
UNIT-FOUR
Designing Databases

 Introduction (311)

 Database design has five purposes:

 1. Structure the data in stable structures, called normalized tables, that
are not likely to change over time and that have minimal redundancy.

 2. Develop a logical database design that reflects the actual data
requirements that exist in the forms (hard copy and computer displays)
and reports of an information system. This is why database design is
often done in parallel with the design of the human interface of an
information system.

 3. Develop a logical database design from which we can do physical
database design. Because most information systems today use relational
database management systems, logical database design usually uses a
relational database model, which represents data in simple tables with

common columns to link related tables.

BY G.P.LEKHAK 1

 4. Translate a relational database model into a technical file and database
design that balances several performance factors.

 5. Choose data storage technologies (such as Read/ Write DVD or optical
disc) that will efficiently, accurately and securely process database
activities.

• Database Design: File and database design occurs in two steps. You
begin by developing a logical database model, which describes data
using a notation that corresponds to a data organization used by a
database management system. This is the system software responsible
for storing, retrieving, and protecting data (such as Microsoft Access,
Oracle, or SQL Server). The most common style for a logical database
model is the relational database model. Once you develop a clear and
precise logical database model, you are ready to prescribe the technical
specifications for computer files and databases in which to store the
data. A physical database design provides these specifications.

BY G.P.LEKHAK 2

• You typically do logical and physical database design in parallel with other
systems design steps. Thus, you collect the detailed specifications of data
necessary for logical database design as you design system inputs and outputs.
Logical database design is driven not only from the previously developed E-R
data model for the application or enterprise but also from form and report
layouts. You study data elements on these system inputs and outputs and
identify interrelationships among the data.

BY G.P.LEKHAK 3

• The Process of Database Design

• Figure 9-2 shows that database modeling and design activities occur in all
phases of the systems development process. In this chapter, we discuss
methods that help you finalize logical and physical database designs during
the design phase. In logical database design, you use a process called
normalization, which is a way to build a data model that has the properties
of simplicity, nonredundancy, and minimal maintenance.

 There are four key steps in logical database modeling and design:

 1. Develop a logical data model for each known user interface (form and
report) for the application using normalization principles.

 2. Combine normalized data requirements from all user interfaces into one
consolidated logical database model; this step is called view integration.

 3. Translate the conceptual E-R data model developed without explicit
consideration of specific user interfaces, into normalized data
requirements.

 4. Compare the consolidated logical database design with the translated E-R
model and produce, through view integration, one final logical database
model for the application.

BY G.P.LEKHAK 4

BY G.P.LEKHAK 5

• Physical data base design include following steps:

• Choosing the storage format (called data type) for each attribute from
the logical database model.

• Grouping attributes from the logical database model into physical records

• Arranging related records in secondary memory (hard disks and magnetic
tapes) so that individual records and groups of records can be stored,
retrieved, and updated rapidly (called file organization).

• Selecting media and structures for storing data to make access more
efficient. The choice of media affects the utility of different file
organizations. The primary structure used today to make access to data
more rapid is key indexes on unique and non unique keys.

BY G.P.LEKHAK 6

• The Relational Database Model (317)

• The relational database model represents data in the form of related
tables, or relations. A relation is a named, two dimensional table of data.
Each relation (or table) consists of a set of named columns and an
arbitrary number of unnamed rows. Each column in a relation
corresponds to an attribute of that relation. Each row of a relation
corresponds to a record that contains data values for an entity. Above
figure (9-5) shows an example of a relation named EMPLOYEE1. This
relation contains the following attributes describing employees: Emp_ID,
Name, Dept, and Salary. This table has five sample rows, corresponding
to five employees.

BY G.P.LEKHAK 7

• The identifier attribute (called the primary key of the relation) is
underlined. For example, you would express EMPLOYEE1 as follows:

 EMPLOYEE1(Emp_ID,Name,Dept,Salary)

• Not all tables are relations. Relations have several properties that
distinguish them from non relational tables:

 1. Entries in cells are simple.

 2. Entries in a given column are from the same set of values.

 3. Each row is unique. Uniqueness is guaranteed because the relation has
a nonempty primary key value.

 4. The sequence of columns can be interchanged without changing the
meaning or use of the relation.

 5. The rows may be interchanged or stored in any sequences.

• Well-structured Relations

• What constitutes a well-structured relation (also known as a table)?
Intuitively, a well structured relation contains a minimum amount of
redundancy and allows users to insert, modify, and delete the rows in a
table without errors or inconsistencies.

BY G.P.LEKHAK 8

• EMPLOYEE2 (above fig 9.6) contains data about employees and the
courses they have completed. This is not a well-structured relation. If
you examine the sample data in the table, you notice a considerable
amount of redundancy. For example, the Emp_ID, Name, Dept, and
Salary values appear in two separate rows for employees 100, 110, and
150. Consequently, if the salary for employee 100 changes, we must
record this fact in two rows (or more, for some employees).

BY G.P.LEKHAK 9

• The problem with this relation is that it contains data about two entities:

 EMPLOYEE and COURSE. You will learn to use principles of normalization

 to divide EMPLOYEE2 into two relations. One of the resulting relations is

 EMPLOYEE1 (Figure 9-5). The other we will call EMP COURSE, which
appears with sample data in Figure 9-7. The primary key of this relation is
the combination of Emp_ID and Course (we emphasize this by
underlining the column names for these attributes).

• Normalization: Normalization is a process for converting complex data
structures into simple, stable data structures.

BY G.P.LEKHAK 10

• Physical File and Database Design (331)

• Designing physical files and databases requires certain information that
should have been collected and produced during prior SDLC phases. This
information includes the following:

• Normalized relations, including volume estimates

• Definitions of each attribute

• Descriptions of where and when data are used: entered, retrieved, deleted,
and updated (including frequencies)

• Expectations or requirements for response time and data integrity

• Descriptions of the technologies used for implementing the files and
database so that the range of required decisions and choices for each is
known.

• Normalized relations are, of course, the result of logical database design.

 Statistics on the number of rows in each table as well as the other
information listed above may have been collected during requirements
determination in systems analysis. If not, these items need to be discovered
to proceed with database design.

BY G.P.LEKHAK 11

• Designing Fields

• A field is the smallest unit of application data recognized by system
software, such as a programming language or database management
system. An attribute from a logical database model may be represented
by several fields. For example, a student name attribute in a normalized
student relation might be represented as three fields: last name, first
name, and middle initial. In general, you will represent each attribute

 from each normalized relation as one or more fields. The basic decisions
you must make in specifying each field concern the type of data (or
storage type) used to represent the field and data integrity controls for
the field.

• Choosing Data types: You want to choose a data type for a field that
minimizes space, represents every possible legitimate value for the
associated attribute, and allows the data to be manipulated as needed.

 You would select a length for this field that would handle the maximum
value.

BY G.P.LEKHAK 12

BY G.P.LEKHAK 13

• Calculated Fields: It is common for an attribute to be mathematically
related to other data. A field that can be derived from other database
fields is called a calculated field (or a computed field or a derived field).
If you specify a field as calculated, you would then usually be prompted
to enter the formula for the calculation; the formula can involve other
fields from the same record and possibly fields from records in related
files. The database technology will either store the calculated value or
compute it when requested.

• Coding and Compression Techniques: Some attributes have very few
values from a large range of possible values. For example, suppose that
each product from PVF has a finish attribute, with possible values of
Birch, Walnut, Oak, and so forth.To store this attribute as text might
require 12, 15, or even 20 bytes to represent the longest finish value.
Suppose that even a liberal estimate is that PVF will never have more
than 25 finishes. Thus, a single alphabetic or alphanumeric character
would be more than sufficient. We not only reduce storage space but
also increase integrity (by restricting input to only a few values. Codes
also have disadvantages. If used in system inputs and outputs, they can
be more difficult for users to remember, and programs must be written
to decode fields if codes will not be displayed.

BY G.P.LEKHAK 14

• Designing Physical tables: A relational database is a set of related tables
(tables are related by foreign keys referencing primary keys). In logical
database design, you grouped into a relation those attributes that
concern some unifying, normalized business concept, such as a customer,

 product, or employee. Physical table is a named set of rows and
columns that specifies the fields in each row of the table. The design of a
physical table has two goals : efficient use of secondary storage and
data processing speed.

• The efficient use of secondary storage (disk space) relates to how data
are loaded on disks. Disks are physically divided into units (called pages)
that can be read or written in one machine operation. Space is used
efficiently when the physical length of a table row divides close to evenly
into the length of the storage unit. For many information systems, this
even division is very difficult to achieve because it depends on factors,
such as operating system parameters, outside the control of each
database.

BY G.P.LEKHAK 15

• A second and often more important consideration when selecting a
physical table design is efficient data processing. Data are most
efficiently processed when they are stored close to one another in
secondary memory, thus minimizing the number of input/output (I/O)
operations that must be performed. Typically, the data in one physical
table (all the rows and fields in those rows) are stored close together on
disk.

BY G.P.LEKHAK 16

BY G.P.LEKHAK 17

