For more notes visit https://collegenote.pythonanywhere.com

UNIT 4 ER. RAJAN KARMACHARYA

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION

FILFE SYSTEMS TECHNOLOGY

ST. XAVIER’S COLLEGE

Includes...
4.1 Files
4.2 Directories

4.3 File System Implementation

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Files

 Issues
= How to store the large amount of data into the computer?
= What happens when process terminates or is killed using some data?
= How to assign the same data to the multiple process

 The solution to all these problems is to store information on disks or on other
external media called FILES.

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Files

A file is a named collection of related information normally resides on a
secondary storage device such as disk or tape.

Commonly, files represent programs (both source and object forms) and data;
data files may be numeric, alphanumeric or binary

Information stored in files must be persistent, not be etfected by power failures
and system reboot

The files are managed by the OS and part of the OS that is responsible to
manage files is known as the file system

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File System Issues

- How to create a file?

« How are they named?

« How are they structured?

« What operations are allowed on files?
« How to protect them?

- How are they accessed or used?

« How to implement them?

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Naming

When a process creates a file, a file name is given which continues to exist and
can be accessed by other processes even after the process terminates.

A file is named, for the convenience of its human users and it is referred to by
its name.

A name is a string of characters which may be digits or special characters

Some system differentiate between lowercase and uppercase characters such
as UNIX and other consider equivalent like MS DOS.

Normally the string of max 8 characters (MS DOS)are legal file name but
recent systems support as long as 255 characters (Windows)

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Naming

« Many OS support two part file names separated by a period.
* The part following the period is known as extension
« The extension name resembles the type of the file

« Some systems may have two or more extensions such as Progl.c.Z ---—- A C
source file compressed using Ziv-Lampel Algorithm

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Typical File Extensions

Extension

Meaning

file.bak

Backup file

file.c

C source program

file.gif

Compuserve Graphical Interchange Format image

file.hlp

Help file

file.html

World Wide Web HyperText Markup Language document

file.jpg

Still picture encoded with the JPEG standard

file.mp3

Music encoded in MPEG layer 3 audio format

file.mpg

Movie encoded with the MPEG standard

file.o

Obiject file (compiler output, not yet linked)

file.pdf

Portable Document Format file

file.ps

PostScript file

file.tex

Input for the TEX formatting program

file.txt

General text file

file.zip

Compressed archive

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Structure

» Files must be structured and understood by the OS.

» Files can be structured in many ways and the most general structures are
= Unstructured
= Record Structured
= Tree Structured

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Structure

1 Byte 1 Record

s e

Ant || Fox || Pig

Cat || Cow || Dog Goat || Lion || Owl Pony || Rat [[Worm

Hen Ibis || Lamb

() (b) (c)

Unstructured Record Tree
Structured Structured

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Structures

« Unstructured
= Consists of unstructured sequence of bytes or words

= OS does not know or care what is in the file
= Any meaning must be imposed by the user level program

= Provides maximum flexibility; user can put anything they want and name them
anyway that is convenient

= Both UNIX and Windows use these approach.

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Structures

o Record Structured

= Aftile is a sequence of fixed length records, each with some internal structure.

= Each read operation returns one records and write operation overwrites or append
one record

= May old mainframe systems use this structure

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Structures

o Tree Structured
= File consists of tree of records not necessarily all the same length.

= Each containing a key field in a fixed position in the record sorted on the key to
allow rapid searching.

= The operation is to get the record with the specific key

= Used in large mainframe for commercial data processing

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Types

Many OS support several types of files
Regular files: contains user information and are generally ACSII or Binary
Directories: system files for maintaining the structure of the file system

Character Special Files: related to I/O and used to model serial I/O devices
such as terminals, printers and networks

Block special files: used to model disks

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Types

« ASCII Files
= Consists of line of text where each line is terminated either by carriage return or by
line feed character or both
= They can be displayed and printed as it is and can be edited with ordinary text
editor

 Binary Files
= Consists of sequence of byte only
= They have some internal structure known to programs that use them
= Many OS use extension to identify the file type; but UNIX like OS use a magic
number to identity the file type

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Access Methods

« Sequential Access
= read all bytes/records from the beginning
= cannot jump around, could rewind or back up
= convenient when medium was magnetic tape

* Direct Access
= bytes/records read in any order
= essential for data base systems
= Used for immediate access to large amount if information
= read can be ...
- move file marker (seek), then read or ...
- read and then move file marker

For more notes visit https://collegenote.pythonanywhere.com

File Attributes

In addition to name
and data, all other
information about file
is termed as file
attribute

The file attributes
may vary from system
to system

e
Er. Rajan Karmacharya

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASClI/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File Operations

OS provides system calls to perform operations on files. Some common calls
are

Create : If disk space is available, it creates new file without data.
Delete: Deletes files to free up disk space.
Open: Before using a file, a process must open it.

Close: When all access are finished, the file should be closed to free up the
internal table space.

Read : Reads data from file

Write: Writes data to a file

Append: Adds data to the end of a file

Seek : Repositions the file pointer to a specific place in the file
Get : Returns file attributes for processing

Set : To set the user settable attributes when files changed
Rename : Rename a file

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Directory Structure

A directory is a node containing information about files.
* Directories may have different structures

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Directory Structure

« Single Level Directory
= All files are contained in the same directory

= Easy to support and understand but difficult to manage large amount of files and to
manage different users

= Ditferent users may accidently use the same name for their files where the later
overwrites the earlier

= Advantage of this scheme is the simplicity and ability to locate files quickly; there is
only once place to look after all.

« Asingle level directory system . Root dlrectory
= contains 4 files A

= owned by 3 different people, A, B,

" 0101010

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Directory Structure

e Two Level Directory

m]

u]

m]

Separate directory for each user
Used on a multiuser computer and on a simple network computer

It has problem when users want to cooperate on some task and to access one
another’s files.

User
directory

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Directory Structure

« Hierarchical Level Directory
Generalization of two level structure to a tree of arbitrary height

u]

m]

This allows the user to create their own subdirectories and to organize their files.

u]

To allow to share the directory for different user acyclic graph is used

m]

Nearly all modern file systems are organized in this manner

~—Root directory

User
directory |

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Path Names

« Absolute Path Names
= Path name starting from root directory to the file
= Path separated by / in UNIX ,\ in Windows and > in MULTICS

= Windows -— \usr\ ast\ mailbox

= Linux — [usr/ast/mailbox

= MULTICS -— >usr>ast>mailbox
e Relative Path Names

= Concept of working directory

= A user can designate one directory as the current working directory in which all
path names not beginning at the root directory are taken relative to the working
directory.

= E.g. bin/lab2 is enough to locate same file if current working directory is /usr/userl

cp /usr/ast/mailbox /usr/ast/mailbox1
cp mailbox mailbox1
do exactly the same work if the working directory is /ust/ast

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Directory Operations

 Create : A directory is created

 Delete : A directory is deleted

» OpenDir : Directories can be read

« CloseDir : After read, it should be closed to free up internal table space
« Rename : Rename a directory

 Link : allows a file to appear in more than one directory. This system call
specifies an existing file and a path name, and creates a link from
the existing file to the name specified by the path.

¢ Unlink : A directory entry is removed

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

File System Implementation

How are files and directories are stored?

How disk space is managed?

How to make every thing work efficiently and reliably?

Files can be implemented in two ways

= Contiguous Allocation Method
= Linked Allocation Method

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Allocation Method: Contiguous Allocation

The simplest allocation scheme is to store each file as a contiguous run of disk
blocks.

Each file occupy a set of contiguous block on the disk

Disk address define a linear ordering on the disk.

File is defined by the disk address and length in block units

On a disk with 1 kb blocks, a 50 kb file is allocated 50 consecutive block
With 2 kb blocks, a 50 kb file would be allocated 25 consecutive blocks

Both sequential and direct access can be supported by contiguous allocation

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Allocation Method: Contiguous Allocation

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
— — r - 5 —
HEEEEENEENEENEENEEEEEEEEEEEREEENENNEEEEEN

— - — L 4 J
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)

(File A) (File C) (File E) (File G)
—— — r i 3 —
HEEENENEEEEEEEEEEEEEENENENEEEENEEREEEEEEN

(S I A U
File B 5 Free blocks 6 Free blocks

(b)

(a) Contiguous allocation of disk space for 7 files

(b) State of the disk after files D and E have been
removed

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Allocation Method: Contiguous Allocation

« Advantages:
= Simple to implement: Accessing a file that has been allocated contiguously is easy
= High performance: The entire file can be read in single operation i.e. decrease the seek time

 Problems:
= Fragmentation: When files are allocated and deleted the free disk space is broken into holes

= Dynamic storage allocation problem: Searching of right holes requires pre-information of file
size to put it into a hole

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Allocation Method: Linked Allocation

Each file is a linked list of disk blocks; the disk block may be scattered
anywhere on the disk.

Each block contains a pointer to the next block of same file.

To create the new file, we simply create a new entry in the directory; with
linked allocation, each directory entry has a pointer to the first disk block of
the file

Unlike contiguous allocation, every disk can be used in this method.
No space is lost to disk fragmentation except for internal fragmentation.

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Allocation Method: Linked Allocation

File A
T -T— -T— -+ 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File B
- —— +— 0
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block

« File A uses disk block 4,7,2,10 and 12 and
» File B uses disk block 6,3,11 and 14

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Allocation Method: Linked Allocation

« It solves all problems of contiguous allocation but it can be used only for
sequential access file: random access is extremely slow

 Each block access requires disk seek

« It also requires space for pointer
* Solution : Using File Allocation Table (FAT)

= The table has one entry for each disk block containing next block number for the file. This resides at the
beginning of each disk partition.

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Directory Implementation

« The directory entry provides the information needed to find the disk block.
« The file attributes are stored in the directory

* Directories can be implemented in two ways

o Linear List
o Hash Table

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Directory Implementation- Linear List

 Use the linear list of the file names with pointer to the data blocks

o It requires linear search to find a particular entry
« Advantages: Simple to implement but time consuming to execute
« Problem: Linear search to a file is slow

o To create a new file, we must first search the directory to be sure that no existing file
has the same name. Then we add a new entry at the end of the directory. To delete a file,
we search for the named file and release the space allocated to it.

 Requires cache and sorting and may use B-Tree

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Directory Implementation — Hash Table

o It consists linear list with has table.

 The hash table takes a value computed from the file name and returns a pointer to
the file name in the linear list. Thus, it greatly decreases the search time.

- If that key is already in use, a linked list is constructed.
- Advantages: greatly decreases the file search time.
« Problem: It is fixed size and dependence of the hash function on that size.

o Insertion and deletion are also fairly straight forward although some provision must be
made for collisions situations in which two file names has to the same location.

o If we make a hash table that holds 64 entries, it converts filenames into integers from 0 to
63

e Later if we create a 65™ file, we must enlarge the hash table say 128 entries. As a result we
need a new hash function that must map files to the range of 0 — 127 and reorganize
existing directories

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Free Space Management

 To keep track of free blocks, system maintains the free space list

* The free space list records all free blocks those not allocated to some file or
directory

 To create a file, system searches the free space list for required amount of
space, and allocate that space to the new file and removed from free space list.

« When a file is deleted, its disk space is added to the free space list
 The free space list can be implemented in two ways

o Bitmap

= Linked List

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Free Space Management : Bitmap

« Each block is represented by a bit. If the block is free, the bit is 1; if the block is
allocated the bit is 0.

A disk with n blocks requires a bitmap with n bits.

« Eg: consider a disk where blocks 2,3,4,5,8,9,10,11,12,13,17,18,25,26,27 are free
and rest are allocated.

« The free space bitmap would be 0011110011111100011000000111

« Advantages:

= Simple and efficient in finding first free blocks or n consecutive free blocks
 Problem:

= Inefficient unless the entire bitmap is kept in the main memory

= Keeping in main memory is possible only for small disk, when disk is large the
bitmap would be large

For more notes visit https://collegenote.pythonanywhere.com

e
Er. Rajan Karmacharya

Free Space Management : Linked List

 Link together all the free disk blocks,
keeping a pointer to the first free
block in a special location on the disk | free-space list head
and caching it in memory.

» The first block contains a pointer to "2 e[7]
the next free block

« The previous example can be 1o {117
represented in liked list as | 2@—7 141507

F

16[|17[18]]19[|

« Advantage
¢ Only one block is kept in memory 20[21]22f]23[]

« Problem N o 24] 25 [26] 27 F
« Not efficient to traverse list, it
must read each block 28| |29 [30[|31]]

N~

For more notes visit https://collegenote.pythonanywhere.com
File Sharing

In a multiuser system, there is almost always a requirement for files to be shared among a number of
users. Two issues arise: access rights and the management of simultaneous access.

Access Rights

The file system should provide a flexible tool for allowing extensive file sharing among users. The file
system should provide a number of options so that the way in which a particular file is accessed can be
controlled. Typically, users or groups of users are granted certain access rights to a file. A wide range of
access rights have been used. The following list is representative of access rights that can be assigned to
a particular file

None: The user may not even learn of the existence of the file, much less access it. To enforce this
restriction, the user would not be allowed to read the user directory that includes this file.

Knowledge: The user can determine that the file exists and who its owner is. The user is then able to
petition (ask) the owner for additional access rights.

Execution: The user can load and execute a program but cannot copy it.
Reading : The user can read the file for any purpose, including copying and execution.

Appending : The user can add data to the file, often only at the end but can't modify or delete any of
the file's contents. This right is useful in collecting data from a number of sources.

Updating: The user can modify, delete and add to the file's data. This normally includes writing the
file initially, rewriting it completely or in part and removing all or a portion of the data.

Changing Protection: The user can change the access rights granted to other users. Typically, this
right is held only by the owner and may extend this right to others.

Deletion: The user can delete the file from the file system.
These rights can be considered to constitute a hierarchy, with each right implying those that precede it.

Access can be provided to different classes of users

Specific Users: Individual users who are designated by user ID.

User Groups: A set of users who are not individually defined. The system must have some way of
keeping track of the membership of user groups.

All: All users who have access to this system. These are public files.

Simultaneous Access

When access is granted to append or update a file to more than one user, the operating system or file
management system must enforce discipline.

A brute-force approach is to allow a user to lock the entire file when it is to be updated. A finer grain
of control is to lock individual records during update.

Issues of mutual exclusion and deadlock must be addressed in designing the access capability.

For more notes visit https://collegenote.pythonanywhere.com
File System Reliability

Major problem in maintaining a file system
e To protect it from being corrupted by both systems failure and errors in system's software.
e If a computer's file system is irrecoverably lost, due to hardware or software, restoring all the
information will be difficult, time consuming and in many cases, impossible.

Solution
The usual way of ensuring reliability is by making duplicates copies of files.

Backups - a duplicate copy of the files used incase the original damages

Companies, who well understand the value of back up do it once a day, usually to a tape. Modern
tapes hold 100 gigabytes of data and cost pennies per gigabyte.

Backup tapes are generally made to
e Recover from disaster — due to disk crash, fire, flood or other natural calamities
e Recover from stupidity — accidental removal of files that is required later (may be temporarily
in Recycle Bin)

Making a backup takes a longer time and occupies a large amount of space--- doing this efficiently and
conveniently in a major issue.

Periodic dump
e All files in the file system are copied to another device, usually a magnetic tape. This is done
regularly and may be done as often as weekly if the files are highly volatile.
e Wasteful to back up files that have not changed since the last backup

Incremental dump
e Make a complete dump periodically and make a daily dump of those files that get modified
from the last dump. This is faster to do and usually done more often.
e Makes recovery more complicated because first the most recent full dump is to be restored
followed by all the incremental dumps in reverse order.

Compression
e With immense amount of data, compression seems to be feasible but with many compression
algorithms, a single bad spot on the backup tape can make the entire data unreadable.

Security Issue
e Backup introduces non technical problems in an organization
e The best online security system in the world may be useless if the system administrator keeps
all the backup tapes in his office and leaves it open and unguarded. So, Good Bye Security.

For more notes visit https://collegenote.pythonanywhere.com

Two strategies can be used for dumping a disk to a tape: a physical dump or a logical dump.

Physical Dump

A physical dump starts at block 0 of the disk, writes all the disk blocks onto the output tape in
order, and stops when it has copied the last one. Such a program is so simple that it can probably be
made 100% bug free, sometime that can probably not be said about any other useful program.

Advantages
e Simplicity and great speed (basically, it can run at the speed of disk).

Problem
e There is no value in backing up unused disk blocks.
e Dumping bad blocks creates endless disk read errors during the dumping process.
e Unable to skip selected directories and makes incremental dumps.

Logical Dump

A logical dump starts at one or more specified directories and recursively dumps all files and
directories found there that have been changed since some given base date (the last backup for an
incremental dump for a full dump).

In a logical dump, the dump tape gets a series of carefully identified directories and files, which makes
it easy to restore a specific file or directory upon request.

Logical dumping is the most common form. In the example below, a tree with directories (squares) and
files (circles) is shown. The shaded items have been modified since the base date and thus need to be
dumped. The unshaded ones do not need to be dumped.

1 [<«—— Root directory

2] [re] 18

® @ @ 19

Directory
that has not 22
changed

21) 23
/

File that File that has
has changed 24) (25) (2B6) nnt ~hanmad

For more notes visit https://collegenote.pythonanywhere.com

File System Consistency

Another important aspect of a file system is its consistency. When a system crash occurs, it is
possible that a modified block may not have been written yet. The standard way of checking
for consistency is to read all the files and the blocks allocated to the files of the file system and
then compare this with the blocks in the free list.

To deal with the problem of inconsistent file system, most computers have a utility program
that checks file system consistency. UNIX has fsck and Windows has scandisk. These utilities
run when the system is booted after a crash.

File System Performance
Access to disk is much slower than access to memory. Hence, many file systems have been designed
with various optimizations to improve the performance

Caching

The most common technique used to reduce disk access is the block cache or the buffer cache.
A cache is a collection of blocks that logically belong to the disk but are being kept in the
memory for performance reasons.

Check all the requests to see if the needed block is in the cache. If it is, the read request can be
satisfied without a disk access and if not, it is first read into the cache and then copied to
wherever it is needed. Subsequent requests for the same block can be satisfied from the cache.

Block Read Ahead

Another technique to improve file system performance is to try to get blocks into the cache
before they are needed to increase the hit rate.

In particular, many files are read sequentially. When the file system is asked to produce block k
in a file, it does that, but when it is finished, it makes a sneaky check in the cache to see if block
k+1 is already there. If it is not, it schedules a read for block k+1 in the hope that when it is
needed, it will have already arrived in the cache. At the very least, it will be on the way.

Only helps the sequentially read files.(not in random access method)

Reducing Disk Arm Motion

The disk arm motion can be reduced by putting blocks that are likely to be accessed in sequence
close to each other, preferably in the same cylinder. (i.e., blocks lie in the outer most track, say
track 1, of platter 1, platter 2, platter 3 and so on)

When the blocks lie in the same cylinder, the disk arm does not require moving and only the
read write head moves. Hence data access is faster when the disk arm motion is reduced.

	File Systems_Unit 4 .pdf
	File System Implementation.pdf

