
--
By Bhupendra Singh Saud ADBMS 1

Overview of Object Oriented Concepts

Object oriented databases try to maintain a direct correspondence between real-world and database

objects so that the objects do not lose their integrity and identity and can easily be identified and

operated upon. Object has two compounds and they are:

 State (value) and

 Behavior (operations)

In an object-oriented database, objects may have an object structure of arbitrary complexity in

order to contain all of the necessary information that is required describes the object. On the

contrary in traditional database systems, information about a complex object is often scattered over

many relations or records leading to loss of direct correspondence between a real-world object and

its database representation. The internal structure of an object in OOPLs includes the specification

of instance variables which holds the value that defines the internal state of the object. An instance

variable is similar to the concept of an attribute except for the instance variables may be

encapsulated within the object and thus are not necessarily visible to external users. Some OO

models insist that all operations a user can apply to an object must be predefined. This forces to a

complete encapsulation of objects.

Why we need object oriented database?

We need object oriented database due to mainly following two reasons:

 Application which required modeling of complex objects:

Traditional data models and systems have been quite successful in developing the database

technologies required for many traditional business database applications. However, they have

certain shortcomings when more complex database applications must be designed and

implemented—for example, databases for engineering design and manufacturing (CAD/CAM

and CIM1), scientific experiments, telecommunications, geographic information systems, and

multimedia. These newer applications have requirements and characteristics that differ from

 Unit 3

Emerging Database Management System Technologies

 By

 Bhupendra Singh Saud

--
By Bhupendra Singh Saud ADBMS 2

those of traditional business applications, such as more complex structures for stored objects;

the need for new data types for storing images, videos, or large textual items; longer-duration

transactions; and the need to define nonstandard application-specific operations.

 Vast increase in the use of object-oriented programming languages for developing software

applications.

 To maintain a direct correspondence between real-world and database objects

Classes and objects

A class is understood as an entity that has a well-defined role in the application domain. An object

is referred to as a particular instance of a class. An object has structure or state (variables) and

methods (behavior/operations). An object is described by four characters and they are:

 Identifier: A system-wide unique id for an object.

 Name: An object may also have a unique name in database which is optional.

 Lifetime: It determines if the object is persistent or transient.

 Structure: The construction of objects using type constructors.

Object Oriented Database Model

This model represents an entity as a class. A class captures the attributes as well as the behavior.

Instances of the class are called objects. Within an object, the class attributes take on specific

values which distinguish one object from another. Object Oriented Examples:

 Class: Cat.

 Attributes: Color, weight, breed.

 Behavior: Scratches, sleeps, purrs.

An instance of the cat class is an object with specific attributes.

--
By Bhupendra Singh Saud ADBMS 3

[TU Question]:- What are the advantages and disadvantages of OODBMS?

Advantages of OODBMS

 Easier Design-Reflect Applications

 Modularity and Reusability

 Incremental refinement and abstraction

 Multiple inheritance

 Support for multiple version and Alternatives

 Designer can specify the structure of objects and their behavior (methods).

 Better interaction with object-oriented languages such as Java and C++

 Definition of complex and user-defined types.

 Encapsulation of operations and user-defined methods.

Disadvantages of OODBMSs
There are following disadvantages of OODBMSs:

 Lack of universal data model: There is no universally agreed data model for an

OODBMS, and most models lack a theoretical foundation. This .disadvantage is seen as a

significant drawback, and is comparable to pre-relational systems.

 Lack of experience: In comparison to RDBMSs the use of OODBMS is still relatively

limited. This means that we do not yet have the level of experience that we have with

traditional systems. OODBMSs are still very much geared towards the programmer, rather

than the naïve end-user. Also there is a resistance to the acceptance of the technology.

While the OODBMS is limited to a small niche market, this problem will continue to exist

 Lack of standards: There is a general lack of standards of OODBMSs. We have

already mentioned that there is not universally agreed data model. Similarly, there is no

standard object-oriented query language.

 Competition: Perhaps one of the most significant issues that face OODBMS vendors is

the competition posed by the RDBMS and the emerging ORDBMS products. These

products have an established user base with significant experience available. SQL is an

approved standard and the relational data model has a solid theoretical formation and

relational products have many supporting tools to help .both end-users and developers.

 Query optimization compromises encapsulations: Query optimization

requires. An understanding of the underlying implementation to access the database

efficiently. However, this compromises the concept of incrassation.

--
By Bhupendra Singh Saud ADBMS 4

 Locking at object level may impact performance Many OODBMSs use

locking as the basis for concurrency control protocol. However, if locking is applied at the

object level, locking of an inheritance hierarchy may be problematic, as well as impacting

performance.

 Complexity: The increased functionality provided by the OODBMS (such as the illusion

of a single-level storage model, pointer sizzling, version management, and schema

evolution--makes the system more complex than that of traditional DBMSs. In complexity

leads to products that are more expensive and more difficult to use.

 Lack of support for views: Currently, most OODBMSs do not provide a view

mechanism, which, as we have seen previously, provides many advantages such as data

independence, security, reduced complexity, and customization.

 Lack of support for security: Currently, OODBMSs do not provide adequate

security mechanisms. The user cannot grant access rights on individual objects or classes.

Features of object oriented (O-O) Databases

 Object oriented databases store persistent objects permanently on secondary storage, and

allow the sharing of these objects among multiple programs and applications.

 Object oriented databases provide a unique system-generated object identifier for each

object. Object oriented databases maintain a direct correspondence between real-world and

database objects so that objects don’t lose their integrity and identify and can be easily be

identified and operated upon.

 In Object Oriented databases, objects can be very complex in order to contain all significant

information that may be required to describe the object completely.

 Object oriented databases allow us to store both the class and state of an object between

programs. They take the responsibility for maintaining the links between stored object

behavior and state away from the programmer, and manage objects outside of programs

with their public and private elements intact. They also simplify the whole process of

rendering objects persistent by performing such tasks invisibly.

State and Behavior

Object normally have property and some behavior. State of an object is the values of attributes and

behavior of object means operations that operates on attributes of given object.

Example: for the rectangle object,

--
By Bhupendra Singh Saud ADBMS 5

Length, breadth acts as states of rectangle and calculating area of rectangle act as behavior of

rectangle object.

Type Constructors

Type constructor is the collection of multiple similar basic type under a common name. It

determines how the object is constructed. The type constructors can be used to define the data

structures for an object oriented database schema. The three most basic constructors are atom,

tuple, and set. Other commonly used constructors include list, bag, and array.

The type constructors set, list, array, and bag are called collection types (or bulk types), and to

distinguish them from basic types and tuple types. Here, the state of the object will be a collection

of objects that may be unordered or ordered.

Kinds of Type constructor:

 Atom: says that an object is storing atomic values.

e.g.: “Aarav“.

 Set: set of values of same type with duplication allowed.

e.g.: {123,456,123}.

 Bag: set with no duplicate items.

e.g.: {123,456,678}

 List: ordered collection of items of the same type with infinite size.

e.g.: [123,456,678]

 Array: similar to list but fixed size.

[TU Question]:- What is OID? How persistent objects are maintained in OO Database?

[TU Question]:- What is the difference between persistent and transient objects? How persistence

is handled in typical OO database systems?

OIDs (Object Identifiers)

When a program terminates then all the objects that is in the primary memory are lost. These kind

of objects called transient object. They do not live forever.

--
By Bhupendra Singh Saud ADBMS 6

However, OO allows us to store objects permanently in the database, these objects are called

persistent objects. Because they persist the beyond the life of program.

OIDs is the mechanism to refer to persistent objects. An ODMS provides a unique identity to each

independent object stored in the database. This unique identity is typically implemented via a

unique, system-generated object identifier (OID). The value of an OID is not visible to the external

user, but is used internally by the system to identify each object uniquely and to create and manage

inter-object references.

The main property required of an OID is that it be immutable; that is, the OID value of a

particular object should not change. This preserves the identity of the real-world object being

4rdrepresented.

Example: In Figure below, the attributes that refer to other objects—such as Dept of EMPLOYEE

or Projects of DEPARTMENT are basically OIDs that serve as references to other objects to

represent relationships among the objects. For example, the attribute Dept of EMPLOYEE is of

type DEPARTMENT, and hence is used to refer to a specific DEPARTMENT object (the

DEPARTMENT object where the employee works). The value of such an attribute would be an

OID for a specific DEPARTMENT object.

Define type EMPLOYEE

Tuple (Fname: string;

Minit: char;

Lname: string;

Ssn: string;

Birth_date: DATE;

Address: string;

Sex: char;

Salary: float;

Supervisor: EMPLOYEE;

Dept: DEPARTMENT ;);

Define type DATE

Tuple (Year: integer;

Month: integer;

Day: integer ;);

Define type DEPARTMENT

Tuple (Dname: string;

Dnumber: integer;

--
By Bhupendra Singh Saud ADBMS 7

Mgr: tuple (Manager: EMPLOYEE;

Locations: set (string);

Start_date: DATE ;);

Employees: set (EMPLOYEE);

Projects: set (PROJECT) ;);

Fig: Specifying the object types EMPLOYEE, DATE, and DEPARTMENT using type

constructors.

Similarities and dissimilarities of Objects and Literals

Objects and literals are the basic building blocks of the object model. The main difference between

the two is that an object has both an object identifier and a state (or current value), whereas a literal

has a value (state) but no object identifier. In either case, the value can have a complex structure.

The object state can change over time by modifying the object value. A literal is basically a

constant value, possibly having a complex structure, but it does not change.

Every object must have an immutable OID, whereas a literal value has no OID and its value just

stands for itself. Thus, a literal value is typically stored within an object and cannot be referenced

from other objects. An object has five aspects: identifier, name, lifetime, structure, and creation.

 The object identifier is a unique system-wide identifier (or Object_id). Every object must

have an object identifier.

 Some objects may optionally be given a unique name within a particular ODMS—this

name can be used to locate the object, and the system should return the object given that

name.

 The lifetime of an object specifies whether it is a persistent object (that is, a database object)

or transient object (that is, an object in an executing program that disappears after the

program terminates). Lifetimes are independent of types—that is, some objects of a

particular type may be transient whereas others may be persistent.

 The structure of an object specifies how the object is constructed by using the type

constructors. The structure specifies whether an object is atomic or not. An atomic object

refers to a single object that follows a user-defined type, such as Employee or Department.

If an object is not atomic, then it will be composed of other objects.

 Object creation refers to the manner in which an object can be created. This is typically

accomplished via an operation new for a special Object_Factory interface.

In the object model, a literal is a value that does not have an object identifier. However, the value

may have a simple or complex structure. There are three types of literals: atomic, structured, and

collection.

 Atomic literals correspond to the values of basic data types and are predefined. The basic

data types of the object model include long, short, and unsigned integer numbers, regular

--
By Bhupendra Singh Saud ADBMS 8

and double precision floating point numbers, Boolean values, single characters, character

strings, and enumeration types.

 Structured literals correspond roughly to values that are constructed using the tuple

constructor. The built-in structured literals include Date, Interval, Time, and Timestamp.

User-defined structures are created using the STRUCT keyword in ODL, as in the C and

C++ programming languages.

 Collection literals specify a literal value that is a collection of objects or values but the

collection itself does not have an Object_id. The collections in the object model can be

defined by the type generators set<T>, bag<T>, list<T>, and array<T>, where T is the type

of objects or values in the collection.

[TU Question]:- What is the difference between structured and unstructured complex object?

Differentiate identical versus equal objects with examples.

Complex objects (Object structure)

It means there is no restriction in the structure in the object. In ODBs, the value of a complex

object can be constructed from other objects. Each object is represented by triple. Complex objects

are built from simpler ones by applying constructors to them. The simplest objects are objects such

as integers, characters, byte strings of any length, Booleans and floats (one might add other atomic

types). There are various complex object constructors: tuples, sets, bags, lists, and arrays are

examples.

An object is defined by a triple (OID, type constructor, state) or (i, c, v) where OID is the unique

object identifier, type constructor is its type (such as atom, tuple, set, list, array, bag, etc.) and state

is its actual value.

Example:

 (i1, atom, 'John')

 (i2, atom, 30)

 (i3, atom, 'Mary')

 (i4, atom, 'Mark')

 (i5, atom 'Vicki')

 (i6, tuple, [Name: i1, Age: i3])

 (i7, set, {i4, i5})

 (i8, tuple, [Name: i3, Friends: i7])

 (i9, set, {i6, i8})

--
By Bhupendra Singh Saud ADBMS 9

 Fig: Structure of Complex object

There are two types of complex objects in object oriented database system which are:

1. Structured complex object and

2. Unstructured complex object

1. Structured Complex object

Structured complex object is defined by repeated application of the type constructors

provided by the OODBMS. Simply structured complex objects are constructed by using

type constructors (set, atom, tuple etc.). Hence, the object structure is defined and known

to the OODBMS. The OODBMS also defines methods or operations on it.

Two types of reference semantics (ownership semantics and reference semantics) exist between

a complex object and its components at each level.

 Ownership semantics applies when the sub-objects of a complex object are encapsulated

within the complex object and are hence considered part of the complex object. It is also

called is-part-of or is-component-of relationship. e.g., “Arjun” atomic value owned by

employee. Means that ‘Arjun’ is dependent on owner.

 Reference semantics applies when the components of the complex object are themselves

independent objects but may be referenced from the complex object. It is also called is-

associated-with relationship. e.g., Department referenced by the employee object.

2. Unstructured complex objects

It is a data type provided by a DBMS and permits the storage and retrieval of large objects that are

needed by the database application. These objects are unstructured in the sense that the DBMS

does not know what their structure is, only the application programs that uses them can interpret

--
By Bhupendra Singh Saud ADBMS 10

their meaning. These objects are considered complex because they require large area of storage

and are not part of the standard data types provided by traditional DBMSs.

Typical examples of such objects are bitmap images and long text strings (such as documents);

they are also known as binary large objects, or BLOBs for short. Character strings are also known

as character large objects, or CLOBs for short.

Identical vs. Equal objects

Two objects are said to have identical states (deep equality) if the graphs representing

their states are identical in every respect, including the OIDs at every level.

 Two objects are said to have equal states (shallow equality) if the graphs representing their

states are same, including all the corresponding atomic values. However, some corresponding

internal nodes in the two graphs may have objects with different OIDs.

Example: This example illustrates the difference between the two definitions for comparing object

states for equality.

 o1 = (i1, tuple, <a1:i4, a2:i6>)

 o2 = (i2, tuple, <a1:i5, a2:i6>)

 o3 = (i3, tuple, <a1:i4, a2:i6>)

 o4 = (i4, atom, 10)

 o5 = (i5, atom, 10)

 o6 = (i6, atom, 20)

In this example, the objects o1 and o2 have equal states (shallow equality), since their states at the

atomic level are the same but the values are reached through distinct objects o4 and o5.

 However, the objects o1 and o3 have identical states (deep equality), even though the

objects themselves are not because they have distinct OIDs. Similarly, although the states of o4

and o5 are identical, the actual objects o4 and o5 are equal but not identical, because they have

distinct OIDs.

Encapsulation of Operations, Methods, and Persistence

Encapsulation means that an object contains both the data structure and the set of operations that

can be used to manipulate it. Often cases, adopting encapsulation hides the implementation from

the users do not necessarily have to know the detail of it.

Encapsulation is related to the concepts of abstract data types and information hiding in

programming languages. Here the main idea is to define the behavior of a type of object based on

the operations that can be externally applied to objects of that type. The internal structure of the

object is hidden, and the object is only accessible through a number of predefined operations. Some

operations may be used to create or destroy objects; other operations may update the object value

--
By Bhupendra Singh Saud ADBMS 11

and other may be used to retrieve parts of the object value or to apply some calculations to the

object value.

The external users of the object are only made aware of the interface of the object, which

defines the names and arguments of each operation. The implementation of the object is hidden

from the external users; it includes the definition of the internal data structure of the object and the

implementation of the operations that access these structures.

In object oriented - OO terminology, the interface part of each operation is called the

signature, and the operation implementation is called a method. A method is invoked by sending

a message to the object to execute the corresponding method.

Not all objects are meant to be stored permanently in the database. Transient objects exist

in the executing program and disappear once the program terminates.

Persistent objects are stored in the database and persist after program terminates. The

typical mechanism for persistence involves giving an object a unique persistent name through

which it can be retrieved.

In traditional database models and systems, this concept was not applied, since it is usual

to make the structure of database objects visible to users and external programs.

Inheritance

Inheritance is deriving objects from existing objects. The derived objects inherit properties from

their parent object. Parent objects are those objects from which other objects are derived.

Inheritance is a way of reusing the existing code.

Polymorphism

Polymorphism concept allows the same operator name or symbol to be bound to two or more

different implementation of the operator, depending on the type of objects to which the operator

is applied.

Multiple Inheritance and Selective Inheritance

Multiple inheritance in a type hierarchy occurs when a certain subtype T is a subtype of two (or

more) types and hence inherits the functions (attributes and methods) of both super types.

For example, we may create a subtype ENGINEERING_MANAGER that is a subtype of both

MANAGER and ENGINEER. This leads to the creation of a type lattice rather than a type

hierarchy.

One problem that can occur with multiple inheritance is that the super types from which

the subtype inherits may have different functions of the same name, creating an ambiguity.

--
By Bhupendra Singh Saud ADBMS 12

If a function is inherited from some common super type, then it is inherited only once. In

such a case, there is no ambiguity; the problem only arises if the functions are distinct in the two

super types. Some languages do not allow multiple inheritance.

Selective inheritance occurs when a subtype inherits only some of the functions of a super

type. Other functions are not inherited. This mechanism is not typically provide in OO database

system.

Versions and configurations

Versions:

 Ability to maintain several versions of an object

 Commonly found in many software engineering and concurrent engineering environments

 Merging and reconciliation of various versions is left to the application program

 Some systems maintain a version graph

Configuration:

 A configuration is a collection compatible versions of modules of a software system (a

version per module)

Object Relational Database concepts

Object relational DBMSs (ORDBMSs) are also called object-relational or enhanced systems.

These systems emerged as a way of enhancing the capabilities of relational DBMSs (RDBMSs)

with some of the features that appeared in object oriented DBMSs (ODBMSs). Object-relational

database systems provide a convenient migration path for users of relational database who wish to

use object-oriented features

An object-relational database (ORD), or object-relational database management

system (ORDBMS), is a database management system (DBMS) similar to a relational database,

but with an object-oriented database model: objects, classes and inheritance are directly supported

in database schemas and in the query language. In addition, just as with pure relational systems, it

supports extension of the data model with custom data-types and methods.

https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/File:Object-Oriented_Model.svg

--
By Bhupendra Singh Saud ADBMS 13

Example of an object-oriented database model

An object-relational database can be said to provide a middle ground between relational databases

and object-oriented databases (object database).

Comparison of RDBs vs. ORDBs

 Very easy to compare because both are based on relational model.

 An RDB does not support abstract data types (ADT), all attribute values must be atomic

and relations must be in first normal form (flat relation).

 An ORDB supports ADTs, attributes can be multivalued, and does not require first normal

form.

 The underlying basic data structures of RDBs are much simpler but less versatile than

ORDBs.

 ORDBs support complex data whereas RDBs don’t.

 ORDBs support wide range of applications.

 RDBs have only one construct i.e. Relation, whereas the type system of ODBs is much

richer and complex.

 RDBs require primary keys and foreign keys for implementing relationships, ODBs simply

don’t.

 ODBs support complex data whereas RDBs don’t.

 ODBs support wide range of applications.

 ODBs are much faster than RDBs but are less mature to handle large volumes of data.

 There is more acceptance and domination of RDBs in the market than that for ODBs.

 Both support ADTs, collections, OIDs, and inheritance, though philosophically quite

different.

 ORDBs extended RDBs whereas ODBs add persistence and database capabilities to OO

languages.

 Both support query languages for manipulating collections and nested and complex data.

 SQL3 is inspired from OO concepts and is converging towards OQL (object query

language).

 ORDBs carries all the benefits of RDBs, whereas ODBs are less benefited from the

technology of RDBs.

Overview of SQL and its object-relational features

SQL stands for structured query language. It is a database query language used to communicate

and manage data stored on the database. SQL was specified in 1970s. It was enhanced substantially

https://en.wikipedia.org/wiki/Object_database

--
By Bhupendra Singh Saud ADBMS 14

in 1989 and 1992. A new standard called SQL3 added object-oriented features. A subset of SQL3

standard, now known as SQL-99 has been approved.

The following are some of the object database features that have been included in SQL:

 Some type constructors have been added to specify complex objects. These include the row

type, which corresponds to the tuple (or struct) constructor. An array type for specifying

collections is also provided. Other collection type constructors, such as set, list, and bag

constructors, were not part of the original SQL/Object specifications but were later

included in the standard.

 A mechanism for specifying object identity through the use of reference type is included.

 Encapsulation of operations is provided through the mechanism of user defined types

(UDTs) that may include operations as part of their declaration. These are somewhat

similar to the concept of abstract data types that were developed in programming

languages. In addition, the concept of user defined routines (UDRs) allows the definition

of general methods (operations).

 Inheritance mechanisms are provided using the keyword UNDER.

[TU Model Question):- Describe the steps of the algorithm for object database design by

EER-to-OO mapping.

Mapping an EER Schema to an ODB Schema

It is relatively straightforward to design the type declarations of object classes for an ODBMS

from an EER schema that contains neither categories nor n-ary relationships with n > 2. However,

the operations of classes are not specified in the EER diagram and must be added to the class

declarations after the structural mapping is completed.

The outline of the mapping from EER to ODL is as follows:

Step 1. Create an ODL class for each EER entity type or subclass. The type of the ODL class

should include all the attributes of the EER class. Multivalued attributes are typically declared by

using the set, bag, or list constructors. If the values of the multivalued attribute for an object

should be ordered, the list constructor is chosen; if duplicates are allowed, the bag constructor

should be chosen; otherwise, the set constructor is chosen. Composite attributes are mapped into

a tuple constructor (by using a struct declaration in ODL). Declare an extent for each class, and

specify any key attributes as keys of the extent.

Step 2. Add relationship properties or reference attributes for each binary relationship into the

ODL classes that participate in the relationship. These may be created in one or both directions. If

a binary relationship is represented by references in both directions, declare the references to be

relationship properties that are inverses of one another, if such a facility exists. If a binary

--
By Bhupendra Singh Saud ADBMS 15

relationship is represented by a reference in only one direction, declare the reference to be an

attribute in the referencing class whose type is the referenced class name. Depending on the

cardinality ratio of the binary relationship, the relationship properties or reference attributes may

be single-valued or collection types. They will be single-valued for binary relationships in the 1:1

or N:1 directions; they are collection types (set-valued or list-valued) for relationships in the 1:N

or M:N direction. If relationship attributes exist, a tuple constructor can be used to create a structure

of the form < reference, relationship attributes>, which may be included instead of the reference

attribute.

Step 3. A constructor method should include program code that checks any constraints that must

hold when a new object is created. A destructor method should check any constraints that may be

violated when an object is deleted. Other methods should include any further constraint checks

that are relevant.

Step 4. An ODL class that corresponds to a subclass in the EER schema inherits (via extends) the

type and methods of its superclass in the ODL schema.

Step 5. Weak entity types can be mapped in the same way as regular entity types. An alternative

mapping is possible for weak entity types that do not participate in any relationships except their

identifying relationship; these can be mapped as though they were composite multivalued

attributes of the owner entity type, by using the set < struct <... >> or list <struct <... >>

constructors. The attributes of the weak entity are included in the struct <... > construct, which

corresponds to a tuple constructor.

Step 6. Categories (union types) in an EER schema are difficult to map to ODL. It is possible to

create a mapping similar to the EER-to-relational mapping by declaring a class to represent the

category and defining 1:1 relationships between the category and each of its super classes. Another

option is to use a union type, if it is available

Step 7. An n-ary relationship with degree n > 2 can be mapped into a separate class, with

appropriate references to each participating class. These references are based on mapping a 1:N

relationship from each class that represents a participating entity type to the class that represents

the n-ary relationship. An M:N binary relationship especially if it contains relationship attributes,

may also use this mapping option, if desired.

--
By Bhupendra Singh Saud ADBMS 16

Active database concepts

A trigger is a procedure that is automatically invoked by the DBMS in response to specified

changes to the database, and is typically specified by the DBA. A database that has a set of

associated triggers is called an active database.

Generalized Model for Active Databases and Oracle Triggers

The model that has been used to specify active database rules is referred to as the Event-Condition-

Action (ECA) model. A rule in the ECA model has three components:

1. The event(s) that triggers the rule:

These events are usually database update operations that are explicitly applied to the

database. However, in the general model, they could also be temporal events or other kinds

of external events.

2. The condition that determines whether the rule action should be executed:

Once the triggering event has occurred, an optional condition may be evaluated. If no

condition is specified, the action will be executed once the event occurs. If a condition is

specified, it is first evaluated, and only if it evaluates to true will the rule action be executed.

3. The action to be taken:

The action is usually a sequence of SQL statements, but it could also be a database

transaction or an external program that will be automatically executed.

A syntax summary for specifying triggers in the Oracle system

 CREATE TRIGGER <trigger name>

AFTER / BEFORE <triggering events>

ON <table name>

[FOR EACH ROW]

[WHEN <condition>]

<Trigger actions>;

Example: For the following schema diagram;

--
By Bhupendra Singh Saud ADBMS 17

Suppose, we need to compute Total_sal if the new employee is immediately assigned to a

department—that is, if the value of the Dno attribute for the new employee tuple is not NULL

Design and Implement Issues for Active Databases

In addition to creating rules, an active database allows users to activate, deactivate, drop, and

group rules by refereeing their rules

 A deactivated rule will not be triggered by the triggering event. This feature allows

users to selectively deactivate rules for certain periods of time when they are not

needed

 The active command will make the rule active again

 The drop command deletes the rule from the system

 Another option is to group rules into named rule sets, so the whole set of rules

could be activated, deactivated, or dropped. It is also useful to have a command that

can trigger a rule or rule set via an explicit PROCESS RULE command issued by

the user.

 Whether the triggered action should be executed before, after, or concurrently

with the triggering event. Whether the action being executed should be considered

as a separate transaction or whether it should be part of the same transaction that

triggered the rule

--
By Bhupendra Singh Saud ADBMS 18

There are three main possibilities for condition evaluation (also known as rule

consideration)

 Immediate consideration: The condition is evaluated as part of the same

transaction as the triggering event, and is evaluated immediately. This case can be

further categorized into three options:

 Evaluate the condition before executing the triggering event

 Evaluate the condition after executing the triggering event

 Evaluate the condition instead of executing the triggering event

 Deferred consideration. The condition is evaluated at the end of the transaction

that included the triggering event. In this case, there could be many triggered rules

waiting to have their conditions evaluated.

 Detached consideration. The condition is evaluated as a separate transaction,

spawned from the triggering transaction.

Potential Applications for Active Databases

 Notification – allow notification of certain conditions that occur

 Enforce integrity constraint – specify the types of events that may cause the constraints

to be violated and then evaluating appropriate condition that check whether the constraints

are actually violated by the event or not

 Automatic maintenance of derived data

 Maintain the consistency of materialized views whenever the base relations are modified

 Maintain replicated tables whenever the master table is modified

Temporal database concepts

Temporal databases, in the broadest sense, encompass all database applications that require some

aspect of time when organizing their information. It encompass all DB applications that require

some aspect of time when organizing their information. A temporal database is a database that

has certain features that support time-sensitive status for entries. Where some databases are

considered current databases and only support factual data considered valid at the time of use, a

temporal database can establish at what times certain entries are accurate.

Temporal DB applications have been developed since the early days of database usage.

However, in creating these applications, it was mainly left to the application developers to

discover, design, program, and implement the temporal concepts.

There are many examples of applications where some aspect of time is needed to maintain the

information in a DB.

• Health care: patient histories need to be maintained

• Insurance: claims and accident histories are required

--
By Bhupendra Singh Saud ADBMS 19

• Finance: stock price histories need to be maintained.

• Personnel management: salary and position history need to be maintained

• Banking: credit histories

Valid Time and Transaction Time Dimensions

Valid time

Given a particular event or fact that is associated with a particular time point or time period in the

database, the association may be interpreted to mean different things. The most natural

interpretation is that the associated time is the time that the event occurred, or the period during

which the fact was considered to be true in the real world. If this interpretation is used, the

associated time is often referred to as the valid time.

Simply, the valid time denotes the time period during which an event occur or a fact is true with

respect to the real world. A temporal database using this interpretation is called a valid time

database.

Example:

Imagine that we come up with a temporal database storing data about the 18th century. The valid time of

these facts is somewhere between 1700 and 1799, whereas the transaction time starts when we insert the

facts into the database, for example, January 21, 1998. Assume we would like to store data about our

employees with respect to the real world. Then, the following table could result:

EmpID Name Department Salary ValidTimeStart ValidTimeEnd

10 John Research 11000 1985 1990

10 John Sales 11000 1990 1993

10 John Sales 12000 1993 Now

11 Paul Research 10000 1988 1995

12 George Research 10500 1991 Now

13 Ringo Sales 15500 1988 Now

The above valid-time table stores the history of the employees with respect to the real world. The

attributes ValidTimeStart and ValidTimeEnd actually represent a time interval which is closed

at its lower and open at its upper bound. Thus, we see that during the time period [1985 – 1990],

employee John was working in the research department, having a salary of 11000. Then he

changed to the sales department, still earning 11000. In 1993, he got a salary raise to 12000. Note

that it is now possible to store information about past states. We see that Paul was employed from

1988 until 1995. In the corresponding non-temporal table, this information was (physically)

deleted when Paul left the company.

--
By Bhupendra Singh Saud ADBMS 20

Transaction Time

However, a different interpretation can be used, where the associated time refers to the time when

the information was actually stored in the database; that is, it is the value of the system time clock

when the information is valid in the system. In this case, the associated time is called the

transaction time. A temporal database using this interpretation is called a transaction time

database.

Simply, the Transaction time is the time period during which a fact is stored in the database.

Example:

EmpID Name Department Salary TransactionTimeStart TransactionTimeEnd

10 John Research 11000 1985-10-2, 10:02:33 1990-10-2, 11:33:04

10 John Sales 11000 1990-04-11, 05:04:33 1993-05-11, 06:22:55

10 John Sales 12000 1993-7-30, 5:33:05 Now

11 Paul Research 10000 1988-5-23, 7:23:34 1995-8-30, 5:33:55

12 George Research 10500 1991-8-23, 12:44:34 Now

13 Ringo Sales 15500 1988-7-24, 11:23:55 Now

The above valid-time table stores the history of the employees with respect to the real world. The

attributes TransactionTimeStart and TransactionTimeEnd actually represent a transaction time

interval which is closed at its lower and open at its upper bound.

Bitemporal Database

In some applications, only one of the dimensions is needed and in other cases both time dimensions

are required, in which case the temporal database is called a bitemporal database. It uses both

valid time and transaction time in a single database.

Deductive databases

A deductive database system typically specify rules through a declarative language – a language

in which we specify what to achieve rather than how to achieve it. It is a database system that can

make deductions (i.e., conclude additional facts) based on rules and facts stored in the (deductive)

database. It is also related to the field of logic programming and the Prolog language.

A variation of Prolog called Datalog can also be used to define rules declaratively in

conjunction with an existing set of relations. A deductive database used two main types of

specifications: facts and rules.

Facts are specified in a manner similar to the way relations are specified, except that it is not

necessary to include the attribute names.

--
By Bhupendra Singh Saud ADBMS 21

Rules are somewhat similar to relational views. They specify virtual relations that are not actually

stored but that can be formed from the facts by applying inference mechanisms based on the rule

specifications.

The deductive database work based on logic has used Prolog as a starting point. A variation of

Prolog called Datalog is used to define rules declaratively in conjunction with an existing set of

relations, which are themselves treated as literals in the language.

The notation used in Prolog/Datalog is based on providing predicates with unique names.

A predicate has an implicit meaning, which is suggested by the predicate name, and a fixed number

of arguments. The predicate‘s type is determined by its arguments:

 If the arguments are all constant values, the predicate simply states that a certain fact is true

 If the predicate has variables as arguments, it is either considered as a query or as part of a

rule or constraint.

[TU Question]:- Describe multimedia database and what are the different types of

multimedia data that are available in current systems?

[TU Question]:- Enumerate the limitations of conventional database compared to multimedia

database.

Multimedia Databases

Multimedia databases provide features that allow users to store and query different types of

multimedia information, which includes images, video clips, audio clips, and documents.

Simply, a Multimedia database (MMDB) is a collection of related multimedia data. The

multimedia data include one or more primary media data types such as text, images, graphic

objects (including drawings, sketches and illustrations) animation sequences, audio and video.

Multimedia databases provide features that allow users to store and query different types

of multimedia information, which includes images (such as photos or drawings), video clips (such

as movies, newsreels, or home videos), audio clips (such as songs, phone messages, or speeches),

and documents (such as books or articles). The main types of database queries that are needed

involve locating multimedia sources that contain certain objects of interest. For example, one may

want to locate all video clips in a video database that include a certain person, say Michael Jackson.

One may also want to retrieve video clips based on certain activities included in them, such as

video clips where a soccer goal is scored by a certain player or team.

Advantages of Multimedia database

 It is very user-friendly. It doesn’t take much energy out of the user, in the sense that you

can sit and watch the presentation, you can read the text and hear the audio.

--
By Bhupendra Singh Saud ADBMS 22

 It is multi sensorial. It uses a lot of the user’s senses while making use of multimedia, for

example hearing, seeing and talking.

 It is integrated and interactive. All the different mediums are integrated through the

digitization process. Interactivity is heightened by the possibility of easy feedback.

 It is flexible. Being digital, this media can easily be changed to fit different situations and

audiences.

 It can be used for a wide variety of audiences, ranging from one person to a whole group.

Disadvantages

 Information overload. Because it is so easy to use, it can contain too much information at

once.

 It takes time to compile. Even though it is flexible, it takes time to put the original draft

together.

 It can be expensive. Multimedia makes use of a wide range of resources, which can cost

you a large amount of money.

 Too much makes it unpractical. Large files like video and audio has an effect of the time it

takes for your presentation to load. Adding too much can mean that you have to use alarger

computer to store the files.

Characteristics of different multimedia sources

Image

 Typically stored either in raw form as a set of pixel or cell values, or in compressed form

to save space

 Each image can be represented by an m by n grid of cells and each cell contains a pixel

value that describe the cell content

 Compression standards, such as GIF or JPEG, use various mathematical transformations

to reduce the number of cells stored.

Video

 Typically represented as a sequence of frames, where each frame is a still image

 The video is divided into video segments, where each segment is made up of sequence of

contiguous frames that includes the same objects/activities. Each segment is identified by

its starting and ending frames

 An indexing technique called frame segment trees has been proposed for video indexing.

The index includes both objects and activities

 Videos are also often compressed using standards such as MPEG

Text/Document

--
By Bhupendra Singh Saud ADBMS 23

 The full text of some article, book, or magazine

 Typically indexed by identifying the keywords that appear in the text and their relative

frequencies. Because there are too many keywords when attempting to index, a technique

called singular value decomposition (SVD) can be used to reduce the number of keywords

 An indexing technique called telescoping vector trees, or TV-trees can be used to group

similar documents together

Audio

 Include stored recorded messages

 Discrete transforms can be used to identify the main characteristics of a certain person’s

voice in order to have similarity based indexing and retrieval. Futures include loudness,

intensity, pitch, and clarity

Types of Multimedia are available in current systems:

DBMSs have been constantly adding to the types of data they support. Today many types of

multimedia data are available in current systems.

 Text: May be formatted or unformatted. For ease of parsing structured documents,

standards like SGML and variations such as HTML are being used.

 Graphics: Examples include drawings and illustrations that are encoded using some

descriptive standards (e.g. CGM, PICT, postscript).

 Images: Includes drawings, photographs, and so forth, encoded in standard formats such

as bitmap, JPEG, and MPEG. Compression is built into JPEG and MPEG. These images

are not subdivided into components. Hence querying them by content (e.g., find all images

containing circles) is nontrivial.

 Animations: Temporal sequences of image or graphic data.

 Video: A set of temporally sequenced photographic data for presentation at specified rates–

for example, 30 frames per second.

 Structured audio: A sequence of audio components comprising note, tone, duration, and

so forth.

 Audio: Sample data generated from aural recordings in a string of bits in digitized form.

Analog recordings are typically converted into digital form before storage.

 Composite or mixed multimedia data: A combination of multimedia data types such as

audio and video which may be physically mixed to yield a new storage format or logically

mixed while retaining original types and formats. Composite data also contains additional

control information describing how the information should be rendered.

--
By Bhupendra Singh Saud ADBMS 24

[TU Question]:- Discuss some applications of active database. How do spatial databases

differ from regular database?

Spatial Database

A spatial database is a database that is enhanced to store and access spatial data or data that defines

a geometric space. The special data stored in the form of co-ordinate form. These data are often

associated with geographic locations and features, or constructed features like cities. Data on

spatial databases are stored as coordinates, points, lines, polygons and topology. Some spatial

databases handle more complex data like three-dimensional objects, topological coverage and

linear networks.

The main goal of a spatial database system is the effective and efficient handling of spatial

data types in two, three or higher dimensional spaces, and the ability to answer queries taking into

consideration the spatial data properties.

A common example of spatial data can be seen in a road map. A road map is a 2-

dimensional object that contains points, lines, and polygons that can represent cities, roads, and

political boundaries such as states or provinces. A road map is a visualization of geographic

information.

Examples of spatial data types are:

 Point: characterized by a pair of (x, y) values,

 Line segment: characterized by a pair of points,

 Rectangle: characterized by its lower-left and upper-right corners,

 Polygon: comprised by a set of points, defining its corners.

Examples of spatial datasets

Three types of spatial queries

o Range query – Finds the objects of a particular type that are within a particular

distance from a given location. For example, finds all hospitals within the

Kathmandu city area, or finds all ambulances within five miles of an accident

location

--
By Bhupendra Singh Saud ADBMS 25

o Nearest neighbor query – Finds an object of a particular type that is closest to a

given location. For example, finds the police car that is closest to a particular

location

o Spatial joins or overlays – Typically joins the objects of two types based on some

spatial condition, such as the objects intersecting or overlapping spatially or being

within a certain distance of one another. For example, find all cities that fall on a

major highway or finds all homes that are within two miles of a lake

Geographic Information Systems (GIS)

Geographic information systems (GIS) are used to collect, model, store, and analyze information

describing physical properties of the geographical world. GIS technology integrates common

database operations such as query and statistical analysis with the unique visualization and

geographic analysis benefits offered by maps. Map making and geographic analysis are not new,

but a GIS performs these tasks better and faster than do the old manual methods. And, before GIS

technology, only a few people had the skills necessary to use geographic information to help with

decision making and problem solving. Today, Professionals in every field are increasingly aware

of the advantages of thinking and working geographically.

The scope of GIS broadly encompasses two types of data:

1. Spatial data, originating from maps, digital images, administrative and political

boundaries, roads, transportation networks; physical data such as rivers, soil

characteristics, climatic regions, land elevations

2. Non-spatial data, such as socio-economic data (like census data), economic data, or sales

or marketing information.

Components of GIS

A working Geographic Information System seamlessly integrates five key components: hardware,

software, data, people, and methods.

Hardware: Hardware includes the computer on which a GIS operates, the monitor on which

results are displayed, and a printer for making hard copies of the results.

GIS software: It provides the functions and tools needed to store, analyze, and display geographic

information. Key software components include tools for the input and manipulation of geographic

information, a database management system (DBMS), tools that support geographic query,

analysis, and visualization, and a graphical user interface (GUI) for easy access to tools.

Data: Possibly the most important component of a GIS is the data. A GIS will integrate spatial

data with other data resources and can even use a database management system, used by most

--
By Bhupendra Singh Saud ADBMS 26

organizations to organize and maintain their data, to manage spatial data. There are three ways to

obtain the data to be used in a GIS. Geographic data and related tabular data can be collected in-

house or produced by digitizing images from aerial photographs or published maps.

People: GIS users range from technical specialists who design and maintain the system to those

who use it to help them perform their everyday work.

Methods: A successful GIS operates according to a well-designed plan and business rules, which

are the models and operating practices unique to each organization.

GIS applications

It is possible to divide GISs into three categories:

1. Cartographic applications

2. Digital terrain modeling applications, and

3. Geographic objects applications

In cartographic and terrain modeling applications, variations in spatial attributes are captured – for

example, soil characteristics, crop density, and air quality.

In geographic object applications, objects of interest are identified from a physical domain – for

example, power plants, electoral districts, property parcels, product distribution districts, and city

--
By Bhupendra Singh Saud ADBMS 27

landmarks; These objects are related with pertinent application data – for example, power

consumption, voting patterns, property sales volumes, product sales volume, and traffic density.

The first two categories of GIS applications require a field-based representation, whereas the third

category requires an object-based one. The cartographic approach involves special functions that

can include the overlapping of layers of maps to combine attribute data. Digital terrain modeling

requires a digital representation of parts of earth’s surface using land elevations at sample points

that are connected to yield a surface model showing the surface terrain. In object-based geographic

applications, additional spatial functions are needed to deal with data.

Data management requirements of GIS

The functional requirements of the GIS applications translate into the following database

requirements.

 Data Modeling and Representation.

 Data Analysis

 Data Integration

 Data Capture

1. Data Modeling and Representation

GIS data can be broadly represented in tow formats:

 vector and

 raster

Vector data represents geometric objects such as points, lines, and polygons

Raster data is characterized as an array of points, where each point represents the value of an

attribute for a real-world location. Informally, raster images are n-dimensional array where each

entry is a unit of the image and represents an attribute. Two-dimensional units are called pixels,

while three-dimensional units are called voxels. Three-dimensional elevation data is stored in a

raster-based digital elevation model (DEM) format. This model is commonly used for analytical

applications such as modeling, map algebra, and more advanced techniques of feature extraction

and clustering.

2. Data Analysis

GIS data undergoes various types of analysis for example, in applications such as soil erosion

studies, environmental impact studies, or hydrological runoff simulations, data may undergo

various types of geomorphometric analysis – measurements such as slope values, gradients (the

rate of change in altitude), aspect (the compass direction of the gradient), profile convexity (the

rate of change of gradient), plan convexity (the convexity of contours and other parameters).

--
By Bhupendra Singh Saud ADBMS 28

3. Data Integration

GISs must integrate both vector and raster data from a variety of sources. Sometimes edges and

regions are inferred from a raster image to form a vector model, or conversely, raster images such

as aerial photographs are used to update vector models

4. Data Capture

The first step in developing a spatial database for cartographic modeling is to capture the two-

dimensional or three-dimensional geographical information in digital form – a process that is

sometimes impeded by source map characteristics such as resolution, type of projection, map

scales, cartographic licensing, diversity of measurement techniques, and coordinate system

differences. Spatial data can also be captured from remote sensors in satellites such as Landsat,

NORA, and Advanced Very High Resolution Radiometer as well as SPOT HRV (High Resolution

Visible Range Instrument.

Specific GIS data operations

GIS applications are conducted through the use of special operators such as the following:

 Interpolation – derives elevation data

 Interpretation – involves the interpretation of operations on terrain data such as editing,

smoothing, reducing details, and enhancing.

 Proximity analysis – computation of “zones of interest” around objects

 Raster image processing – can be divided into (1) map algebra and (2) digital image

analysis

 Analysis of networks – analysis of networks for segmentation, overlays, and so on

Mobile Databases

Recent advances in portable and wireless technology have led to mobile computing, a new

dimension in data communication and processing. A mobile database is a database that can be

connected to by a mobile computing device over a mobile network. It is portable and physically

separate from the corporate database server. But Mobile Database is capable of communicating

with that corporate database server from remote sites allowing the sharing of corporate database.

Mobile computing devices (e.g., smartphones and PDAs) store and share data over

a mobile network, or a database which is actually stored by the mobile device. A mobile database is

a database that resides on a mobile device such as a PDA, a smart phone, or a laptop. Such devices

are often limited in resources such as memory, computing power, and battery power.

--
By Bhupendra Singh Saud ADBMS 29

Mobile computing architecture, characteristics of mobile environments, data management issues.

It can also be defined as a system with the following structural and functional properties.

 Distributed system with mobile connectivity (A mode in which a client or a server can

establish communication with each other whenever needed)

 Full database system capability

 Complete spatial mobility

 Wireless and wired communication capability

Ability of mobile DBMS

 Communicate with centralized database server through modes such as wireless or Internet

access

 Replicate data on centralized database server and mobile device

 Synchronize data on centralized database server and mobile device

 Capture data from various sources such as Internet

 Manage/analyze data on the mobile device

 Create customized mobile applications

[TU Question: - Describe the characteristics of mobile computing environment in detail]

[TU Question: - Explain mobile computing architecture with suitable diagram]

--
By Bhupendra Singh Saud ADBMS 30

Mobile Computing Architecture

The general architecture of a mobile platform is a distributed architecture where a number of

computers, generally referred to as Fixed Hosts and Base Stations, are interconnected through a

high speed wired network. Fixed hosts are general purpose computers configured to manage

mobile units. Base stations function as a gateways to the fixed network for the Mobile Units; they

are equipped with wireless interfaces and offer network access services of which mobile units are

clients.

Fig: A general architecture of a mobile platform

Wireless Communications

The wireless medium on which mobile units and base stations communicate have bandwidths

significantly lower than those of a wired network. Some wireless access options allow seamless

roaming throughout a geographical region (e.g., cellular networks), whereas Wi-Fi networks are

localized around a base station; Some wireless networks, such as Wi-Fi and Bluetooth, use

unlicensed areas of frequency spectrum, which may cause interference with other appliances, such

as cordless telephones; Modern wireless networks can transfer data in units called packets, that are

commonly used in wired networks in order to conserve bandwidth; Wireless applications must

consider these characteristics when choosing a communication option

--
By Bhupendra Singh Saud ADBMS 31

Client/Network Relationships

Mobile units can move freely in a geographic mobility domain, an area that is circumscribed by

wireless network coverage; To manage the mobility of units, the entire geographic mobility

domain is divided into one or more smaller domains, called cells, each of which is supported by at

least one base station; The mobile discipline requires that the movement of mobile units be

unrestricted throughout the cells of a geographic mobility domain, while maintaining information

access contiguity – i.e., movement, especially intercell movement, does not negatively affect the

data retrieval process; This architecture is designed for a fixed network, emulating a traditional

client-server architecture

Characteristics of Mobile Computing Environments

The characteristics of mobile computing include high communication latency, intermittent

wireless connectivity, limited battery life, and changing client location

 Latency is caused by the processes unique to the wireless medium, such as coding data for

wireless transfer, and tracking and filtering wireless signals at the receiver.

 Intermittent connectivity can be intentional or unintentional; unintentional

disconnections happen in areas where wireless signals cannot reach, e.g., elevator shafts or

subway tunnels; Intentional disconnections occur by user intent, e.g., during an airplane

takeoff, or when the mobile device is powered down.

 Battery life is directly related to battery size, and indirectly related to the mobile device’s

capabilities and overall efficiency.

 Client locations are expected to change, which alters the network topology and may cause

their data requirements to change.

First, servers must keep track of client locations in order to route messages to them

efficiently. Second, client data should be stored in network location that minimize the

traffic necessary to access it. Keeping data in a fixed location increases access latency if

the client moves far away from it.

All these characteristics impact data management, and robust mobile applications must consider

them. To compensate for high latencies and unreliable connectivity, clients’ cache replicas of

important, frequently accessed data, and work offline, if necessary; besides increasing data

availability and response time, caching can also reduce client power consumption by eliminating

the need to make energy-consuming wireless data transmission for each data access

Data Management Issues

From a data management standpoint, mobile computing may be considered a variation of

distributed computing. Mobile databases can be distributed under two possible scenarios:

--
By Bhupendra Singh Saud ADBMS 32

1. The entire database is distributed mainly among the wired components, possibly with full or

partial replication; a base station or fixed host manages its own database with a DBMS-like

functionality, with additional functionality for locating mobile units and additional query and

transaction management features to meet the requirements of mobile environments.

2. The database is distributed among wired and wireless components; Data management

responsibility is shared among base stations or fixed hosts and mobile units.

The distributed data management issues can also be applied to mobile databases with the following

additional considerations and variations:

 Data distribution and replication – Data is unevenly distributed among the base stations

and mobile units.

 Transactions models – Issues of fault tolerance and correctness of transactions are

aggravated.

 Query processing – Awareness of where data is located is important and affects the

cost/benefit analysis of query processing; Query optimization is more complicated because

of mobility and rapid resource changes of mobile units.

 Recovery and fault tolerance – The mobile database environment must deal with site,

media, transaction, and communication failure.

 Mobile database design – The global name resolution problem for handling queries is

compounded because of mobility and frequent shutdown.

 Location-based service – As clients move, location-dependent cache information may

become stale.

 Division of labor – Certain characteristics of the mobile environment force a change in the

division of labor in query processing.

 Security – Mobile data is less secure than that which is left at the fixed location.

