
UNIT-FIVE
Implementation and Maintenance

• Implementation and maintenance are the last two phases of the systems
development life cycle. The purpose of implementation is to build a
properly working system, install it in the organization, replace old
systems and work methods, finalize system and user documentation,
train users, and prepare support systems to assist users. Implementation
also involves closedown of the project, including evaluating personnel,
reassigning staff, assessing the success of the project, and turning all
resources over to those who will support and maintain the system. The
purpose of maintenance is to fix and enhance the system to respond to
problems and changing business conditions. Maintenance includes
activities from all systems development phases. Maintenance also
involves responding to requests to change the system, transforming
requests into changes, designing the changes, and implementing them.

1 BY G.P.LEKHAK

• System Implementation (453)

BY G.P.LEKHAK 2

• System implementation is made up of many activities. The six major
activities we are concerned with this are coding, testing, installation,
documentation, training, and support (see Figure 13-1). The purpose of
these steps is to convert the physical system specifications into working
and reliable software and hardware, document the work that has been
done, and provide help for current and future users and caretakers of the
system. Coding and testing may have already been completed by this
point if Agile Methodologies have been followed. Using a plan-driven
methodology, coding and testing are often done by other project team
members besides analysts, although analysts may do some
programming. In any case, analysts are responsible for ensuring that all
of these various activities are properly planned and executed. Next, we
will briefly discuss these activities in two groups:

 (1) coding, testing, and installation and (2) documenting the system and
training and supporting users.

BY G.P.LEKHAK 3

• Coding, testing, and Installation processes

• Coding is the process whereby the physical design specifications

 created by the analysis team are turned into working computer code by
the programming team. Depending on the size and complexity of the
system, coding can be an involved, intensive activity. once coding has
begun, the testing process can begin and proceed in parallel. As each
program module is produced, it can be tested individually, then as part of
a larger program, and then as part of a larger system.

• Installation is the process during which the current system is replaced by
the new system. This includes conversion of existing data, software,
documentation, and work procedures to those consistent with the new
system. Users will sometimes resist these changes, and you must help
them adjust. However, you cannot control all the dynamics of user–
system interaction involved in the installation process.

BY G.P.LEKHAK 4

• The Processes of Documenting the System, Training Users, and Supporting
Users: Although the process of documentation proceeds throughout the life
cycle, it receives formal attention during the implementation phase because
the end of implementation largely marks the end of the analysis team’s
involvement in systems development. As the team is getting ready to move
on to new projects, you and the other analysts need to prepare documents
that reveal (give information) all of the important information you have
accumulated about this system during its development and implementation.
There are two audiences for this final documentation:

 (1) the information systems personnel who will maintain the system
throughout its productive life, and (2) the people who will use the system as
part of their daily lives. The analysis team in a large organization can get help
in preparing documentation from specialized staff in the information
systems department.

• Larger organizations also tend to provide training and support to computer

 users throughout the organization. Some of the training and support is very
specific to particular application systems, whereas the rest is general to
particular operating systems or off-the-shelf software packages.

BY G.P.LEKHAK 5

• Software application testing

• Software testing can be stated as the process of verifying and validating
that a software or application is bug free, meets the technical
requirements as guided by its design and development and meets the
user requirements effectively and efficiently with handling all the
exceptional and boundary cases. Software testing is method of assessing
the functionality of a software program. The process of software testing
aims not only at finding faults in the existing software but also at finding
measures to improve the software in terms of efficiency, accuracy and
usability. It mainly aims at measuring specification, functionality and
performance of a software program or application.

• Seven Different types of tests

• Static testing means that the code being tested is not executed. The
results of running the code are not an issue for that particular test.
Dynamic testing, on the other hand, involves execution of the code.
Automated testing means the computer conducts the test, whereas
manual testing means that people complete the test.

BY G.P.LEKHAK 6

• 1. Inspections: A testing technique in which participants examine program
code for predictable language-specific errors that is participants manually
examine code for occurrences of well-known errors. Syntax, grammar, and
some other routine errors can be checked by automated inspection
software, so manual inspection checks are used for more subtle (small)
errors. Each programming language lends itself to certain types of errors
that programmers make when coding, and these common errors are well-
known and documented. Exactly what the code does is not investigated in
an inspection. It has been estimated that code inspections detect from 60 to
90 percent of all software defects as well as provide programmers with
feedback that enables them to avoid making the same types of errors in
future work (Fagan, 1986).

• 2. Desk checking : A testing technique in which the program code is
sequentially executed manually by the reviewer. It is informal process in
which the programmer or someone else who understands the logic of the
program works through the code with a paper and pencil. The programmer
executes each instruction, using test cases that may or may not be written
down. In one sense, the reviewer acts as the computer, mentally checking
each step and its results for the entire set of computer instructions.

BY G.P.LEKHAK 7

• 3. Unit testing: sometimes called module testing, is an automated
technique whereby each module is tested alone in an attempt to
discover any errors that may exist in the module’s code. But because
modules coexist and work with other modules in programs and the
system, they must also be tested together in larger groups.

• 4. Integration testing: Combining modules and testing them is called
integration testing. Integration testing is gradual. First you test the
coordinating module and only one of its subordinate modules. After the
first test, you add one or two other subordinate modules from the same
level. Once the program has been tested with the coordinating module

 and all of its immediately subordinate modules, you add modules from
the next level and then test the program. You continue this procedure
until the entire program has been tested as a unit.

• 5. System testing: System testing is a similar process, but instead of
integrating modules into programs for testing, you integrate programs
into systems. System testing follows the same incremental logic that
integration testing does. Under both integration and system testing, not
only do individual modules and programs get tested many times, so do
the interfaces between modules and programs.

BY G.P.LEKHAK 8

• Current practice calls for a top-down approach to writing and testing
modules. Under a top-down approach, the coordinating module is written
first. Then the modules at the next level in the structure chart are written,
followed by the modules at the next level, and so on, until all of the modules
in the system are done. Each module is tested as it is written. Because top-
level modules contain many calls to subordinate modules. System testing is
more than simply expanded integration testing where you are testing the
interfaces between programs in a system rather than testing the interfaces
between modules in a program. System testing can be performed in two
ways:

 5.1 Black box testing: It is defined as a testing technique in which
functionality of the application under test is tested without looking at the
internal code structure, implementation details and knowledge of internal
paths of the software. This type of testing is based entirely on software
requirements and specifications. In this testing, we just focus on inputs and
output of the software system without bothering about internal knowledge
of the software program. In black box test (also called functional test)
internal code of the program are tested. It is called black box testing
because the test cases are totally hidden for the general users.

BY G.P.LEKHAK 9

• 5.2 White box testing: White box testing is a testing technique that
examines the program structure and derives test data from the program
logic/code. It is a software testing methodology that uses a program’s
source code to design tests and test cases for quality assurance (QA).
The code structure is known and understood by the tester in white box
testing. In white box test (also called glass box test) structure of the
program is tested. It is called white box testing because the test cases
are totally visible to the general users and they can also make test cases.

• 6. Stub testing: Stubs are two or three lines of code written by a
programmer to stand in for the missing modules. During testing, the
coordinating module calls the stub instead of the subordinate module.
The stub accepts control and then returns it to the coordinating module.

• 7. User acceptance testing: Once the system tests have been
satisfactorily completed, the system is ready for acceptance testing,
which is testing the system in the environment where it will eventually
be used.

BY G.P.LEKHAK 10

• Installation (464)

 The process of moving from the current information system to the new
one is called installation. All employees who use a system, whether they
were consulted during the development process or not, must give up
their reliance on the current system and begin to rely on the new system.
Four different approaches to installation have emerged over the years:
direct, parallel, single-location, and phased (Figure 13-5). The approach
an organization decides to use will depend on the scope and complexity
of the change associated with the new system and the organization’s

 risk aversion.

BY G.P.LEKHAK 11

BY G.P.LEKHAK 12

• Direct Installation

• The direct, or abrupt, approach to installation (also called “cold turkey”) is as
sudden as the name indicates: The old system is turned off and the new system
is turned on (Figure 13-5a). Under direct installation, users are at the mercy of
the new system. Any errors resulting from the new system will have a direct
impact on the users and how they do their jobs and, in some cases—depending
on the centrality of the system to the organization—on how the organization
performs its business. If the new system fails, considerable delay may occur until
the old system can again be made operational and business transactions are
reentered to make the database up to date. For these reasons, direct
installation can be very risky. Further, direct installation requires a complete
installation of the whole system. For a large system, this may mean a long time
until the new system can be installed, thus delaying system benefits or even
missing the opportunities that motivated the system request. On the other
hand, it is the least expensive installation method, and it creates considerable
interest in making the installation a success. Sometimes, a direct installation is
the only possible strategy if there is no way for the current and new systems to
coexist, which they must do in some way in each of the other installation
approaches.

BY G.P.LEKHAK 13

• Parallel installation is as riskless as direct installation is risky. Under parallel
installation, the old system continues to run alongside the new system until
users and management are satisfied that the new system is effectively
performing its duties and the old system can be turned off (Figure 13-5b). All
of the work done by the old system is concurrently performed by the new
system. Outputs are compared (to the greatest extent possible) to help
determine whether the new system is performing as well as the old. Errors
discovered in the new system do not cost the organization much, if anything,
because errors can be isolated and the business can be supported with the
old system. Because all work is essentially done twice, a parallel installation
can be very expensive; running two systems implies employing (and paying)
two staffs to not only operate both systems, but also to maintain them. A
parallel approach can also be confusing to users because they must deal
with both systems. As with direct installation, there can be a considerable
delay until the new system is completely ready for installation. A parallel
approach may not be feasible, especially if the users of the system (such as
customers) cannot tolerate redundant effort or if the size of the system
(number of users or extent of features) is large.

BY G.P.LEKHAK 14

• Single-location installation, also known as location or pilot installation,
is a middleof- the-road approach compared with direct and parallel
installation. Rather than convert all of the organization at once, single-
location installation involves changing from the current to the new
system in only one place or in a series of separate sites over time.
(Figure 13-5c depicts this approach for a simple situation of two
locations.) The single location may be a branch office, a single factory, or
one department, and the actual approach used for installation in that
location may be any of the other approaches. The key advantage to
single-location installation is that it limits potential damage and potential
cost by limiting the effects to a single site. Once management has
determined that installation has been successful at one location, the new
system may be deployed in the rest of the organization, possibly
continuing with installation at one location at a time. Success at the pilot
site can be used to convince reluctant personnel at other sites that the
system can be worthwhile for them as well. Problems with the system
(the actual software as well as documentation, training, and support) can
be resolved before deployment to other sites.

BY G.P.LEKHAK 15

 Even though the single-location approach may be simpler for users, it still

places a large burden on information systems (IS) staff to support two
versions of the system. On the other hand, because problems are
isolated at one site at a time, IS staff members can devote all of their
efforts to success at the pilot site. Also, if different locations require
sharing of data, extra programs will need to be written to synchronize the
current and new systems; although this will happen transparently to
users, it is extra work for IS staff. As with each of the other approaches
(except phased installation), the whole system is installed; however,
some parts of the organization will not get the benefits of the new
system until the pilot installation has been completely tested.

BY G.P.LEKHAK 16

• Phased installation, also called staged installation, is an incremental approach.
With phased installation, the new system is brought online in functional
components; different parts of the old and new systems are used in cooperation
until the whole new system is installed. (Figure 13-5d shows the phase-in of the
first two modules of a new system.) Phased installation, like single-location
installation, is an attempt to limit the organization’s exposure to risk, whether in
terms of cost or disruption of the business. By converting gradually, the
organization’s risk is spread out over time and place. Also, a phased installation
allows for some benefits from the new system before the whole system is ready.
For example, new data-capture methods can be used before all reporting
modules are ready. For a phased installation, the new and replaced systems
must be able to coexist and probably share data. Thus, bridge programs
connecting old and new databases and programs often must be built.
Sometimes, the new and old systems are so incompatible (built using totally
different structures) that pieces of the old system cannot be incrementally
replaced, so this strategy is not feasible. A phased installation is akin to bringing
out a sequence of releases of the system. Thus, a phased approach requires
careful version control, repeated conversions at each phase, and a long period of
change, which may be frustrating and confusing to users. On the other hand,
each phase of change is smaller and more manageable for all involved.

BY G.P.LEKHAK 17

• Documenting the System (468)

• Documentation is the process of collecting, organizing, storing and
maintaining a complete record of system and other documents used or
prepared during the different phases of the life cycle of system. System
cannot be considered to be complete, until it is properly documented.
Proper documentation of system is necessary due to the following
reasons:

• 1. It solves the problem of indispensability (not willing) of an individual
for an organization. Even if the person, who has designed or developed
the system, leaves the organization, the documented knowledge remains
with the organization, which can be used for the continuity of that
software.

• 2. It makes system easier to modify and maintain in the future. The key
to maintenance is proper and dynamic documentation. It is easier to
understand the concept of a system from the documented records.

• 3. It helps in restarting a system development, which was postponed due
to some reason. The job need not be started from scratch, and old ideas
may still be easily recapitulated from the available documents, which
avoids duplication of work, and saves lot of times and effort.

BY G.P.LEKHAK 18

• Types of Documentation:

• 1. System Documentation: System documentation records detailed
information about a system’s design specification, its internal workings
and its functionality. System documentation is intended primarily for
maintenance programmers. It contains the following information:

• A description of the system specifying the scope of the problem, the
environment in which it functions, its limitation, its input requirements,
and form and types of output required.

• Detailed diagram of system flowchart and program flowchart.

• A source listing of all the full details of any modifications made since its
development.

• Specification of all input and output media required for the operation of
the system.

• Problem definition and the objective of developing the programs.

• Output and test report of the program.

• Upgrade or maintenance history, if modification of the program is made.

BY G.P.LEKHAK 19

• There are two types of system documentation. They are:

• i) Internal documentation: Internal documentation is part of the
program source code or is generated at compile time.

• ii) External documentation: External documentation includes the
outcome of structured diagramming technique such as dataflow an
entity-relationship diagrams.

• 2. User documentation: User documentation consists of written or other
visual information about an application system, how it works and how to
use it. User documentation is intended primarily for users. It contains the
following information:

• Set up and operational details of each system.

• Loading and unloading procedures.

• Problems which could arise, their meaning reply and operation action.

• Special checks and security measures.

• Quick reference guides about operating a system in a short, concise
format.

BY G.P.LEKHAK 20

• Training And Supporting Users

 The type of training needed will vary by system type and user expertise.
Types of training methods are:

• Resident expert (to fellow users for training).

• Traditional instructor-led classroom training.

• E-learning/ distance learning.

• Blended learning (combination of instructor-led and e-learning).

• Software help components.

• Electronic performance support system: component of a software
package or an application in which training and educational information
is embedded.

• External sources, such as vendors.

• Computing supports for users has been provided in one of a few forums:

• i) Automating support: Online support forums provides users access to
information on new releases, bugs and tips form more effective usage.
Forums are offered over the internet or over company intranets.

BY G.P.LEKHAK 21

• ii) Providing support through a help desk: A help desk is an information
systems department function and is staffed by IS personnel. The help
desk is the first place users should call when they need assistance with
an information system. The help desk staff members either deal with the
users questions or refer the users to the most appropriate person.

BY G.P.LEKHAK 22

• Organizational Issues In Systems Implementation (474)

• The best efforts of the systems development team is to design and build
a quality system and to manage the change process in the organization,
the implementation effort sometimes fails. Sometimes employees will
not use the new system that has been developed for them or, if they do
use it, their level of satisfaction with it is very low. Why do systems
implementation efforts fail? This question has been the subject of
information systems research for over 60 years.

• Why Implementation Sometimes fails?

• The conventional wisdom that has emerged over the years is that there
are at least two conditions necessary for a successful implementation
effort: management support of the system under development and the
involvement of users in the development process (Ginzberg, 1981b).
Conventional wisdom holds that if both of these conditions are met, you
should have a successful implementation.

BY G.P.LEKHAK 23

• Management support and user involvement are important to
implementation success, but they may be overrated compared to other
factors that are also important. Research has shown that the link
between user involvement and implementation success is sometimes
weak (Ives and Olson, 1984). User involvement can help reduce the risk
of failure when the system is complex, but user participation in the
development process only makes failure more likely when there are
financial and time constraints in the development process (Tait and
Vessey, 1988). Information systems implementation failures are too
common, and the implementation process is too complicated, for the
conventional wisdom to be completely correct.

• Over the years, other studies have found evidence of additional factors
that are important to a successful implementation process. Three such
factors are: commitment to the project, commitment to change, and
the extent of project definition and planning (Ginzberg, 1981b).

BY G.P.LEKHAK 24

• Commitment to the project involves managing the systems
development project so that the problem being solved is well
understood and the system being developed to deal with the problem
actually solves it.

• Commitment to change involves being willing to change behaviors,
procedures, and other aspects of the organization.

• The extent of project definition and planning is a measure of how well
the project was planned. The more extensive the planning effort is, the
less likely implementation failure is. Still another important factor related
to implementation success is user expectations (Ginzberg, 1981a). The
more realistic a user’s early expectations about a new system and its
capabilities are, the more likely it is that the user will be satisfied with
the new system and actually use it.

BY G.P.LEKHAK 25

• System Maintenance (486)

• Introduction

• In this chapter, we discuss systems maintenance, the largest systems
development expenditure for many organizations. In fact, more
programmers today work on maintenance activities than work on new
development. Your first job after graduation may very well be as a
maintenance programmer/analyst. This disproportionate (too large or

too small in comparison to something else) distribution of maintenance
programmers is interesting because software does not wear out in a
physical manner as do buildings and machines. There is no single reason
why software is maintained; however, most reasons relate to a desire to

 evolve system functionality in order to overcome internal processing
errors or to better support changing business needs. Thus, maintenance
is a fact of life for most systems. This means that maintenance can begin

 soon after the system is installed.

BY G.P.LEKHAK 26

• Maintaining Information Systems: Once an information system is installed,
the system is essentially in the maintenance phase of the systems
development life cycle (SDLC). When a system is in the maintenance phase,
some person within the systems development group is responsible for
collecting maintenance requests from system users and other interested
parties, such as system auditors, data center and network management staff,
and data analysts. Once collected, each request is analyzed to better
understand how it will alter the system and what business benefits and
necessities will result from such a change. If the change request is approved,
a system change is designed and then implemented. As with the initial
development of the system, implemented changes are formally reviewed
and tested before installation into operational systems.

• The Process of Maintaining information Systems

• As we can see in Figure 14-1, the maintenance phase is the last phase of the
SDLC. It is here that the SDLC becomes a cycle, with the last activity leading
back to the first. This means that the process of maintaining an information
system is the process of returning to the beginning of the SDLC and
repeating development steps until the change is implemented.

BY G.P.LEKHAK 27

BY G.P.LEKHAK 28

• Also shown in Figure 14-1, four major activities occur within
maintenance:

 1. Obtaining maintenance requests

 2. Transforming requests into changes

 3. Designing changes

 4. Implementing changes

• Obtaining maintenance requests requires that a formal process be
established whereby users can submit system change requests. Earlier in
this book, we presented a user request document called a System
Service Request (SSR), which is shown in Figure 14-2 (in next slide).
Most companies have some sort of document like an SSR to request new
development, to report problems, or to request new features within an
existing system. When developing the procedures for obtaining
maintenance requests, organizations must also specify an individual
within the organization to collect these requests and manage their
dispersal to maintenance personnel.

BY G.P.LEKHAK 29

BY G.P.LEKHAK 30

• Once a request is received, analysis must be conducted to gain an
understanding of the scope of the request. It must be determined how
the request will affect the current system and how long such a project
will take. As with the initial development of a system, the size of a
maintenance request can be analyzed for risk and feasibility. Next, a
change request can be transformed into a formal design change, which
can then be fed into the maintenance implementation phase. Thus, many
similarities exist between the SDLC and the activities within the
maintenance process. Figure 14-3 equates SDLC phases to the
maintenance activities described previously. The first phase of the
SDLC—planning—is analogous to the maintenance process of obtaining a
maintenance request (step 1). The SDLC analysis phase is analogous to
the maintenance process of transforming requests into a specific system
change (step 2). The SDLC design phase, of course, equates to the

 designing changes process (step 3). Finally, the SDLC phase
implementation equates to step 4, implementing changes. This similarity
between the maintenance process and the SDLC is no accident. The
concepts and techniques used to initially develop a system are also used
to maintain it. BY G.P.LEKHAK 31

BY G.P.LEKHAK 32

• Conducting Systems Maintenance

• A significant within organizations does not go to the development of new
systems but to the maintenance of existing systems. We will describe
various types of maintenance, factors influencing the complexity and cost
of maintenance, and alternatives for managing maintenance.

• Types of Maintenance

 By maintenance, we mean the fixing or enhancing of an information

 system. Corrective maintenance refers to changes made to repair
defects in the design, coding, or implementation of the system. For
example, if you had recently purchased a new home, corrective
maintenance would involve repairs made to things that had never
worked as designed, such as a faulty electrical outlet or a misaligned
door. Most corrective maintenance problems surface soon after
installation. When corrective maintenance problems surface, they are
typically urgent and need to be resolved to curtail possible interruptions
in normal business activities. Of all types of maintenance, corrective
accounts for as much as 75 percent of all maintenance activity (Andrews
and Leventhal, 1993; Pressman, 2005).

BY G.P.LEKHAK 33

• This is unfortunate because corrective maintenance adds little or no
value to the organization; it simply focuses on removing defects from an
existing system without adding new functionality (see Figure 14-4).

• Adaptive maintenance involves making changes to an information
system to evolve its functionality to changing business needs or to
migrate it to a different operating environment. Within a home, adaptive
maintenance might be adding storm windows to improve the cooling
performance of an air conditioner. Adaptive maintenance is usually less
urgent than corrective maintenance because business and technical
changes typically occur over some period of time. Contrary to corrective

 maintenance, adaptive maintenance is generally a small part of an
organization’s maintenance effort, but it adds value to the organization.

BY G.P.LEKHAK 34

• Perfective maintenance involves making enhancements to improve
processing performance or interface usability or to add desired, but not
necessarily required, system features (bells and whistles). In our home
example, perfective maintenance would be adding a new room. Many
systems professionals feel that perfective maintenance is not really
maintenance but rather new development.

• Preventive maintenance involves changes made to a system to reduce the
chance of future system failure. An example of preventive maintenance
might be to increase the number of records that a system can process far
beyond what is currently needed or to generalize how a system sends report
information to a printer so that the system can easily adapt to changes in
printer technology. In our home example, preventive maintenance could be
painting the exterior to better protect the home from severe weather
conditions. As with adaptive maintenance, both perfective and preventive
maintenance are typically a much lower priority than corrective
maintenance. Over the life of a system, corrective maintenance is most likely
to occur after initial system installation or after major system changes. This
means that adaptive, perfective, and preventive maintenance activities can
lead to corrective maintenance activities if not carefully designed and
implemented. BY G.P.LEKHAK 35

• The Cost of Maintenance

• Information systems maintenance costs are a significant expenditure. For
some organizations, as much as 60 to 80 percent of their information
systems budget is allocated to maintenance activities (Kaplan, 2002).
These huge maintenance costs are due to the fact that many
organizations have accumulated more and more older so-called legacy
systems that require more and more maintenance (see Figure 14-5).
More maintenance means more maintenance work for programmers.

 For systems developed in-house, on average, 52 percent of a company’s

 programmers are assigned to maintain existing software (Lytton, 2001).
In situations where a company has not developed its systems in-house
but instead has licensed software, as in the case of ERP systems,
maintenance costs remain high. The standard cost of maintenance for
most ERP vendors is 22 percent annually (Nash, 2010).

BY G.P.LEKHAK 36

BY G.P.LEKHAK 37

• Managing Maintenance

 As maintenance activities consume more and more of the systems
development budget, maintenance management has become
increasingly important. Today, far more programmers worldwide are
working on maintenance than on new development. In other words,
maintenance is the largest segment of programming personnel, and

 this implies the need for careful management.

• Managing Maintenance Personnel: One concern with managing
maintenance relates to personnel management. Historically, many
organizations had a “maintenance group” that was separate from the
“development group.” With the increased number of maintenance
personnel, the development of formal methodologies and tools,
changing organizational forms, end-user computing, and the widespread
use of very high-level languages for the development of some systems,
organizations have rethought the organization of maintenance and
development personnel.

BY G.P.LEKHAK 38

• Measuring Maintenance Effectiveness : A second management issue is

the measurement of maintenance effectiveness. As with the effective
management of personnel, the measurement of maintenance activities is
fundamental to understanding the quality of the development and
maintenance efforts. To measure effectiveness, you must measure the
following factors:

BY G.P.LEKHAK 39

• Number of failures

• Time between each failure

• Type of failure

• Measuring the number of and time between failures will provide you
with the basis to calculate a widely used measure of system quality. This
metric is referred to as the mean time between failures (MTBF). As its
name implies, the MTBF metric shows the average length of time
between the identification of one system failure and the next. Over time,
you should expect the MTBF value to rapidly increase after a few months
of use (and corrective maintenance) of the system (see Figure 14-7 for an

 example of the relationship between MTBF and age of a system). If the
MTBF does not rapidly increase over time, it will be a signal to
management that major problems exist within the system that are not
being adequately resolved through the maintenance process.

BY G.P.LEKHAK 40

BY G.P.LEKHAK 41

• Controlling Maintenance Requests (494)

• Another maintenance activity is managing maintenance requests. There
are various types of maintenance requests—some correct minor or
severe defects in the systems, whereas others improve or extend system

 functionality. From a management perspective, a key issue is deciding
which requests to perform and which to ignore. Because some requests
will be more critical than others, some method of prioritizing requests
must be determined. Figure 14-8 shows a flowchart that suggests one
possible method you could apply for dealing with maintenance change
requests. First, you must determine the type of request. If, for example,
the request is an error—that is, a corrective maintenance request—then
the flowchart shows that the request is placed in the queue of tasks
waiting to be performed on the system. For an error of high severity,
repairs to remove it must be made as soon as possible. If, however, the
error is considered “nonsevere,” then the change request can be
categorized and prioritized based upon its type and relative importance.

BY G.P.LEKHAK 42

• If the change request is not an error, then you must determine whether
the request is to adapt the system to technology changes and/or
business requirements, perfect its operation in some way, or enhance
the system so that it will provide new business functionality.
Enhancement-type requests must first be evaluated to see whether they
are aligned with future business and information systems’ plans. If not,
the request will be rejected and the requester will be informed. If the
enhancement appears to be aligned with business and information
systems plans, it can then be prioritized and placed into the queue of
future tasks. Part of the prioritization process includes estimating the
scope and feasibility of the change.

BY G.P.LEKHAK 43

BY G.P.LEKHAK 44

BY G.P.LEKHAK 45

• Configuration Management

• A final aspect of managing maintenance is configuration

 management, which is the process of ensuring that only authorized
changes are made to a system. Once a system has been implemented
and installed, the programming code used to construct the system
represents the baseline modules of the system. The baseline modules
are the software modules for the most recent version of a system
whereby each module has passed the organization’s quality assurance

 process and documentation standards. A system librarian controls the
checking out and checking in of the baseline source code modules. If
maintenance personnel are assigned to make changes to a system, they
must first check out a copy of the baseline system modules—no one is
allowed to directly modify the baseline modules. Only those modules
that have been tested and have gone through a formal check-in process

 can reside in the library. Before any code can be checked back in to the
librarian, the code must pass the quality control procedures, testing,
and documentation standards established by the organization.

BY G.P.LEKHAK 46

BY G.P.LEKHAK 47

BY G.P.LEKHAK 48

BY G.P.LEKHAK 49

