
Inter process Communication

Er. Rajan Karmacharya Page 1

Inter-Process Communication (IPC)

1. Introduction

Process frequently need to communicate with other process e.g in a shell pipeline the output of

the first process must be passed to second process and so on down line. Thus there is a need for

communication between processes in a well structured way not using the interrupt.

IPC provides a mechanism to allow processes to communicate and to synchronize their actions

without sharing the same addresses space, IPC is particularly useful in a distributed

environment where the communicating processes may reside on different computers connected

with a network.

There are three issues related to IPC:

1. How one process can pass the information to another?

2. How to make sure two or more processes do not get into each

Other’s way when engaging in critical activities?

3. How to maintain the proper sequence when dependencies are

Presents?

2. Race Condi tons

In some operating system processes that are working together may share some common storage

that each one can read or write. The shared storage may be in main memory (in kernel data

structure) or it may be a shared file.

Let us consider an example: a print spooler. When a process wants to print a file, it enters the

filename in a special spooler directory. Another process, the printer daemon, periodically

checks to see if there are any files to be printed; and if there are, it prints them and then removes

their name form the directory.

Imagine that there are two variables “out” which points the next file to be printed and “in”

which points to the next free slot in the directory. At any instant slots 0 to 3 are empty and slots

4 to 6 are full.

Fig: two processes want to access shared memory at the same time

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 2

More or less simultaneously, process A and B decide they want to queue a file for printing. Let

process A reads in and stores the value 7 in a local variable called next_free_slot. Just then clock

interrupt occurs and CPU switches to process B. process B also reads in and gets a 7. It also

stores it in a local variable next_free_slot. It stores the name of its file in slot 7 and updates it to

be 8. Eventually, process A runs again starting from the place it left off. It looks at

next_free_slot; finds 7, there and writes its filename in slot 7, erasing the name process B, just

put there.

Thus process B will never receive any output. The situation like this where two or more

processes are reading or writing some shared data and the final result depends on who run

precisely is called race condition.

3. How to avoid Race Condition

We know that the race condition are occurred when

 One process reading and another process writing same data

 Two or more process writing same data

Mutual Exclusion:

Prohibiting more than one process from reading, writing the same data at the same time is

called Mutual Exclusion. i.e. some way of making sure that if one process is using a shared

variables or files, the other process will be excluded from doing the same thing.

Example one process (say A) increments (use) the shared variables, all other processes desiring

to do so at the same moment should be kept waiting, when that process (A) has finished

accessing the shared variable, one of the processes waiting to do so should be allowed to

processed. In this fashion, each process accessing the shared data excluded all other from doing

from doing so simultaneously. This is called mutual exclusion.

Critical Regions:

Mutual exclusion needs to be enforced only when processes access shared modifiable data,

when processes are performing operations that do not conflict with one another they should be

allowed to proceed concurrently. When a process is accessing shared modifiable data, the

process is in critical section; all other processes (at least those that access the same modifiable

data) are excluded from their own critical section.

While a process is in its critical section, other process may certainly continue executing outside

their critical sections. When a process leaves its critical sections, then other one proceeds (if

indeed there is a waiting process).

If we could arrange processes such that no two processes were ever in their critical regions at

the same time, we could avoid race.

We need four conditions to hold to have good solutions of race conditions:

 No two processes may be simultaneously inside their CRs (Mutual exclusion).

 No assumptions may be made about the speeds or number of CPUs.

 No process running outside its CR may block other process.

 No process should have to wait forever to enter its CR.

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 3

Here process A enters its CR at time 1T . A little later, at time 2T process B attempts to enter its

CR but fails because another process is already in its CR and we allow only one at a time.

Consequently, B is temporarily suspended until time 3T when A leaves its CR, allowing B to

enter immediately. Eventually B leaves at 4T and we are back to the original situation with no

process in their critical regions.

4. Mutual Exclusion with Busy Waiting

There are various ways or methods for achieving mutual exclusion, so that while one process is

busy updating shared variable in its critical region, no other will enter its critical regions and

cause the problems.

1. Interrupt Disabling

The simples solutions for achieving ME is to have each process disable all interrupts just

after entering its critical region and re-enable them just before leaving it. With interrupts

disable, no clock interrupts can occur. The CPU is only switches from process to process as a

result of clock interrupts or other interrupts, but when interrupts are turned off the CPU

will not be switched to another process. Thus once a process has disabled interrupts, it can

examine and update the shared variable without fear that any process will intervene.

DisableInterrupt()

//perform CR task

EnableInterrupt()

Advantages: ME can be achieved by implementing operating system primitives to disable

and enable interrupts

Disadvantages: it is unwise to give user process the power to turn off interrupts. Suppose

that one of them did it and never turned on again. That could be end of the system.

If the system is multiprocessor, with two or more CPUs, disabling interrupts affects only the

CPU that executed the disable instruction. The other ones will continue running and can

access the shared memory so it only works in single processor environment.

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 4

2. Locked variable

In this method a single shared (lock) variable is initially set to zero. When a process wants to

enter its CR, it first checks the lock. If lock is 0, the process set it to 1 and enter the CR. If the

lock us already 1, the process just waits until it becomes 0. Thus 0 means that no process is

in its critical regions and 1 means that some process is in its critical regions.

Advantages:

Seems no problem.

ME can be achieved

Disadvantages: this idea contains exactly same fatal in spooler directory. Suppose that one

process reads the lock and sees that it is 0, before it can set it to 1, another process scheduled,

enter the critical regions, and set lock to 1. When first process runs again, it will set the lock

to 1 and two processes will be in their critical regions at the same time. This violates the

Mutual Exclusion.

3. Strict Alternation

In this method, process share a common integer variable turn. If turn = = 0, then process 0P is

allowed to execute in its critical region. If turn = = 1 then process 1P is allowed to execute in

its critical region.

Initially process 0P inspects turn, find it to be 0 and enter its CR. Process 1P also finds it to

be 0 and therefore sits in a tight loop continually testing a variable until it becomes 1.

Continuously testing a variable until some value appears is called busy waiting. It should be

avoided because it wastes CPU time.

Advantages: Ensures that only one process at a time can be in its critical regions.

Disadvantages: Taking Turn is not a good idea when one of the processes is much slower

than the other.

If process 0P just finishes critical regions and again need to enter critical regions and the

process 1P is still busy at non critical regions, in this situation turn = = 1, but process 1P is

busy at non critical work while process 0P wants to enter critical regions. This process 0P is

blocked by process 1P , which violates the conditions of mutual exclusions (condition 3)

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 5

4. PETERSON’S ALGORITHM

Before using the shared variables (i.e. before entering its CR), each process calls enter_region

with its own parameter number 0 or 1, as parameter. This call will cause it to wait, if need

be, until it is safe to enter. After it has finished with the shared variables, the process calls

leave_region to indicate that it is done and to allow other process to enter, if it so desires.

Let us see how this algorithm works. Initially neither process is in its critical region. Now,

process 0 calls enter_region. It indicates its interest by setting its array element and sets turn

to 0. Since process 1 is not interested, enter_region returns immediately. If process 1 now calls

enter_regions, it will hang there until interested [0] goes to FALSE, an event that only happens

when process 0 calls leave_region to exit the CR.

Advantages: preserves all condition of ME.

Disadvantages: Difficulty to program for n-process system and less efficient.

5. Hardware Solutions –TSL (Test and Set Lock)

As with other aspects of software, hardware features can make the programming tasks

easier and improve system efficiency. We use a single hardware instruction that reads a

variable, stores its value in a save area and sets the variable to a certain value. This

instruction is called test and set; once initiated will complete all of these functions without

interrupt. The indivisible test and set instruction-

TSL Rx, Lock

Test and Set Lock works as follows:

It reads the contents of memory word lock into register Rx and then stores a non-zero value

at the memory address lock. The operation of reading the word and storing into it are

guaranteed to be indivisible no other processor can access the memory word until the

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 6

instructions is finished. The CPU executing TSL instruction locks the memory bus to

prohibit other CPUs from accessing memory until it is done.

To use the TSL instruction, we will use a shared variable lock, to coordinate to access to

shared memory. When lock is 0, any process may set it to 1 using the TSL instruction and

then read or write the shared memory. When it is done the process sets lock back to 0, using

an ordinary move instruction.

The solution for critical section problem using this mechanism is shown below:

The first instruction copies the old value of lock to the register and then set lock to 1. Then the

old value is compared with 0. If it is non-zero, the lock was already set, so the program just goes

back to the beginning and tests it again. Sooner or later it will become 0 and the subroutine

returns, with the lock set. Clearing the lock is simple. The program just stores 0 in lock.

Advantages: Preserves all conditions, easier programming task and improve system efficiency.

Problem: Difficulty in hardware design.

Alternative of Busy waiting

Both Peterson’s solution and the solution using TSL are correct, but both have the defect of

requiring busy waiting.

When a process want to enter its CR, it checks to see if the entry is allowed, if it is not, the

process just sits in a tight loop waiting until it is, This cause waste of CPU Timer for noting.

1. Sleep and Wake up:

The one of the alternative to the busy waiting is to use sleep and wake up pair. Sleep is a system

call that causes the caller to block, that is be suspended until another process wakes it up. The

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 7

wake up call has one parameter, the process to be awakened. Alternatively, both sleep and

wake up each have one parameter, a memory address used to match up sleeps with wakeups.

Producer – Consumer problem

An example where sleep and wake up can be used is producer and consumer problem (also

called bounded buffer problem).

Two process share a fixed sized buffer. One of them the producer puts information into the

buffer, and the other one, the consumer takes it out. Trouble arises when the producer wants to

put a new item in the buffer, but it is already full. The solution is for the producer to go to sleep,

to be awakened when the consumer when the consumer has removed one or more items.

Similarly, if the consumer wants to remove an item from the buffer and sees that the buffer and

wakes it up.

To keep track of number of items in buffer, count variable is used. If the maximum number of

items the buffer can hold is N, the producer’s code will first test to see if count is N. if it is, the

producer will go to sleep, if it is not, the producer will add and increment counter. The

consumer’s code is similar. First test count to see if it is 0. If it is, go to sleep, if it is non-zero,

remove an item and decrement the counter.

Problems: leads to race as in spooler directory.

The following situation can occur- The buffer is empty and consumer has read count, to see if it

is zero. At that instant quantum expired and producer begins execution. The producer inset an

item in buffer, increment counter and notice that it is 1, then producer calls “wake up” signal to

wake the consumer up. Unfortunately, the consumer is not yet logically a sleep, so the wake up

signal is lost. When the consumer next runs, it will test the value of count it previously read,

finds it to be 0 and go to sleep. Sooner or later the producer will fill up the buffer and also go to

sleep. Both will sleep forever.

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 8

2. Semaphore:

The main drawback of sleep and wake up mechanism for solving producer-consumer problem

is that, the wake up signal could be lost, in some conditions. Semaphores solve the lost wake up

problem.

Semaphore are integer variable. They could have value 0, indicating that no wake ups were

saved or some positive value if one or more wakeups were pending. In these method two

operations down and up are used instead of sleep and wake up operations. The down operation

on a semaphore checks to see if the value is greater than 0. If so, it decrements and just continue.

If the value is 0, the process is put to sleep without completing the down for the moment.

Checking the value changing it and possibly going to sleep is all done as a single indivisible

atomic action.

The up operation increases the value of semaphore addressed. If one or more process were

sleeping on that semaphore, unable to complete on earlier down operation, one of them is

chosen by the system and is allowed to complete its down.

Solving producer- consumer problem using semaphores:

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 9

This solution uses three semaphores:

 Full: for counting the number of slots that are full.

 Empty: for counting the number of slots that are empty.

 Mutex: to make sure the producer and consumer do not access the buffer at same

time.

Initially full is 0, empty is equal to the number of slots in the buffer, and mutex is initially 1.

Semaphores that are initialized to 1 and used by two or more processes to ensure that only

one of them can enter its critical region at the same time are called binary semaphores. If

each process does a down just before entering its CR and an up just after leaving it, mutual

exclusion is guaranteed.

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 10

Use of semaphores

3. for achieving mutual exclusion.

Criticality Using Semaphores

3. Monitors
Codes in semaphores are like assembly language code. To make easier to write correct

programs, Hoare and Brinch Hansen proposed a higher-level synchronization primitive

called a monitor.

A monitor is a collection of procedures, variables and data structures that all grouped

together in a special kind of module or package. Processes may call the procedures in a

monitor whenever they want to, but they cannot directly access the monitor’s internal data

structures from procedures declared outside the monitor. Following program illustrates

monitors.

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 11

Monitors have an important property that makes them useful for achieving mutual exclusion:

only one process can be active in a monitor at any instant. Monitors are a programming

language construct, so the compiler knows they are special and can handle calls to monitor

procedure, the first few instructions of the procedure will check to see if any other process is

currently active within the monitor. If so, the calling process will be suspended until the other

process has left the monitor. If no other process is using the monitor, the calling process may

enter. So, no two processes will were executing their critical regions at the same time.

Solving producer- consumer problem using monitors:

Criticality using monitors

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 12

4. Message Passing

With the trend of distributed operating system, many operating systems are used to

communicate through internet, intranet and remote data processing etc.

Message passing method of inter-process communication uses two primitives send and receive.

Solving producer- consumer problem using monitors:

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 13

Classical IPC Problems
1. The dinning philosopher problems Problem:

Five philosophers are seated around a circular

table. Each philosopher has a plate of spaghetti.

The spaghetti is so slippery that a philosopher

needs two forks to eat it. Between each pair of

plates is one fork.

The life of philosopher consists of alternative

period of eating and thinking. When philosopher

gets hungry, she tries to acquire her left and right

forks; she eats for a while, then puts down the

forks and continues to think.

The problem is can we write a program for each philosopher that does what is supposed to do and

never gets stuck?

Solution 1

When the philosopher is hungry it picks up a fork and wait for another fork, when get it

eats for a while and put both forks back to the table.
#define N 5 // Number of photospheres

void philosopher (int i) //i: photosphere number; from 0 to 4

{

 while (TRUE)

 {

 think(); // photosphere is thinking

 take_fork(i); // take left fork

 take_fork((i+1)%N); // take right fork

 eat(); // eat spaghetti

 put_fork(i); // put left fork back on table

 put_fork((i+1)%N); // put right fork back on table

 }

}

Here, take_fork waits until the specified fork is available and then seizes it.

Problems:

Suppose that all the philosophers take their left fork simultaneously none will be able to

take their right fork and therefore will be a deadlock.

Solution 2:

After taking the left fork, the program checks for right fork, if it is not available, the

philosopher puts down the left one, waits for some time and then repeats the whole process.

Problem:

All philosophers could start the process of picking left fork simultaneously and so on. In this

case starvation may occur.

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 14

Solution 3:

Using a binary semaphore mutex before starting to acquire a fork she would do down on

mutex. After replacing the fork she would do up on the mutex.

Problem:

From theroritical view point the solution is adequate but from practical one, it has a

performance bug; only one philosopher can be eating at any instance with five forks

available, we should be able to allow two should be able to allow two philosophers to eat at

the same time.

Solution 3: (A perfect solution)
#define N 5 // Number of photospheres

#define LEFT (i+N-1)%N // Number of i’s left neighbors

#define RIGHT (i+1)%N // Number of i’s right neighbors

#define THINKING 0 // photosphere is thinking

#define HUNGRY 1 // photosphere is hungry

#define EATING 2 // photosphere is eating

typedef int semaphore; // semaphores are special kinds of int

int state[N]; // array to keep track of everyone’s state

semaphore mutex = 1; // ME for CR

semaphore S[N]; // one semaphore per photosphere

void philosopher (int i) //i: photosphere number; from 0 to 4

{

 while (TRUE)

 {

 think(); // photosphere is thinking

 take_forks(i); // acquire two forks

 eat(); // eat spaghetti

 put_forks(i); // put both fork back on table

 }

}

void take_forks(int i) //i: photosphere number; from 0 to 4

{

 down (& mutex);

 state[i] = HUNGRY;

 test [i];

 up (& mutex);

 down (&S[i]);

}

void put_fokrs(int i) //i: photosphere number; from 0 to 4

{

 down (&mutex);

 state [i] = THINKING;

 test (LEFT);

 test (RIGHT);

 up (&mutex);

}

void test(int i) //i: photosphere number; from 0 to 4

{

For more notes visit https://collegenote.pythonanywhere.com

Inter process Communication

Er. Rajan Karmacharya Page 15

 if (state [i] = = HUNGRY && state [LEFT] != EATING && state [RIGHT] != EATING)

 {

 state [i] = EATING;

 up (&s[i]);

 }

}

Here, we use an array state to keep track of whether a philosopher is EATING, THINKING

or HUNGRY (trying to acquire forks). A philosopher may move into EATING state if

neither neighbor is EATING. Philosopher i’s neighbor are defined by LEFT and RIGHT. In

other words, if i is 2, LEFT is 1 and RIGHT is 3.

The problem uses an array of semaphores, one per philosopher, so HUNGRY philosophers

can block if the needed forks are busy. Here each process runs the procedure philosopher as

its main code, but the other procedure, take_forks, put_forks and test are ordinary procedure

and not separated processes.

For more notes visit https://collegenote.pythonanywhere.com

