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Deadlock 

A set of process is in a deadlock state if each process in the set is waiting for an event that can be caused 

by only another process in the set. In other words, each member of the set of deadlock processes is 

waiting for a resource that can be released only by a deadlock process. None of the processes can run, 

none of them can release any resources, and none of them can be awakened. It is important to note that 

the number of processes and the number and kind of resources possessed and requested are unimportant. 

The resources may be either physical or logical. Examples of physical resources are Printers, Tape 

Drivers, Memory Space, and CPU Cycles. Examples of logical resources are Files, Semaphores, and 

Monitors. 

The simplest example of deadlock is where process 1 has been allocated non-shareable resources A, say, a 

tap drive, and process 2 has be allocated non-sharable resource B, say, a printer. Now, if it turns out that 

process 1 needs resource B (printer) to proceed and process 2 needs resource A (the tape drive) to proceed 

and these are the only two processes in the system, each is blocked the other and all useful work in the 

system stops. This situation is termed deadlock. The system is in deadlock state because each process 

holds a resource being requested by the other process neither process is willing to release the resource it 

holds. 

Preemptable and Nonpreemptable Resources 

Resources come in two flavors: preemptable and nonpreemptable. A preemptable resource is one that can 

be taken away from the process with no ill effects. Memory is an example of a preemptable resource. On 

the other hand, a nonpreemptable resource is one that cannot be taken away from process (without 

causing ill effect). For example, CD resources are not preemptable at an arbitrary moment. 

Reallocating resources can resolve deadlocks that involve preemptable resources. Deadlocks that involve 

nonpreemptable resources are difficult to deal with. 

Necessary and Sufficient Deadlock Conditions 

Coffman (1971) identified four (4) conditions that must hold simultaneously for there to be a deadlock. 

 

1. Mutual Exclusion Condition 
The resources involved are non-shareable. 

Explanation: At least one resource (thread) must be held in a non-shareable mode, that is, only one 

process at a time claims exclusive control of the resource. If another process requests that resource, the 

requesting process must be delayed until the resource has been released. 

 

2. Hold and Wait Condition 
Requesting process hold already, resources while waiting for requested resources. 

Explanation: There must exist a process that is holding a resource already allocated to it while waiting 

for additional resource that are currently being held by other processes. 

 

3. No-Preemptive Condition 
Resources already allocated to a process cannot be preempted. 

Explanation: Resources cannot be removed from the processes are used to completion or released 

voluntarily by the process holding it. 
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4. Circular Wait Condition 
The processes in the system form a circular list or chain where each process in the list is waiting for a 

resource held by the next process in the list. 

As an example, consider the traffic deadlock in the following figure 

 

 

 

 

 

 

Consider each section of the street as a resource.  

1. Mutual exclusion condition applies, since only one vehicle can be on a section of the street at a time. 

2. Hold-and-wait condition applies, since each vehicle is occupying a section of the street, and waiting 

to move on to the next section of the street. 

3. No-preemptive condition applies, since a section of the street that is a section of the street that is 

occupied by a vehicle cannot be taken away from it. 

4. Circular wait condition applies, since each vehicle is waiting on the next vehicle to move. That is, 

each vehicle in the traffic is waiting for a section of street held by the next vehicle in the traffic. 

The simple rule to avoid traffic deadlock is that a vehicle should only enter an intersection if it is assured 

that it will not have to stop inside the intersection. 

It is not possible to have a deadlock involving only one single process. The deadlock involves a circular 

“hold-and-wait” condition between two or more processes, so “one” process cannot hold a resource, yet 

be waiting for another resource that it is holding. In addition, deadlock is not possible between two 

threads in a process, because it is the process that holds resources, not the thread that is, each thread has 

access to the resources held by the process. 

Dealing with Deadlock Problem 

In general, there are four strategies of dealing with deadlock problem: 

1. The Ostrich Approach 

Just ignore the deadlock problem altogether. 

2. Deadlock Detection and Recovery 

Detect deadlock and, when it occurs, take steps to recover. 

3. Deadlock Avoidance 

Avoid deadlock by careful resource scheduling. 

4. Deadlock Prevention 

Prevent deadlock by resource scheduling so as to negate at least one of the four conditions. 
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Deadlock Prevention 

Havender in his pioneering work showed that since all four of the conditions are necessary for deadlock 

to occur, it follows that deadlock might be prevented by denying any one of the conditions. 

Elimination of “Mutual Exclusion” Condition 

The mutual exclusion condition must hold for non-sharable resources. That is, several processes cannot 

simultaneously share a single resource. This condition is difficult to eliminate because some resources, 

such as the tap drive and printer, are inherently non-shareable. Note that shareable resources like read-

only-file do not require mutually exclusive access and thus cannot be involved in deadlock. 

Elimination of “Hold and Wait” Condition 

There are two possibilities for elimination of the second condition. The first alternative is that a process 

request be granted all of the resources it needs at once, prior to execution. The second alternative is to 

disallow a process from requesting resources whenever it has previously allocated resources. This strategy 

requires that all of the resources a process will need must be requested at once. The system must grant 

resources on “all or none” basis. If the complete set of resources needed by a process is not currently 

available, then the process must wait until the complete set is available. While the process waits, however, 

it may not hold any resources. Thus the “wait for” condition is denied and deadlocks simply cannot occur. 

This strategy can lead to serious waste of resources. For example, a program requiring ten tap drives must 

request and receive all ten derives before it begins executing. If the program needs only one tap drive to 

begin execution and then does not need the remaining tap drives for several hours. Then substantial 

computer resources (9 tape drives) will sit idle for several hours. This strategy can cause indefinite 

postponement (starvation). Since not all the required resources may become available at once. 

Elimination of “No-preemption” Condition 

The nonpreemption condition can be alleviated by forcing a process waiting for a resource that cannot 

immediately be allocated to relinquish all of its currently held resources, so that other processes may use 

them to finish. Suppose a system does allow processes to hold resources while requesting additional 

resources. Consider what happens when a request cannot be satisfied. A process holds resources a second 

process may need in order to proceed while second process may hold the resources needed by the first 

process. This is a deadlock. This strategy require that when a process that is holding some resources is 

denied a request for additional resources. The process must release its held resources and, if necessary, 

request them again together with additional resources. Implementation of this strategy denies the “no-

preemptive” condition effectively. 

High Cost   When a process release resources the process may lose all its work to that point. One serious 

consequence of this strategy is the possibility of indefinite postponement (starvation). A process might be 

held off indefinitely as it repeatedly requests and releases the same resources. 

Elimination of “Circular Wait” Condition 

The last condition, the circular wait, can be denied by imposing a total ordering on all of the resource 

types and than forcing, all processes to request the resources in order (increasing or decreasing). This 

strategy impose a total ordering of all resources types, and to require that each process requests resources 

in a numerical order (increasing or decreasing) of enumeration. With this rule, the resource allocation 

graph can never have a cycle. 
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For example, provide a global numbering of all the resources, as shown 

 

1 ≡  Card reader 

2 ≡  Printer 

3 ≡  Plotter 

4 ≡  Tape drive 

5 ≡  Card punch 

Now the rule is this: processes can request resources whenever they want to, but all requests must be 

made in numerical order. A process may request first printer and then a tape drive (order: 2, 4), but it may 

not request first a plotter and then a printer (order: 3, 2). The problem with this strategy is that it may be 

impossible to find an ordering that satisfies everyone.  

Deadlock Avoidance 

This approach to the deadlock problem anticipates deadlock before it actually occurs. This approach 

employs an algorithm to access the possibility that deadlock could occur and acting accordingly. This 

method differs from deadlock prevention, which guarantees that deadlock cannot occur by denying one of 

the necessary conditions of deadlock. 

If the necessary conditions for a deadlock are in place, it is still possible to avoid deadlock by being 

careful when resources are allocated. Perhaps the most famous deadlock avoidance algorithm, due to 

Dijkstra [1965], is the Banker’s algorithm. So named because the process is analogous to that used by a 

banker in deciding if a loan can be safely made. 

Banker’s Algorithm 

In this analogy 

Customers ≡  processes 

Units ≡  
resources, say, tape 

drive 

Banker ≡  Operating System 

 

Customers Used Max   

A 

B 

C 

D 

0 

0 

0 

0 

6 

5 

4 

7 

Available Units 

= 10 

        

  Fig. 1      

 

In the above figure, we see four customers each of whom has been granted a number of credit nits. The 

banker reserved only 10 units rather than 22 units to service them. At certain moment, the situation 

becomes 
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Customers Used Max   

A 

B 

C 

D 

1 

1 

2 

4 

6 

5 

4 

7 

Available Units 

= 2 

        

  Fig. 2     

 

Safe State    The key to a state being safe is that there is at least one way for all users to finish. In other 

analogy, the state of figure 2 is safe because with 2 units left, the banker can delay any request except C's, 

thus letting C finish and release all four resources. With four units in hand, the banker can let either D or 

B have the necessary units and so on. 

Unsafe State     Consider what would happen if a request from B for one more unit were granted in above 

figure 2. 

We would have following situation 

Customers Used Max   

A 

B 

C 

D 

1 

2 

2 

4 

6 

5 

4 

7 

Available Units 

= 1 

        

  Fig. 3     

This is an unsafe state. 

If all the customers namely A, B, C, and D asked for their maximum loans, then banker could not satisfy 

any of them and we would have a deadlock. 

Important Note:     It is important to note that an unsafe state does not imply the existence or even the 

eventual existence a deadlock. What an unsafe state does imply is simply that some unfortunate sequence 

of events might lead to a deadlock. 

The Banker's algorithm is thus to consider each request as it occurs, and see if granting it leads to a safe 

state. If it does, the request is granted, otherwise, it postponed until later. Haberman [1969] has shown 

that executing of the algorithm has complexity proportional to N2 where N is the number of processes and 

since the algorithm is executed each time a resource request occurs, the overhead is significant. 

Deadlock Detection 

Deadlock detection is the process of actually determining that a deadlock exists and identifying the 

processes and resources involved in the deadlock. 

The basic idea is to check allocation against resource availability for all possible allocation sequences to 

determine if the system is in deadlocked state a. Of course, the deadlock detection algorithm is only half 

of this strategy. Once a deadlock is detected, there needs to be a way to recover several alternatives exists: 

 Temporarily prevent resources from deadlocked processes. 
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 Back off a process to some check point allowing preemption of a needed resource and restarting 

the process at the checkpoint later. 

 Successively kill processes until the system is deadlock free. 

These methods are expensive in the sense that each iteration calls the detection algorithm until the system 

proves to be deadlock free. The complexity of algorithm is O(N2) where N is the number of proceeds. 

Another potential problem is starvation; same process killed repeatedly. 

Recovery from Deadlock 

1. Recovery through preemption 

Deadlock can be recovered by temporarily taking a resource away from its current owner and 

give it to another process. The ability to take a resource away from a process, have another 

process use it, and then give it back without the process noticing it is highly dependent on the 

nature of resource. 

2. Recovery through rollback 

Processes are check pointed periodically. Check pointing would write the state of a process to a 

file so that it can be restarted later. The checkpoint contains the memory image and resource 

states. New checkpoints should not overwrite old ones but should be written to new files. When a 

deadlock is detected, the process that owns the needed resources is rolled back to a point in time 

before it acquired some other resources by starting one of its earlier check point. 

3. Recovery through killing process 

It is the simplest way to break a deadlock. One possibility is killing a process in the cycle. If it 

doesn’t help, it can be continued until the cycle is broken. Alternatively, a process not in the cycle 

can be chosen as a victim in order to release its resources. 

Eg. Process A holds a printer and wants a plotter and process B holds a plotter and wants a 

printer. These two are deadlocked. A third process C may hold another identical printer and 

plotter and be happily running. Killing the third process will release the resources and break the 

deadlock involving the first two.   
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