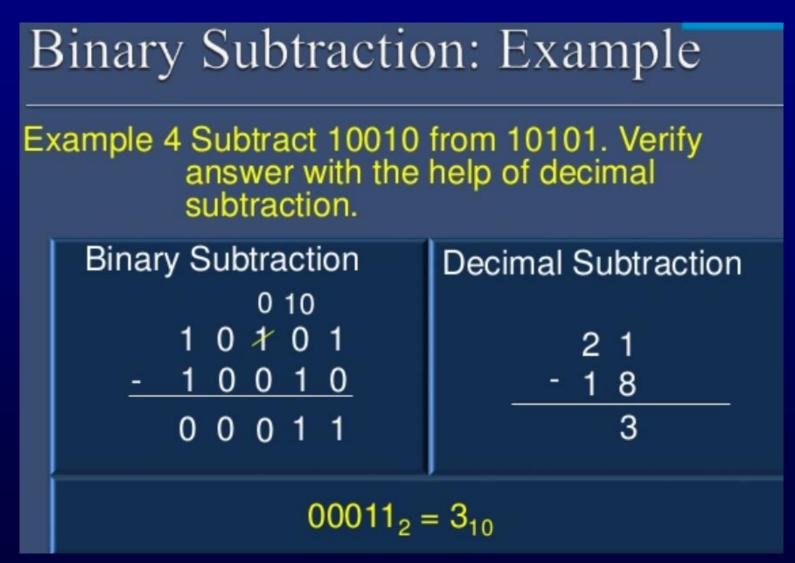

Subtraction of Binary Numbers

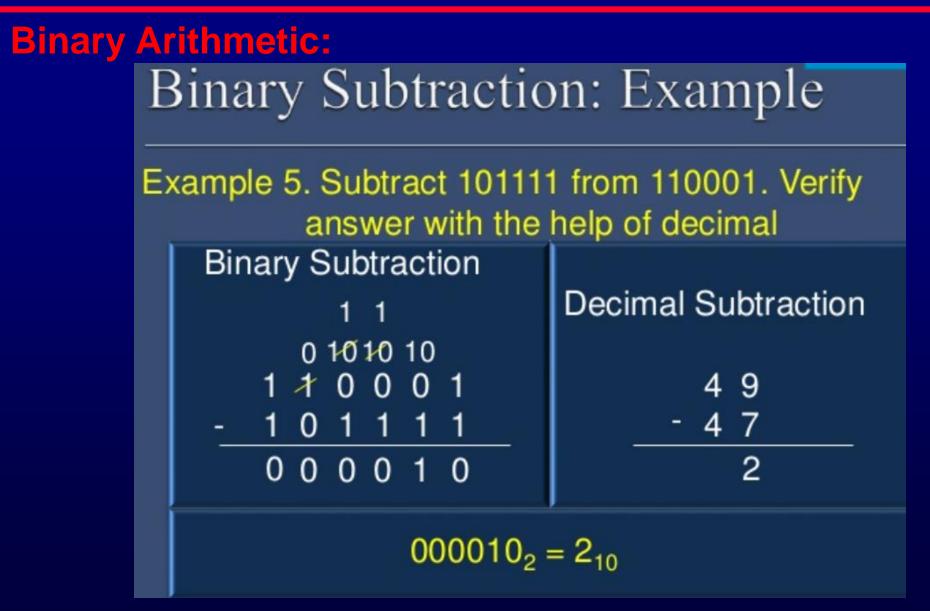
- 1. Start by subtracting bit in lower row from bit in upper row, in unit column.
- If bit in upper row is less than the bit in lower row, borrow 1 from upper row of adjacent left column.
- 3. Result of subtracting two bits is the difference.
- 4. Write *difference* in result of that column.
- Then repeat the above steps, for each of the columns, i.e., tens column, hundreds column and so on.


Binary Arithmetic:

Binary Subtraction: Example

Example 1. Subtract 01 from 11. Verify answer with the help of decimal subtraction.


Binary Arithmetic:


Binary Subtraction: Example

Example 3. Subtract 0111 from 1110. Verify answer with the help of decimal subtraction.

Binary Arithmetic:

Binary Arithmetic:

Signed and Unsigned numbers

> A binary number may be positive or negative.

Generally, symbols "+" and "-" represent positive and negative numbers, respectively.

In computer, sign of a binary number has to be represented using 0 and 1.

Binary Arithmetic:

Signed and Unsigned numbers

n-bit signed binary number consists of two parts

- Sign bit, and Magnitude.
- Left most bit is called Most Significant Bit (MSB).
- > MSB is the sign bit.
- Remaining n-1 bits denote magnitude of number.

Binary Arithmetic:

Signed and Unsigned numbers

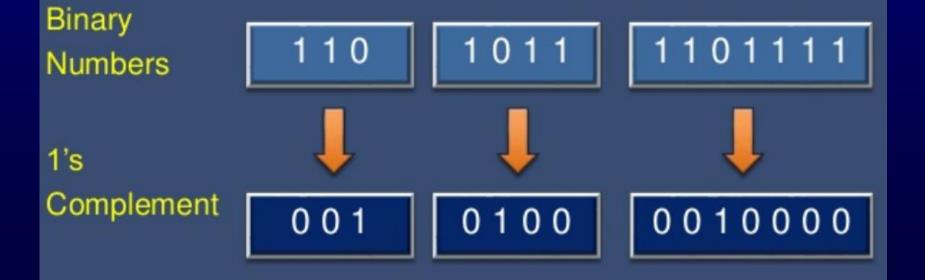
Sign bit is 0 for a positive number and 1 for a negative number.

- 0 1100011 is a positive number. Sign bit is 0, and,
- 1 1001011 is a negative number. Sign bit is 1.
 Positive Number Negative Number

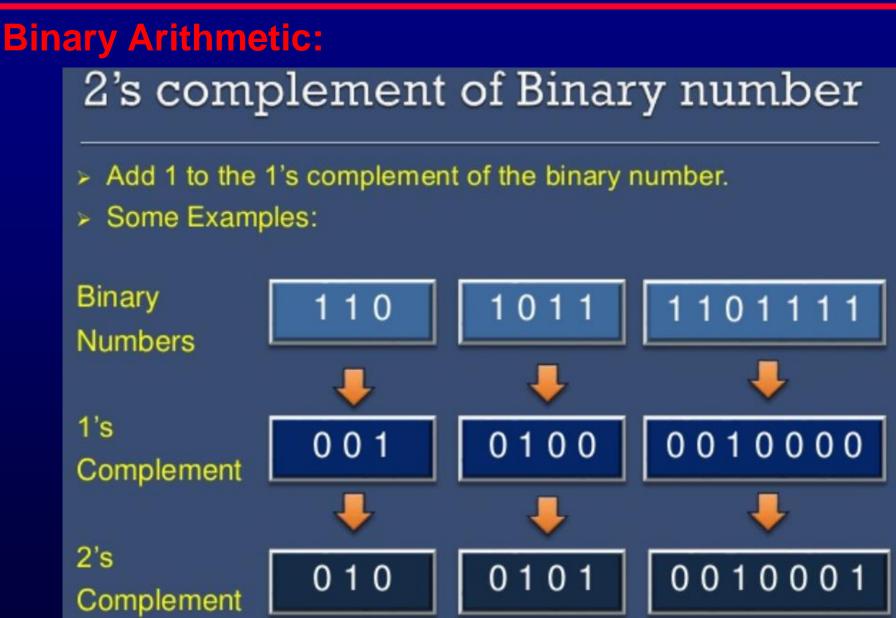
_0 1100011 мѕв <mark>_1 1001011</mark> мѕв

Binary Arithmetic: Signed and Unsigned numbers Data range for 8-bit signed number is: -128 to +127 (-2⁷ to +2⁷-1). Leftmost bit is sign bit. > In *n*-bit unsigned binary number, magnitude of number n is stored in n bits. Data range for 8-bit unsigned number is: • 0 to 255 ($2^8 = 256$).

Binary Arithmetic:


Complement of Binary Numbers

- > Used in computer for simplification of subtraction operation.
- > Two types of complements
 - 1's complement, and
 - 2's complement.


Binary Arithmetic:

l's complement of Binary number

Change bits 1 to 0 and bits 0 to 1.Some examples

Binary Arithmetic:

Binary Data Representation

> Binary number can also have a binary point, in addition to sign.

Binary point used for representing fractions, integers and integer-fraction numbers.

> Registers are high-speed storage areas in CPU of computer. All data is brought into a register before it gets processed.

Binary Arithmetic:

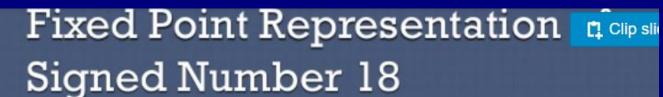
Binary Data Representation

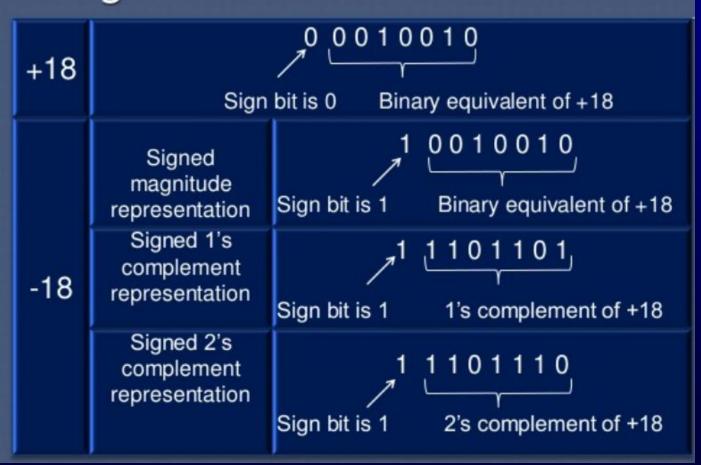
 Two ways of representing position of binary point in a register
 Fixed Point Number Representation, and
 Floating Point Number Representation.

Binary Arithmetic:

Fixed Point Number Representation

- > Assumes binary point is fixed at one position.
- Represents +ve integer binary signed number as-
 - Sign bit is 0. Magnitude is a positive binary number.
- Represents -ve integer binary signed number as-
 - Sign bit is 1
 - Magnitude is represented in any one of three ways-
 - Signed Magnitude representation
 - Signed 1's complement representation
 - Signed 2's complement representation


Binary Arithmetic:


Fixed Point Number Representation..

Signed Magnitude representation

- Magnitude is positive binary number itself.
- > Signed 1's complement representation
 - Magnitude is 1's complement of positive binary number.
- > Signed 2's complement representation
 - Magnitude is 2's complement of positive binary number.

Binary Arithmetic:

Binary Arithmetic:

Fixed Point Number Representation

Signed magnitude and signed 1's complement representation are rarely used in computer arithmetic.

Signed 2's complement representation is used to represent negative numbers.

Binary Arithmetic:

Signed Binary Number: Addition

Represent positive number in binary form. For e.g., +5 is 0000 0101, +10 is 0000 1010 Represent negative number in 2's complement form. For e.g., -5 is 111 1 1011, -10 is 1111 0110 > Add bits of the two signed binary numbers. Ignore any carry out from sign bit position.

Binary Arithmetic:

Signed Binary Number: Addition

> Negative output is automatically in 2's complement form.

Get decimal equivalent of negative output number

Find its 2's complement, and

Attach a negative sign to the obtained result.

Binary Arithmetic:

Signed Binary Number: Addition

Example 1. Add binary +5 and +10. Verify answer with the help of decimal addition.

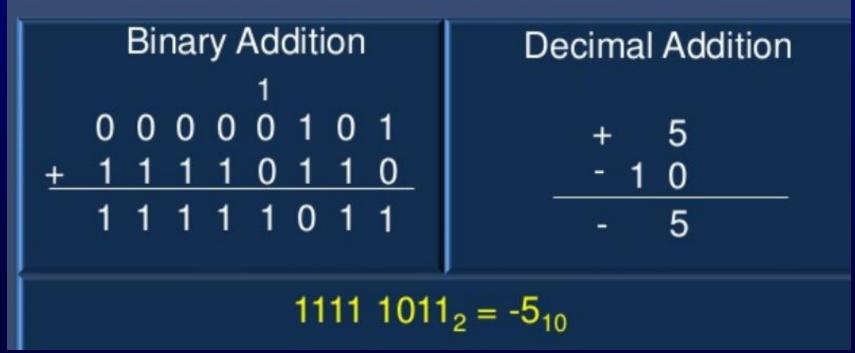
 Binary Addition
 Decimal Addition

 0 0 0 0 0 0 1 0 1 + 5

 + 0 0 0 0 1 0 1 0 + 1 0

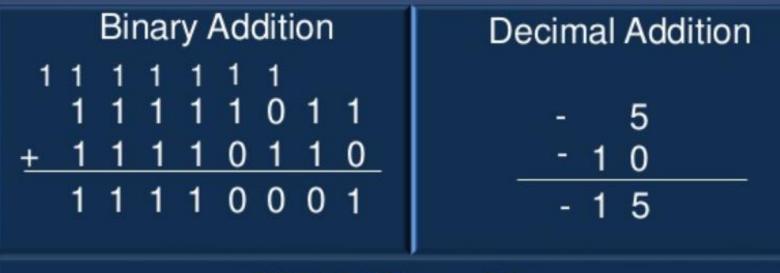
 0 0 0 0 1 1 1 1 + 1 5

 $0000 1111_2 = +15_{10}$


Binary Arithmetic: Signed Binary Number: Addition Example 2. Add binary -5 and +10. Verify answer with the help of decimal addition. **Binary Addition Decimal Addition** 1 1 1 1 1 1 1 1 1 1 0 1 1 5 00001010 + 1 0 00000101 + 5 $0000\ 0101_2 = +5_{10}$

Binary Arithmetic:

Signed Binary Number: Addition


Example 3. Add binary +5 and -10. Verify answer with the help of decimal addition.

Binary Arithmetic:

Signed Binary Number: Addition

Example 4. Add binary -5 and -10. Verify answer with the help of decimal addition.

 $1111 \ 0001_2 = -15_{10}$

Binary Arithmetic:

Signed Binary Number: Subtraction

Changed to addition of two signed numbers.
 Sign of second number is changed before performing the addition operation.

Binary Arithmetic:

Signed Binary Number: Subtraction

(+A) - (+B) = (+A) + (-B)(+A) - (-B) = (+A) + (+B)(-A) - (-B) = (-A) + (+B)(-A) - (+B) = (-A) + (-B)

Binary Coding Schemes:

- **Binary Coding Schemes**
- > Data alphabetic, numeric, alphanumeric, sound, video.
- Data represented as combination of bits in computer.
- > Bits are grouped in a fixed size.
- Code is made by combining bits of definite size.

Binary Coding Schemes:

Binary Coding Schemes...

- > Represents symbols in a standard code.
- Combination of bits represents a unique symbol.
- Standard code enables programmers to use same combination of bits to represent a symbol in data.

Binary Coding Schemes:

Binary Coding Schemes...

Commonly used binary coding schemes:
ASCII,
EBCDIC, and
Unicode

Binary Coding Schemes:

EBCDIC

> EBCDIC stands for Extended Binary Coded Decimal Interchange Code

- > 8-bit code. 4 bits for zone; 4 bits for digit.
- > Allows 2⁸ = 256 combinations.
- > Represents 256 unique symbols.
- > Used mainly in mainframe computers.

Binary Coding Schemes:

ASCII

 ASCII stands for American Standard Code for Information Interchange
 Two types of ASCII codes
 ASCII-7 and
 ASCII-8.

Binary Coding Schemes:

ASCII-7

Standard ASCII code.
7-bit code. 3 bits for zone; 4 bits for digits.
Allows 2⁷ = 128 combinations.
Represents 128 unique symbols.
ASCII-7 modified by IBM to ASCII-8.

The **zone** used by **ASCII** for alphabets is 0100. For e.g. A is represented as 0100(zone)0001(digit). The hex equivalent is 41 for A. Character A = 0100 0001; Character B = 0100 0010

Binary Coding Schemes:

ASCII-8

Extended version of ASCII-7.
8-bit code. 4 bits for zone; 4 bits for digit.
Allows 2⁸ = 256 combinations.
Represents 256 unique symbols.
Widely used to represent data in computer.

Binary Coding Schemes:

ASCII-8

- > ASCII-8 code represents 256 symbols.
 - 0-31 for control characters.
 - Non-printable. Carriage Return (CR), Bell (BEL).
 - 48-57 for numeric 0-9.
 - 65-90 for uppercase letters A-Z.
 - 97-122 for lowercase letters a-z.
 - 128-255 are extended ASCII codes.

Binary Coding Schemes:

Unicode

- > Universal character encoding standard
 - Represents text, symbols, characters in multilingual environments.
 - Uniquely represent a symbol in languages like Chinese, Japanese etc.
 - Represents mathematical and scientific symbols.
- > 32 bit code.

Allows 2³² = approx. 4 billion combinations.

Binary Coding Schemes:

Unicode...

- Compatible with ASCII-8 codes.
- > Unicode's first 256 codes identical to ASCII-8 codes.
- > Implemented by character encodings.
- > UTF-8 : A character encoding
 - Most commonly used encoding scheme.
 - Uses 8-32 bits per code.

UTF: Unicode Transformation Format

Binary Coding Schemes:

Unicode character encoding	
in MS-Word 2007 Symbol	
Symbol	? 🛛
Symbols Special Characters	
Eont: (normal text) Subset: Mathematical Operators	~
$\Sigma - / \cdot \sqrt{\infty} \square \bigcap \int \approx \neq \equiv \leq \geq \Box$	
<u> </u>	F
_ ╓ ╔ ╕ ╖ ╗ ╘ ╙ ╚ ╛ ╜ ╝ ╞ ╟ ╠ ╡	- 🔳
Recently used symbols:	
$\bigcap \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	∞
INTERSECTION Character code: 2229 from: Unicode (hex) 💌
AutoCorrect Shortcut Key Shortcut key: 2 /9, Alt+X	
Insert	Cancel
Unicode code in hex. Unicode (hex.)	

Binary Coding Schemes:

UTF encodings include:

- UTF-1, a retired predecessor of UTF-8, maximizes compatibility with ISO 2022, no longer part of The Unicode Standard;
- UTF-7, a 7-bit encoding sometimes used in e-mail, often considered obsolete (not part of The Unicode Standard, but only documented as an informational RFC, i.e., not on the Internet Standards Track);
- UTF-8, an 8-bit variable-width encoding which maximizes compatibility with ASCII;
- UTF-EBCDIC, an 8-bit variable-width encoding similar to UTF-8, but designed for compatibility with EBCDIC (not part of The Unicode Standard);
- > UTF-16, a 16-bit, variable-width encoding;
- ➤ UTF-32, a 32-bit, fixed-width encoding.

Logic Gates