
5.0 Integrity Constraints

©T Paneru 1

5.0 Integrity Constraints

• Integrity constraints are those constraints in database system which guard against invalid
database operations or accidental damage to the database, by ensuring that authorized
changes to the database. It does not allow to loss of data consistency in database, it
ensures database consistency.

• In fact, integrity constraints provide a way of ensuring that changes made to the database
by authorized users do not result in a loss of data consistency.

• Example of integrity constraints in E-R model
o Key declaration: candidate key, primary key
o Form of relationship : mapping cardinalities: one to one, one to many etc

• In database management system we can enforce any arbitrary predicate as integrity
constraints but it adds overhead to the database system so its cost should be evaluated,
as far as possible integrity constraint should with minimal overhead.

5.1 Domain Constraints

o Set of all possible values for attribute known as its domain. Domain constraints enforce
attribute should hold only particular types of attributes. A domain of possible values
should be associated with every attribute. Domain constraints are the most elementary
form of integrity constraint. It is tested by database system whenever a new data item is
entered into database. System test values inserted in the database and test queries to
ensure that the comparisons make sense.

Domain types in SQL

SQL standard supports a variety of built in domain types including:

¾ Char (n): A fixed length character string with user specified length n.
¾ Varchar(n): A variable length string with user specified maximum length n.
¾ Int: An integer (Machine dependant).
¾ Smallint: A small integer.
¾ Numeric (p,d): A fixed point number with user specified precision. Where (.) is

counted in p.
¾ Real, double precision: Floating point and double precision f loating point numbers.
¾ Float (n): A floating point number with precision of at least n digits.
¾ Date: A calendar date containing a four digit year, month and day of the month.
¾ Time: The time of a day, in hours, minutes and seconds.
¾ Timestamp: A combination of date and time.

o New domains can be created from existing data types
o E.g. create domain Dollars numeric(12, 2)

 create domain Pounds numeric(12,2)
o The check clause in SQL allow domains to be restricted

Example 1
 create domain salary-rate numeric(5)
 constraint value-test check(value > = 5000)
The domain constraint ensures that the hourly-rate must greater than 5000

The clause constraint value-test is optional but useful to indicate which constraint an
update violated.

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 2

Example 2:
•

create domain AccountType char(10)
 constraint account-type-test
 check (value in (‘Checking’, ‘Saving’))

Example 3:

create domain account-number char(10)
constraint account-number-null-test check(value not null)

5.2 Referential Integrity

• Referential integrity is a condition which Ensures that a value that appears in one
relation for a given set of attributes also appears for a certain set of attributes in
another relation.

Example
If “B1” is a branch name appearing in one of the tuples in the account relation, then
there exists a tuple in the branch relation where “B1” exist for branch name attribute.
.

Example:
Consider two relation department and employee as follows

department(deptno#,dname)
employee(empno#,ename,deptno)
• Deletion of particular department from department table also need to delete records of

employees they belongs to that particular department or delete need not be allow if
there is any employee that is associated to that particular department that we are
going to delete.

• Any update made in deptno in department table deptno in employee must be updated
automatically.

• This implies primary key acts as a referential integrity constraint in a relation.

Formal Definition

• Let r1(R1) and r2(R2) be relations with primary keys K1 and K2 respectively.
 The subset α of R2 is a foreign key referencing K1 in relation r1, if for every t2 in r2

 there must be a tuple t1 in r1 such that t1[K1] = t2[α].
• Referential integrity constraint also called subset dependency since its can be

written as
 ∏α (r2) ⊆ ∏K1 (r1)

5.2.1 Referential integrity in E-R Model

• Consider relationship set R between entity set s E1 and E 2. The relational schema
for R includes the primary keys K 1 of E 1 and K2 of E 2. Then K 1 and K 2 form foreign
keys on the relational schemas for E1 and E2 respectively that leads referential
integrity constraint.

• Weak entity sets are also a source of referential integrity constraints. A weak entity

set must include the primary key attributes of the entity set on which it depends

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 3

5.2.2 Database modification

• The following tests must be made in order to preserve the following referential
integrity constraint:

 ∏α (r2) ⊆ ∏K (r1)
• Insert. If a tuple t2 is inserted into r2, the system must ensure that there is a tuple t1

in r1 such that t1[K] = t2[α]. That is
 t2 [α] ∈ ∏K (r1)

• Delete. If a tuple, t1 is deleted from r1, the system must compute the set of tuples in
r2 that reference t1:

 σα = t1[K] (r2)
• If this set is not empty

• either the delete command is rejected as an error, or
• the tuples that reference t1 must themselves be deleted

(cascading deletions are possible).

• Update: There are two cases:
o If a tuple t2 is updated in relation r2 and the update modifies values for foreign

key α, then a test similar to the insert case is made:
� Let t2’ denote the new value of tuple t2. The system must ensure that

 t2’[α] ∈ ∏K(r1)
o If a tuple t1 is updated in r1, and the update modifies values for the primary key

(K), then a test similar to the delete case is made:
1. The system must compute

 σα = t1[K] (r2)
 using the old value of t1 (the value before the update is applied).

2. If this set is not empty
1. the update may be rejected as an error, or
2. the update may be cascaded to the tuples in the set, or
3. the tuples in the set may be deleted.

5.2.3 Referential integrity in SQL

• Using the SQL Create table statement we can enforce

o Primary key
o Unique.
o Foreign key

Example:
create table customer
(
 customer-name char(20),
 customer-street char(30),
 customer-city char(30),
 primary key (customer-name)
)

create table branch
(
 branch-name char(15),
 branch-city char(30),
 assets integer,
 primary key (branch-name)
)

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 4

create table account
(
 account-number char(10),
 branch-name char(15),
 balance integer,
 primary key (account-number),
 foreign key (branch-name) references branch
)

create table depositor
(
 customer-name char(20),
 account-number char(10),
 primary key (customer-name, account-number),
 foreign key (account-number) references account,
 foreign key (customer-name) references customer
)
Cascading actions

Syntax

create table account
 . . .
 foreign key(branch-name) references branch
 on delete cascade
 on update cascade
 . . .)

on delete cascade: if a delete of a tuple in branch results referential-integrity constraint
violation, it also delete tuples in relation account that refers to the branch that was deleted.

on update cascade : if a update of a tuple in branch results ref erential-integrity constraint
violation, it updates tuples in relation account that refers to the branch that was updated.

5.3 Assertion

• An assertion is a predicate expressing a condition we wish the database to always
satisfy

• Domain constraints, functional dependency and referential integrity are special forms
of assertion.

• If a constraint cannot be expressed in these forms, we use an assertion
• e.g.

o Sum of loan amounts for each branch is less than the sum of all account
balances at the branch.

o Every loan customer keeps a minimum of $1000 in an account.
• General syntax for creating assertion in SQL is

 create assertion <assertion-name> check <predicate>

• Example 1: sum of loan amounts for each branch is less than the sum of all account

balances at the branch.

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 5

create assertion sum-constraint check
 (not exists (select * from branch
 where (select sum(amount) from loan
 where loan.branch-name = branch.branch-name)
 >= (select sum(amount) from account
 where loan.branch-name = branch.branch-name)))

Example 2: every customer must have minimum balance 1000 in an account who are loan
holder

create assertion balance-constraint check
 (not exists (
 select * from loan
 where not exists (
 select *from borrower, depositor, account
 where loan.loan-number = borrower.loan-number
 and borrower.customer-name = depositor.customer-name
 and depositor.account-number = account.account-number
 and account.balance >= 1000)))

o When an assertion is created, the system tests it for validity. If the assertion is valid then

only allow further modification. if test found assertion is violated then it can not go ahead.
o Assertion testing may introduce a significant amount of overhead, especially if the assertions

are complex; hence assertions should be used with great care.

5.4 Trigger

A trigger is a statement that is automatically executed by the system as a side effect of a
modification to
the database. While writing a trigger we must specify

o conditions under which the trigger is executed
o actions to be taken when trigger executes

Triggers re useful mechanism to perform certain task automatically when certain condition/s met.
Sometime trigger is also called rule or action rule.

Basic syntax for trigger
CREATE OR REPLACE TRIGGER <TRIGGER NAMR>
{BEFORE,AFTER}
 {INSERT|DELETE|UPDATE [OF column, . .]} ON <table name>
[REFERENCING {OLD AS <old>, NEW AS <new>}]
[FOR EACH ROW [WHEN <condition>]]
DECLARE
 Variable declaration;
BEGIN
 . . .
END;

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 6

Example 1: maintaining log

emp(empno,ename,sal)
emp_log(empno,ename,sal,operation_perform,userid,opr_date

Create or replace emp_operation_log
After update or delete on emp
For each row
Declare
 oper varchar2(8);
 v_empno emp.empno%type;
 v_ename emp.ename%type;
 v_sal emp.sal%type;
begin
 if updating then

oper:=’Update’;
 end if;
 if deleting then
 oper:=’Delete’;
 end if;

 v_empno:=old.empno;
 v_ename:=old.ename;
 v_sal:=old.sal;
 insert into emp_log values(v_empno,v_ename,v_sal,oper,user,sysdate);
end;

Example 2:

o Suppose that instead of allowing negative account balances, the bank deals with overdrafts by

o setting the account balance to zero
o creating a loan in the amount of the overdraft providing same loan number as a

account number of the overdrawn account

create trigger overdraft-trigger
 after update on account
referencing new row as nrow
 for each row
 when nrow.balance < 0
begin
 insert into borrower
 (select customer-name, account-number
 from depositor
 where nrow.account_number = depositor.account-number);
 insert into loan values
 (nrow.account_number, nrow.branch-name, nrow.balance);
 update account
 set balance = 0
 where account.account_number = nrow.account_number
end;

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 7

5.6 Functional Dependencies

• Functional dependencies are constraints on the set of legal relations. It defines attributes
of relation, how they are related to each other.

• It determines unique value for a certain set of attributes to the value for another set of
attributes that is functional dependency is a generalization of the notation of key.

• Functional dependencies are interrelationship among attributes of a relation.

Definition:

For a given relation R with attribute X and Y, Y is said to be functionally dependent on X, if given
value for each X uniquely determines the value of the attribute in Y. X is called determinant of
the functional dependency (FD) and functional dependency denoted by X→ Y.

Example 1: consider a relation supplier

 Supplier(supplier_id#,sname,status,city)

Here, sname, status and city are functionally dependent on supplier_id. Meaning is that each
supplier id uniquely determines the value of attributes supplier name,supplier status and city This
can be express by

Supplier.supplier_id→supplier.sname
Supplier.supplier_id→supplier.status
Supplier.supplier_id→supplier.city

Or simply,

supplier_id→ sname
supplier_id→ status
supplier_id→city

Question: is following functional dependency is valid ?

sname→status
sname→city

Answer: it is true only if sname is unique, otherwise false.

 Valid case
 sname status

X Good
Y Good

 Invalid case
 sname status

X Good
Y Good
X Bad

Example 2: Consider a relation student-info

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 8

Student-info(name#,course#,phone_no,major,prof,grade)

That is, {name,course} is composite primary key

This relation has the following functional dependencies
{name→phone_no, name→major, name,course→grage, course→prof}

Functional dependency X→Y satisfied on the relation R/ hold on R

FD X→Y is satisfied on relation R if the cardinality of ∏ Y(σx=x(r)) is at most one. That is if, two
tuples ti and tj of R have the same X value then the corresponding value of Y must identical.

Let R be a relational schema
 α⊆R and β⊆R

then the functional dependency α→ β holds on R iff for any legal relation r(R), whenever any

two tuples t1 and t2 of r agree on the attributes α then they also agree on the attributes β.
That is, if t1[α]=t2[α] then t1[β]=t2[β].

5.6.1 Application of Functional dependencies

Functional dependencies are applicable

o To test the relation whether they are legal under a given set of functional dependency.
o Let r is a relation and F is a given set of functional dependencies. If r satisfies F,

then we determine that r is legal under a given set of functional dependency F
o To specify the constraints for the legal relation

o We say that f holds on R if all legal relations on R satisfy the set of functional
dependencies F.

5.6.2 Types of Functional Dependencies
Trivia functional dependency

Functional dependencies are said to be trivial if it satisfied by all relations.
For example:

o A→A is trivial. It satisfied by all relation involving attribute A
o AB→A is trivial. It satisfied by all relations involving attribute A.

In general, A functional dependency of the form α→ β is trivial if β⊆ α.
Verification:

Consider a relation r

 A B C D

a1 b1 c1 d1

a1 b2 c1 d2

a2 b2 c2 d2

a2 b2 c2 d3

a3 b3 c2 d4

t1

t2

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 9

t1[AB]=a2b2, t2[AB]=a2b2 agree

t1[A]=a2 t2[A]=a2 agree

Here, t1[AB]=t2[AB] ⇒ t1[A]= t2[A]. This implies AB→A is satisfied.

Fully functionally dependency

For a given relation schema R, FD X→Y, Y is said to be fully functionally dependent on X if there
is no Z (where Z is a proper subset of X) such that Z→Y.

Example: Let us consider relational schema R=(A,B,C,D,E,H) with the FDs
 F={A→BC,CD→E,C→E,CD→E,CD→AH, ABH→BD,DH→BC}

o Here, the FD A→BC is left reduced, so clearly, BC is fully functionally dependent on A
(because there is no possible proper subset of only element A)

o Here, the FDs CD→E, C→E where E is functionally dependent on CD and again E is

functionally dependent on subset of CD. That is C (i.e. C→E). Hence E is not fully
functionally dependent on CD.

Example: Consider a relation sales

Sales (product_id#,sales_date#,quantity,product_name)
With the following functional dependencies

 F={product_id,sales_date→quantity, product_id→quantity, product_id→product_name}

o Here,. FDs product_id,sales_date→quantity, product_id→quantity, quantity is not fully

functional dependent on product_is,sales_date.
o Here, functional dependency product_id→product_name, product_name is fully functional

dependent on product_id.

Partial functional dependency

For a given relation schema R with set of functional dependency F on attribute of R. Let K as a
candidiate key in R. if X is a proper subset of K and X and X→A then A is said to be partially
dependent on K.

Example: Consider a relation schema ‘student_course_info’

student_course_info(name#,course#,grade,phone_no,major,course_department)

with the following FDs

 {name→phone_no,major
 course→course_department,
 name,course→grade
 }

Here {name,course} is a candidate key. Here grade is fully functionally dependent on
{name,course}. If thee is a possible FD name→grade then we can not say grade is fully

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 10

functionally dependent on {name,course}. Here phone_no, major and course_department are
partially dependent on {name,course}

Transitive dependency

For a given relational schema R with set of functional dependency F. Let X and Y be the subset of
r anf Let A be the attribute of R s.t. X ⊄Y, A⊄XY. If the functional dependencies {X→Y, Y→A}
implies by F (i.e. X→Y→A) then A is said to be transitively dependent on X.

Example:
Let us consider relational schema ‘prof_info’
 prof_info=(prof_name#,department_name, head_of_department)

with the set functional dependency
 F={prof_name→department_name, department_name→head_of_department}

Here prof_name→department_name→head_of_department so head_of_department is transitively
dependent on the key prof_name.

Example:
Let R=(A,B,C,D,E) and FDs F={AB→C,B→D,C→E}
Here AB act a candidate key and E is transitively dependent on the key AB, ince AB→C→E).

5.6.3 Closure of Set of Functional Dependencies

For a given set of functional dependencies F, there are certain other functional dependencies that
are logically implies by F. (i.e. if A→B and B→C, then we can write A→C). the set of all functional
dependencies logically implies F is the closure of F. Closure of F is denoted by F +.

We can find all of F+ by applying Armstrong’s Axioms:
o if β⊆ αthen α→ β or α→ α (reflexive)

o if α→ β then γ α→ γ β (augmentation)

o if α→ β and β→ γ then α→ γ (transitivity)

Example: Let R=(A,B,C,G,H,I)
 F={A→B, A→C,CG→H,CG→I,B→H}
Compute closure of F+.

Closure of F+ computed as follow:
o A→H

o by transitivity A→B and B→H
o AG→I

o By augmenting A→C with G we get AG→CG and then by transitivity with CG→I we get
AG→I

o CG→HI
o From CG →H and CG→I “union rule” can be inferred from definition of functional dependency

ot
Augmentation of CG→I to infer CG→CGI, argumentation of CG→H to infer CGI→HI, and then
transitivity.

Hence, F+={ A→A,B→B,C→C,H→H,G→G,I→I,A→B,

For more notes visit https://collegenote.pythonanywhere.com

5.0 Integrity Constraints

©T Paneru 11

 A→C,CG→H,CG→I,CG→HI,B→H,A→H,
 AG→I,CG→Hi
 }
here , first six FDs obtain by reflexive axiom.

We can further simplify the the computation of F+ by using the following addition rule.

(a) if α→ β holds and α→ γholds, then α→ β γ (Additivity or union rule)

(b) if α→ β γ holds then α→ β holds and α→ γ holds (projectivity/decomposion)

(c) if α→ βholds and γ β→ δ holds then α γ→ δ holds (pseudotransitivity)

Examples: Let R=(A,B,C,D) and F={A→B,A→C,BC→D} then compute F+.

• Since A→B and A→C then by union rule A→BC.
• Since BC →D, then by projective/decomposition B→D, C→D. Again by transitivity A→B &

B→D ⇒ A→D and A→C and C→D ⇒ A→D.
• Hence, F+ ={A→A, B→B, C→C, D→D, A→B, A→C, BC→D, B→D, C→D, A→D}

5.6.4 Attribute Closure

The closure of X under a set of functional dependencies F, written as X+, is the set of attributes
{A1,A2, . . Am} such that the FD X→Ai for Ai∈X+ follows from F by the inference axioms for
functional dependencies.

Example:

Let X=BCD and F={A→BC,CD→E,E→C,D→AEH,ABH→BD,DH→BC}. Compute the closure X+ of X
under F.

• initialize X+:=BCD.
• Since left hand side of the FD CD→E is a subset of X+ (i.e CD X⊆ +), X+ is augmented by

the right hand side of the FD (i.e. E) thus now X+:=BCDE.
• Similarly, D X⊆ +, the right hand side of the FD D→AEH is added to X+. Hence now

X+:=ABCDEH.
• Now X+ can not be augmented any further because no FDs left hand side is subset of X +.

Application of Attribute Closure

1. Testing superkey

To test αis a superkey we compute α+ and check whether α+ contains all attributes of R. if
so α is a superkey, otherwise not.

2. Testing functional dependencies
To check a functional dependency α→ β holds check whether β⊆ α+. If so α→ β;
otherwise not.

For more notes visit https://collegenote.pythonanywhere.com

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

