Advanced Java Programming Reference Note

Unit-4
Database Connectivity

Java Database Connectivity (JDBC)

Java Database Connectivity (JDBC) i1s an Application Programming Interface (API) used to
connect Java application with Database. It 1s used to interact with various types of Databases
such as Oracle, MS Access, My SQL and SQL Server. JDBC is the platform-independent

interface.

It allows java program to execute SQL statement and retrieve result from database. The JDBC
API consists of classes and methods that are used to perform various operations like: connect,
read, write and store data in the database.

We can use JDBC API to handle database using Java program and can perform the following
activities:

1. Connect to the database

2. Execute queries and update statements to the database

3. Retrieve the result received from the database.

JDBC Architecture

In general, JDBC Architecture consists of two layers:
e JDBC API: This provides the application-to-JDBC Manager connection.
e JDBC Driver API: This supports the JDBC Manager-to-Driver connection.

o]

Fig: JDBC Architecture .

= Java Application is a JDBC Client that wants to communicate with the database.

= JDBC API of an application provides the necessary classes and interfaces to connect the
application with the driver manager.

= JDBC Driver Manager controls interaction between the user-interface and database
driver being used.

= JDBC Driver 1s a software component that enables java application to interact with the
database.

= Database Server: It is nothing but the Database server like Oracle, MySQL, SQL Server,
etc. with which the JDBC client wants to communicate.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Types of JDBC Architecture

There are two types of processing models in JDBC architecture: rwo-tier and three-tier.

= Two-tier Architecture: In the two-tier model, a Java applet or application talks directly to
the database. This requires a JDBC driver that can communicate with the particular
database management system being accessed. A user's SQL statements are delivered to the
database, and the results of those statements are sent back to the user.

= Three-tier Architecture: In the three-tier model, commands are sent to a "middle tier" of
services, which then send SQL statements to the database. The database processes the SQL
statements and sends the results back to the middle tier, which then sends them to the user.

Java applet or ; -
appiet Clienr rmachine (GUI)

HTML browser

' HTTP, EMI, or CORBA calls
Java

Application Client machine Application S o
| Server (Java) Server machine (business logic)

JDBC IDBC

t DBMS-proprietary protocol DBMS -proprietary protecol

DBMS Database server DBMS Database server

Fig: Two-tier architecture of JDBC Fig: Three-tier architecture of JDBC

JDBC Driver TXEes

JDBC Driver is a software component that enables java application to interact with the
database. There are 4 types of JDBC drivers:

= Type 1: JDBC-ODBC bridge
= Type 2: Native-API driver

= Type 3: Net pure Java driver
= Type 4: Pure Java driver

Type 1: JDBC-ODBC Bridge

- To use a Type 1 driver in a client machine, an ODBC driver should be installed and
configured correctly.

- This type of driver does not directly interact with the database. To interact with database,
it needs ODBC driver.

- The JDBC-ODBC bridge driver converts JDBC method class into ODBC method calls.

- It can be used to connect to any type of the databases.

Type 2: Native —API driver

- Type 2 drivers are written partially in Java and partially in native code.

- The Native-API of each database should be installed in the client system before accessing
a particular database. So in this way, a Native-API driver is database specific driver.

- This driver converts JDBC method calls into native calls of the database APL

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Type 3: Net Pure Java Driver

- InaType 3 driver, the JDBC driver on the client machine uses the socket to communicate
with the middleware at the server. The middleware or server acts as a gateway to access the
database.

- The client database access requests are sent through the network to the middleware or server
and then the middleware converts the request to the database specific APL

- Type-3 drivers are fully written in Java, hence they are portable drivers.

Tvpe 4: Pure Java Driver

- This driver mteract directly with database. It does not require any native database library and
middleware server that is why it is also known as Thin Driver.

- No client-side or server-side installation.

- It1s fully written in Java language, hence they are portable drivers.

Steps to Connect to the Database in Java

Following figure displays the steps to develop a JDBC application:

Register the JDBC Driver

|

Establish a Database Connection

I

Create and Execute an SQL Statement

}

Process the Results

l

Close the Database Connection

1. Register the driver class: First step is to load or register the JDBC driver for the database.
Class class provides forName() method to dynamically load the driver class.
Syntax: Class.forName("driverClassName");

To load or register OracleDriver class: Class.forName("oracle jdbc.driver.OracleDriver");

ROBMS JDBC Drirer Name.

Driver Mame

com.mysgl.jdbe . Driver
Database URL format:

jdbec:mysgl//hostname/databaseName

MySGL

Driver Mame:

oracle.jdbc.driver.OracleDriver

orgcle Database URL format:
jdbc:oracle:thin@hostname :portnumber :databaselNams
Drver Name:
s COM. ibm.dbZ.jdbc.net .DBEZDriver
Database URL format:
jdbc:dbZthostname: portnumber/databaselams
Drivar Mame:
Acess com. jdbe . odbe . JdbeodbeDriver

Database URL format:

jdbc:odhc:databaseNane

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Making a Connection: DriverManager class provides the facility to create a connection
between a database and the appropriate driver. To open a database connection we can call
getConnection() method of DriverManager class.

Syntax:
Connection connection =

DriverManager.getConnection (url, username, password):

\/

| Optional parameters |

To create a connection with Oracle database:

Connection connection =
DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe", "user", "password");

Creating Statement: The statement object is used to execute the query against the database.
A statement object can be any one of the Statement,
CallableStatement, and PreparedStatement types .To create a statement object we have to
call createStatement() method of Connection interface.

Syntax: Statement stmt=connection.createStatement();

Executing Statement: The executeQuery() method of Statement interface is used to execute
queries to the database. This method returns the object of Resu/tSet that can be used to get
all the records of a table.

To execute a statement for select query use below:
ResultSet resultSet = stmt.executeQuery(selectQuery),;

Accessing a ResultSet:
- Cursor operations: first(), last(), next(), previous(), etc.
- Typical code: while(rs.next()) {
// process the row,
/
- The ResultSet class contains many methods for accessing the value of a column of the
current row. E.g. getString(), getDate(), getint(), getFloat(), getObject()

Example:
ResultSet rs=stmt.executeQuery("select * from user");
while(rs.next())

{

System.out.printin(rs.getString(1)+" "+rs.getString(2)),
/

Closing Connection: After done with the database connection we have to close it. Use
close() method of Connection interface to close database connection. The statement and
ResultSet objects will be closed automatically when we close the connection object.

Example: connection.close();

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Complete Example

import java.sql. Connection;
import java.sql. DriverManager;
import java.sql. ResultSet;
import java.sql. SOLException;
import java.sql. Statement;

public class Simplejdbe{
public static void main(String args[]) {
try{
//Load the JDBC driver
Class.forName("com.mysql jdbc.Driver"),

// Establish a connection
String url = "jdbe:mysql//localhost:3306/test”;
Connection conn = DriverManager.getConnection(url);

//Create a statement
Statement st = conn.createStatement();

//Execute a statement
ResultSet rs = st.executeQuery("SELECT * FROM Employee”),
while(rs.next()){

int id = rs.getIlnt("E_ID");

String name = rs.getString("E_Name");

String address = rs.getString("E_Address");

Date d = rs.getDate("DOB");

System.out. println(id+"\t"+name+"\t"+address+"\t"+d);

/

rs.close();
st.close(),
conn.close();
Jeatch (SOQLException sqlExcep){
System.out.println("Error: " + sqlExcep.getMessage());
/
/

/

Q. Write a Java program using JDBC fo extract name of those students who live in
Kathmandu district, assuming that the student table has four attributes (ID, name, districi,
and age).

Solution:

Before Writing the code please run the Xampp server and create a database name fest and add
a table called student with (1d, name, district and age) column name.

import java.sql.Connection;
import java.sql. DriverManager;
import java.sql ResultSet;
import java.sql. SOLException;
import java.sql.Statement;

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

public class Studentjdbc{
public static void main(String args[]) {
ry{
//Load the JDBC driver
Class.forName("com.mysql.jdbc.Driver");

// Establish a connection

String url = "jdbe:mysql//localhost:3306/test";
String username = "root";

String password = ""';

E

Connection conn = DriverManager.getConnection(url, username, password);

//Create a statement
Statement st = conn.createStatement();

/Execute a statement

ResultSet rs = st.executeQuery("SELECT name FROM student WHERE district =
'Katmandu'");

while(rs.next()){
String name = rs.getString("name");
System.out.printin("Name: "+ name);

/

st.close();
conn.close();
Jeateh (SOLException sqlExcep){
System.out.printin("Error: " + sqlExcep.getMessage());
/

/
/

executeQuery() vs. executeUpdate()

- The executeQuery() method 1s used to execute a SELECT statement and returns a
ResultSet with the number of rows selected.

- The executeUpdate() 1s used to execute SQL statements such as INSERT, UPDATE or
DELETE and it returns the number of rows affected.

DDL and DML Operations using Java

We use the DDL commands for creating the database or schema, while DML commands are
used to populate and manipulate the database. DDL commands can affect the whole database
or table, whereas DML statements only affect single or multiple rows based on the condition
specified in a query.

INSERT

[
4

g
Y CREATE PO DELETE
DML ¢

o D N
N UPDATE

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Example

import java.sql. *;
public class DatabaseExample {
public static void main(String/[] args) {
try {
Class.forName("com.mysql.jdbc.Driver"),

String url = "jdbe:mysql://localhost:3306/mydatabase";

String username = "root";

String password = "password";

Connection con = DriverManager.getConnection(url, username, password);

Statement stmt = con.createStatement();

// Create a new table using DDL

String createTableSql = "CREATE TABLE users (id INT PRIMARY KEY, name
VARCHAR(255), email VARCHAR(255))",

stmt.execute Update(createTableSql),

// Insert data into the table using DML
String insertSql = "INSERT INTO users VALUES (1, 'Manisha', 'mss@gmail.com’)",
stmt.execute Update(insertSql),

// Retrieve data from the table using DML
String selectSql = "SELECT * FROM users";
ResultSet rs = stmt.executeQuery(selectSql),
while (rs.next()) {
int id = rs.getInt("id");
String name = rs.getString("name");
String email = rs.getString("email");
System.out.println("ID: " + id + ", Name: " + name + ", Email: " + email);

/

// Update data in the table using DML
String updateSql = "UPDATE users SET name = 'Shila’ WHERE id = 1";
stmt.execute Update(updateSql);

// Delete data from the table using DML
String deleteSql = "DELETE FROM users WHERE id = 1",
stmt.execute Update(deleteSql),

// Drop the table using DDL
String dropTableSql = "DROP TABLE users";
stmt.execute Update(dropTableSql),

stmt.close();
con.close();

/

catch (SQLException e) {
e.printStackIrace();

#
/

/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

SQL Exceptions

In JDBC, we may get exceptions when we execute or create the query. SQL exceptions can
occur either if the driver is missing or driver name is wrong or information about the database

1s wrong or the SQL query is wrong. Using Exception handling, we can handle the SQL
Exception like we handle the normal exception.

An SOLException can occur both in the driver and the database. When such an exception

occurs, an object of type SOLException will be passed to the catch clause. SOLException 1s
available in the java.sql package.

The SQLException object has the following methods: getErrorCode(), getMessage(),
getSOLState(), getNextException(), printStackTrace().

Example

import java.sql. *;
public class Exception_ Example {
public static void main(String/[] args) throws ClassNotFoundException {

//Update query to set the email id for the employee whose empNUM is 10011
String update _query = "UPDATE employee details SET email=jayanta(@gmail.com’
where empNuml = 10011";

try{
Class.forName("com.mysql.jdbc.Driver”);
Connection conn =

DriverManager.getConnection("jdbc:mysql://localhost: 3306/mydatabase”);
Statement statemntl = conn.createStatement();

int return_rows = statemntl .executeUpdate(update _query),
System.out.println("No. of Affected Rows = "+ return_rows);

/
catch(SQLException sqe)
{
System.out.println("Message = " + sqe.getMessage());
2 / Output:

1 Heasage = CRA-D00504: "EMFNUMI": invalid identifie:
S

PreEared Statement

PreparedStatement 1s used to execute specific queries that are supposed to run repeatedly, for
example, SELECT * from Employees WHERE EMP ID=?. This query can be run multiple
times to fetch details of different employees. PreparedStatement accepts parameterized SQL
quires and we can pass 0 or more parameters to this query. Initially this statement uses place
holders “?” instead of parameters, later on we can pass arguments to these dynamically using
the setXXX{() methods of the PreparedStatement interface, where XXX represents the Java
data type of the value we wish to bind the input parameter.

The prepareStatement() method of Connection interface is used to return the object of
PreparedStatement.

PreparedStatement pstmt = conn.prepareStatement(queryString),

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Example:

String sql = "select * from people where firstname=? and lastname="?""
PreparedStatement preparedStatement = connection.prepareStatement(sql);
preparedStatement.setString(1, "Jayanta"); //the first parameter is the index of placeholder
preparedStatement.setString(2, "Poudel”);

ResultSet result = preparedStatement.executeQuery(),

Complete Example

import java.sql. Connection;

import java.sql. DriverManager;
import java.sql. PreparedStatement,;
import java.sql. SOQLException;

public class PreparedStatementDemo

/
public static void main(String[] args)
{
try{
Class.forName("com.mysql jdbc.Driver"),
String mysqlUrl = "jdbc:mysql://localhost/testdb";
Connection con = DriverManager.getConnection(mysqlUrl, "root", "password");

String query = "INSERT INTO Employees(Name, RollNo, Location) VALUES (?, ?, ?)";
PreparedStatement pstmt = con.prepareStatement(query);

pstmt.setString(1, "Nikita");
pstmt.setint(2, 101);
pstnt.setString(3, "Ramechhap”);

pstmt.setString(1, "Shila");
pstmt.setlnt(2, 102);
pstmt.setString(3, "Pokhara");

pstmt.setString(1, "Srishti");
pstmt.setlnt(2, 105);
pstmt.setString(3, "Gulmi");

int affectedRows = pstmt.executeUpdate();
System.out.println(affectedRows + " row(s) affected !!");

pstmt.close();
connection.close();
/

catch (Exception e) {
e.printStackTrace();

/
/

/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Q. You are hired by a reputed software company which is going to design an application for
""Movie Rental System''. Your responsibility is to design a schema named MRS and create a
table named Movie(id, Title, Genre, Language, Length). Write a program to design a GUI

Jform to take input for this table and insert the data into table after clicking the OK button.

Solution:

import java.awt. *;
import java.awt.event. *;
import javax.swing.™;
import java.sql. *;

public class MovieRentalSystemGUI extends JFrame implements ActionListener {

JLabel titleLabel, genreLabel, languageLabel, lengthLabel;
JTextField titleField, genreField, languageField, lengthField;
JButton okButton;

public MovieRentalSystemGUI() {
setTitle("Movie Rental System");
setLayout(new GridLayout(3, 2, 10, 10));
setDefaultCloseOperation(JFrame. EXIT ON CLOSE),
setSize(400, 200),

titleLabel = new JLabel("Title:");
titleField = new JTextField(20);
add(titleLabel);

add(titleField);

genreLabel = new JLabel("Genre:");
genreField = new JTextField(20);
add(genreLabel),

add(genreField),

languageLabel = new JLabel("Language:");
languageField = new JTextField(20);
add(languageLabel);

add(languageField),

lengthLabel = new JLabel("Length (in minutes):");
lengthField = new JTextField(20);
add(lengthLabel);

add(lengthField);

okButton = new JButton("OK");
okButton.addActionListener(this);
add(okButton),

setVisible(true);

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okButton) {
ry {
Class.forName("com.mysql jdbc.Driver");
Connection con =
DriverManager.getConnection("jdbc:mysql//localhost:3306/MRS", "root", "root"),
String query = "INSERT INTO Movie (Title, Genre, Language, Length) VALUES (?,
27y

PreparedStatement stmt = con.prepareStatement(query);
stmt.setString(1, titleField getText());
stmt.setString(2, genreField getText());
stmt.setString(3, languageField. getText());
stmt.setInt(4, Integer.parselnt(lengthField. getText())),

stmt.executeUpdate(),
con.close();
} catch (SOQLException ex) {
ex.printStackTrace();
/
/
/

ﬁzzbh’c static void main(String[] args) {
new MovieRentalSystemGUI(),
/

/

Scrollable and UEdatable ResultSets

Whenever we create an object of ResultSet by default, it allows us to retrieve in the forward
direction only and we cannot perform any modifications on ResultSet object. Therefore, by
default, the ResuitSet object is non-scrollable and non-updatable ResultSet.

A scrollable updatable result set maintains a cursor which can both scroll and update rows.

Scrollable ResultSet

A scrollable ResultSet is one which allows us to retrieve the data in forward direction as well
as backward direction but no updations are allowed. To obtain a scrollable result set, we must
create a different Statement object with the following method:

Statement stmt = conn.createStatement(int resultSetType, int resultSetConcurrency),

Here resultSetType represents the type of scrollability and resultSetConcurrency represents
either read only or updatable. The value of resultSetType and the resultSetConcurrency are
present in ResultSet mterface as constant data members and they are:

ResultSet Type values:
TYPE FORWARD ONLY The result set is not scrollable (default).
TYPE SCROLL INSENSITIVE | The result set is scrollable but not sensitive to database
changes.
TYPE SCROLL SENSITIVE The result set is scrollable and sensitive to database
changes.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

ResultSet Concurrency values:

CONCUR READ ONLY The result set cannot be used to update the database.
CONCUR UPDATABLE The result set can be used to update the database.

We can use the following methods to scroll through the result set:

= first(): moves the cursor to the first row.

= pnext(): moves the cursor forward one row from its current position.

= previous(): moves the cursor to the previous row.

= relative(int rows): moves the cursor a relative number of rows from its current position.
The value of rows can be positive (move forward) or negative (move backward).

= absolute(int row): moves the cursor to the given row number. The value of row can be
positive or negative. A positive number indicates the row number counting from the
beginning of the result set. A negative number indicates the row number counting from the
end of the result set.

Example

import java.sql. *;

class ScrollResultSet {

public static void main(String/[] args) {
ry {
Class.forName("com.mysql.jdbc.Driver");
Connection con =
DriverManager.getConnection("jdbc:mysql//localhost:3306/test", "root", "root");
Statement st = con.createStatement(ResultSet. TYPE SCROLL INSENSITIVE,
ResultSet. CONCUR _READ ONLY);
ResultSet rs = st.executeQuery("select * from emp");
System.out.printin("RECORDS IN THE TABLE...");
while (rs.next()) {
System.out. println(rs.getlnt(1) + " " + rs.getString(2));

/

rs.first();

System.out.printin("FIRST RECORD...");
System.out.printin(rs.getlnt(1) +" " + rs.getString(2)),

rs.absolute(3);
System.out.println("THIRD RECORD...");

System.out.printin(vs.getlnt(1) +" " + rs.getString(2));
rs.last();

System.out.printin("LAST RECORD...");
System.out.printin(rs.getlnt(1) +" " + rs.getString(2)),
rs.previous();

rs.relative(-1);
System.out.printin("FIRST RECORD...");
System.out.printin(rs.getlnt(1) +" " + rs.getString(2)),
con.close();

} catch (Exception e) {
System.out.println(e);

/
/
}’.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Updatable ResultSet

An updatable ResultSet object allows us to update a column value, insert column values and
delete a row. The changes will immediately be persisted in the database and reflected by
the ResultSet object in real time. In order to make the ResultSet object as updatable and
scrollable we must use the following constants which are present in Resu/tSet interface.
resultSetType: TYPE SCROLL SENSITIVE
resultSetConcurrency: CONCUR _UPDATABLE

Statement st = con.createStatement (ResultSet. TYPE SCROLL SENSITIVE,
ResultSet. CONCUR UPDATABLE),

The updateXXX() method of ResultSet interface can be used to change the data m existing row.

Steps for INSERTING a record through ResultSet object

1. Decide at which position we are inserting a record by calling absolute method.
E.g. rs.absolute(3);
2. Since we are mnserting a record we must use the following method to make the ResultSet
object to hold the record.
rs.movelolnsertRow();
3. Update all columns of the database or provide the values to all columns of database.
rs.updateXXX(int colno, XXX val),
E.g. rs.updatelnt(l, 5);
rs.updateString(2, "Jayanta");
4. Upto step-3 the data 1s inserted in ResultSet object and whose data must be inserted in the
database permanently by calling the following method:
rs.insertRow();

Steps for UPDATING a record through ResultSet object

1. Decide which record to update.
E.g rs.absolute(3),
2. Decide which columns to be updated.
E.g. rs.updateString(2, "Kushal");
3. The content of ResultSet object must be updated to the database permanently by calling the
following method:
rs.updateRow();

Steps for DELETING a record through ResultSet object

1. Decide which record to delete.
E.g rs.absolute(3);
2. To delete the record permanently from the database we must call the deleteRow() method
which is present in ResultSet interface
rs.deleteRow ();

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Row Set

Interface RowSet provides several ser methods that allow the programmer to specify the
properties needed to establish a connection (such as the database URL, user name, password
etc.) and create a Statement (such as a query).

There are two types of RowSet objects — connected and disconnected.

= A connected RowSet object connects to the database once and remains connected until the
application terminates.

= A disconnected RowSet object connects to the database, get data from it, and then close
the connection. A program may change the data in a disconnected RowSer while it is
disconnected. Modified data can be updated to the database after a disconnected RowSet
reestablishes the connection with the database.

Javax.sql.rowset contains two subinterfaces of RowSet: JdbcRowSet and CachedRowSet.

ResultsSet
RowSet
Connected éﬁ Disconnected
[]
JdbcRowSet CachedRowSet

= JdbcRowSet, a connected RowSet, acts as a wrapper around a ResultSet object, and allows
programmer to scroll through and update the rows in the ResultSer object. A JdbcRowSet
object is scrollable and updatable by default.

= CachedRowSet, a disconnected RowSet, caches rows of data in memory and disconnects
from the database. It makes possible to operate (scroll and update) without keeping the
database connection open all the time. Like JdbcRowSet, a CachedRowSet object is
scrollable and updatable by default. A CachedRowSet is also serializable, so it can be
passed between Java applications through a network. However, a CachedRowSet has a
limitation — the amount of data that can be stored in memory is limited.

Example

In this example, RowSet 1s used to retrieve data from database instead of ResultSet.

import javax.sql.rowset. *;
import java.sql. *;

public class RowSetDemo {

public static void main(String[] args) {
String url = "jdbe :mysql://localhost:3306/testDb";
String userName = "root";
String password = "root";

try {

Class.forName("com.mysql jdbc. Driver "),

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

// first, create a factory object for rowset
RowSetFactory rowSetFactory = RowSetProvider.newFactory();

// create a JDBC rowset from the factory
JdbcRowSet rowSet = rowSetFactory.createJdbcRowSet(),

// Set connection properties
rowSet.setUrl(url);
rowSet.setUsername(userName),
rowSet.setPassword(password),

// Set SOL Query to execute

rowSet.setCommand("SELECT * FROM contact");

rowSet. execute();

System.out.printin("id \tName \tDepartment \tEmail \t\Salary");

// Iterating over RowSet
while (rowSet.next()) {
System.out println(rowSet.getInt("id") + "\t"

+ rowSet.getString("name"”) + "\t"
+ rowSet.getString("department”) + "\t"
+ rowSet. getString("email") + "\t"
+ rowSet.getString("salary"));

/

} catch (SOLException sqle) {
sqle.printStackTrace(),

/
/

/

Executing SOL command by CachedRowSet object

String url = "jdbe:mysql://localhost:3306/college";
String username = "root";
String password = "password";

RowSetFactory factory = RowSetProvider.newFactory(),;
CachedRowSet rowset = factory.createCachedRowSet(),

rowset.setUrl(url);
rowset.setUsername(username);
rowset.setPassword(password);

rowset.setCommand(SELECT * FROM Student);
rowset.execute(),

The following code iterates all rows in the row set and print details of each row:

while (rowset.next()) {
String name = rowset. getString("name");
String email = rowset.getString("email");
String major = rowset.getString("major");

System.out.printf("%s - %s - %s\n", name, email, major);

/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

MultiBle Results

When running a statement that returns more than one result set, we can use the execute()
method of the Statement class, because it will return a boolean value that indicates if the value
returned is a result set or an update count. If the execute() method returns true, the statement
that was run has returned one or more result sets. We can access the first result set by calling
the getResultSet() method. To determine if more result sets are available, we can call the
getMoreResults() method, which returns a boolean value of true if more result sets are
available. If more result sets are available, we can call the gefResultSet() method again to access
them, continuing the process until all result sets have been processed. If the getMoreResults()
method returns false, there are no more result sets to process.

Example

import java.sql. *;
public class MultipleResults Example{
public static void main(String/[] args) {
String url = "jdbe:mysql://localhost:3306/emp? allowMultipleQueries=true";
String userName = "root";
String password = "root";
try {
Class.forName("com.mysql.jdbc. Driver "),
Connection con = DriverManager.getConnection(url, userName, password);
Statement stmt = con.createStatement();
int rsCount = 0;
String SOL = "SELECT * FROM employees WHERE salary<50000; SELECT *
FROM employees WHERE salary>50000";
boolean results = stmt.execute(SOL);

do{
if (results) {
ResultSet rs = stmt.getResultSet();
rsCount++;

System.out.printin("RESULT SET #" + rsCount),
while (rs.next()) {
System.out.printin(rs.getString("Id") + ", " + rs.getString("Name") + ", "
+ rs.getString("Salary")),

/
/

System. out.printin(),
results = stmt.getMoreResults(),
} while (results);

stmt.close();
con.close(),
} catch (SQLException sqle) {
sqle.printStackTrace(),
#
/
/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Transactions

A transaction 1s a set of one or more statements that is executed as a unit, so either all of the
statements are executed, or none of the statements is executed. JDBC transaction make sure a
set of SQL statements is executed as a umit, either all of the statements are executed
successfully, or NONE of the statements are executed (rolled back all changes).

Transactions Handling Workflow in JDBC:

try {

{/f{ begin the transacticn:
connection.setAutoCommit(false);

'{ execute statement #1
'/ execute statement #2

'/ execute statement #3

'/ commit the transaction
connection.commit();

} catch (SQLException ex) {
f{ abort the transaction
connection.rollback();

} finally {
/{ close statements

connection.setfutoCommit(true);

¥

= Disabling Auto Commit mode: By default, a new connection is in auto-commit mode. This
means each SQL statement is treated as a transaction and is automatically committed right
after it 1s executed. So we have to disable the auto commit mode to enable two or more
statements to be grouped into a transaction: conn.setAutoCommit(fasle);

= Committing the transaction: After the auto commit mode is disabled, all subsequent SQL
statements are included in the current transaction, and they are committed as a single unit
until we call the method commit(): conn.commit();

So a transaction begins right after the auto commit is disabled and ends right after the
connection is committed.

= Rolling back the transaction: If any statement failed to execute, a SOLException 1s thrown,
and in the catch block, we invoke the method rollback() to abort the transaction:

conn.rollback();

Any changes made by the successful statements are discarded and the database is rolled
back to the previous state before the transaction.

» Enabling Auto Commit mode: Finally, we enable the auto commit mode to get the
connection back to the default state: conn.setAutoCommit(fasle);

In the default state (auto commit is enabled), each SQL is treated as a transaction and we
don’t need to call the commit() method manually.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Example

import java.sql.*;

class FetchRecords{
public static void main(String args[]){
try{
Class.forName("oracle jdbc.driver.OracleDriver");
Connection conn =
DriverManager.getConnection("jdbc:oracle:thin:@localhost: 1521 :xe",
"system","oracle");
conn.setAutoCommit(false);
Statement stmt=conn.createS tatemem();
stmt.executeUpdate("insert into employee values(190, Jayanta',70000)");
stmt.executeUpdate("insert into employee values(191,'Arjun’,80000)");
conn.commit();
stmt.close();
conn.close();
Jeatch(SQIException se){
se.printStackTrace();
conn.rollback();

/
/
/

SQL Escapes

Escape sequences are used within an SQL statement to tell the driver that the escaped part of
the SQL string should be handled differently. When the JDBC driver processes the escaped
part of an SQL string, it translates that part of the string into SQL code that SQL Server
understands.

There are five types of escape sequences that the JDBC API requires, and all are supported by
the JDBC driver:
e LIKE wildcard literals
Function handling
Date and time literals
Stored procedure calls
Outer joins
Limit escape syntax

LIKE Wildcard Literals

We can specify which escape character to use in strings comparison (with LIKE) to protect
wildcards characters (%’ and ° ’) by adding the following escape : fescape 'escape-
character'}. The driver supports this only at the end of the comparison expression.

Example:

Find all rows in which a begins with the character "%"
SELECT a FROM tabA WHERE a LIKE '$8%%' {escape '3"}

mnon

Find all rows in which a ends with the character "
SELECT a FROM tabA WHERE a LIKE '%=_' {escape '='}

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Function Handling

The JDBC driver supports function escape sequences in SQL statements with the following
syntax:

{fn functionName}
where functionName is a function supported by the JDBC driver. For example:

SELECT {fn UCASE(Name)} FROM Employee

There are various functions that are supported by the JDBC driver when using a function escape
sequence:

= String Functions: ASCII, CONCAT, DIFFERENCE, LENGTH, REPLACE, UCASE,
SUBSTRING etc.

= Numeric Functions: ABS, ACOS, ASIN, ATAN, EXP, LOG, MOD, POWER, SQRT,
TRUNCATE etc.

= Datetime Functions: CURDATE, CURTIME, DAYNAME, HOUR, MINUTE,
SECOND,MONTH, WEEK, YEAR etc.

= System Functions: DATABASE, IFNULL, USER.

Date and time literals

The escape syntax for date, time, and timestamp literals 1s the following:
{literal-type 'value'}
where /iteral-type 1s one of the following:

Literal Type | Description Value Format

d Date yyyy-mm-dd

t Time hhv:-mm:ss [1]

ts TimeStamp yyyy-mm-dd hh:mm:ss[f..]
Example:

UPDATE Orders SET OpenDate={d '2005-01-31"}
WHERE OrderID=1025

Limit escape syntax

The LIMIT escape clause can occur in a query at the point where an OFFSET/FETCH FIRST
clause can appear.

Syntax: { LIMIT rowCount [OFFSET startRow | }

- The rowCount is a non-negative integer that specifies the number of rows to return. If
rowCount 1s 0, all rows from startRow forward are returned.

- The startRow 1s a non-negative number that specifies the number of rows to skip before
returning results.

Example:

Return the first two rows of sorted table t
SELECT * FROM t ORDER BY a { LIMIT 2 }

Return two rows of sorted table t, starting with the eleventh row
SELECT * FROM t ORDER BY a { LIMIT 2 OFFSET 10 }

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

~

Please let me know if I missed anything or
anything is incorrect.

poudeljayanta99(@gmail.com

Collegenote Prepared By: Jayanta Poudel

