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Chapter 2 

Finite Automata (DFA and NFA, epsilon NFA) 

 

Intuitive example 

 Consider a man watching a TV in his room. The TV is in ‖on‖ state. When it is switched off, the 

TV goes to ―off‖ state. When it is switched on, it again goes to ―on‖ state. This can be 

represented by following picture. 

 

  

 

The above figure is called state diagram. 

 

 
A language is a subset of the set of strings over an alphabet. A language can be generated by 

grammar. A language can also be recognized by a machine. Such machine is called recognition 

device. The simplest machine is the finite state automaton.  

 

2.1 Finite Automata 

 
A finite automaton is a mathematical (model) abstract machine that has a set of ―states‖ and its 

―control‖ moves from state to state in response to external ―inputs‖. The control may be either 

―deterministic‖ meaning that the automation can‘t be in more than one state at any one time, or ―non 

deterministic‖, meaning that it may be in several states at once. This distinguishes the class of 

automata as DFA or NFA. 

 

‐ The DFA, i.e. Deterministic Finite Automata can‘t be in more than one state at any time. 

‐ The NFA, i.e. Non-Deterministic Finite Automata can be in more than one state at a time. 

 

2.1.1Applications: 

 

The finite state machines are used in applications in computer science and data networking. For 

example, finite-state machines are basis for programs for spell checking, indexing, grammar 

checking, searching large bodies of text, recognizing speech, transforming text using markup 

languages such as XML & HTML, and network protocols that specify how computers communicate. 
 

 

 

 

TV “on” 

 

TV “off” 

 

Switched off 

Switched on 
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2.2. Deterministic Finite Automata 
 

Definition  
A deterministic finite automaton is defined by a quintuple (5-tuple) as (Q, Σ, δ, q0, F). 

 

Where, 

Q = Finite set of states, 

Σ = Finite set of input symbols, 

δ = A transition function that maps Q × Σ -> Q 

q0 = A start state; q0 ∈  Q 

F = Set of final states; F   Q. 

 

A transistion function δ that takes as arguments a state and an input symbol and returns a state. In our 

diagram, δ is represented by arcs between states and the labels on the arcs. 

 

For example 

                                  

 
 

If s is a state and a is an input symbol then δ(p,a) is that state q such that there are arcs labled ‗a‘ 

from p to q. 

 

2.2.1General Notations of DFA 

 
There are two preferred notations for describing this class of automata; 

‐ Transition Table 

‐ Transition Diagram 

 

a) Transition Table: - 

 

Transition table is a conventional, tabular representation of the transition function δ that takes the 

arguments from Q × Σ & returns a value which is one of the states of the automation. The row of the 

table corresponds to the states while column corresponds to the input symbol. The starting state in the 

table is represented by -> followed by the state i.e. ->q, for q being start state, whereas final state as 

*q, for q being final state.  

The entry for a row corresponding to state q and the column corresponding to input a, is the state δ 

(q, a).  

 

For example: 

 

I. Consider a DFA; 

Q = {q0, q1, q2, q3} 
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Σ = {0, 1} 

q0 = q0 

F = {q0} 

δ = Q × Σ -> Q 

 

Then the transition table for above DFA is as follows: 

 

 

δ 0 1 

* -> q0 q2 q1 

q1 q3 q0 

q2 q0 q3 

q3 q1 q2 

 

This DFA accepts strings having both an even number of 0‘s & even number of 1‘s. 

 

b) Transition Diagram: 

 

A transition diagram of a DFA is a graphical representation where; (or is a graph) 

 

‐ For each state in Q, there is a node represented by circle, 

 

‐ For each state q in Q and each input a in Σ, if δ (q, a) = p then there is an arc from node q to p    

  labeled a in the transition diagram. If more than one input symbol cause the transition from state q   

  to p then arc from q to p is labeled by a list of those symbols. 

 

‐ The start state is labeled by an arrow written with ―start‖ on the node. 

 

‐ The final or accepting state is marked by double circle. 

 

‐ For the example I considered previously, the corresponding transition diagram is: 
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2.2.2. How a DFA process strings? 

 
The first thing we need to understand about a DFA is how DFA decides whether or not to ―accept‖ a 

sequence of input symbols. The ―language‖ of the DFA is the set of all symbols that the DFA  

accepts. Suppose a1, a2, …… an  is a sequence of input symbols. We start out with the DFA in its start 

state, q0. We consult the transition function δ also for this purpose. Say δ (q0, a1) = q1 to find the state 

that the DFA enters after processing the first input symbol a1. We then process the next input symbol 

a2, by evaluating δ (q1, a2); suppose this state be q2. We continue in this manner, finding states q3, q4, 

…, qn. such that δ (qi-1, ai) = qi for each i. if qn is a member of F, then input a1, a2, --- an is accepted & 

if not then it is rejected. 

 

Extended Transition Function of DFA (   ̂  ): - 

The extended transition function of DFA, denoted by  ̂  is a transition function that takes two 

arguments as input, one is the state q of Q and another is a string w∈  Σ*, and generates a state p ∈  Q. 

This state p is that the automaton reaches when starting in state q & processing the sequence of 

inputs w. 

i.e.  ̂   (q, w) = p 

 

Let us define by induction on length of input string as follows: 

 

Basis step:  ̂  (q,є) =q. i.e. from state q, reading no input symbol stays at the same state. 

 

Induction: Let w be a string from Σ* such that w = xa, where x is substring of w without  last symbol 

and a is the last symbol of w, then    ̂   (q, w) = δ ( ̂    (q, x), a). 

For more notes visit https://collegenote.pythonanywhere.com



Compiled by Tej Shahi  Page 13 

 

 

Thus, to compute  ̂  (q, w), we first compute   ̂   (q, x), the state the automaton is in after processing 

all but last symbol of w. let this state is p, i.e.  ̂   (q, x) = p. 

 

Then,  ̂   (q, w) is what we get by making a transition from state p on input a, the last symbol of w. 

i.e.  ̂  (q, w) = δ (p, a) 

For Example 

 
 

 

Now compute   ̂ (q0,1001) 

 
 

c) Compute  ̂ (q0,101) yourself.( ans : Not accepted by above DFA) 
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String accepted by a DFA 

 

A string x is accepted by a DFA (Q, Σ, δ, q0, F) if;   ̂ (q, x) = p ∈  F. 

 

 

Language of DFA 

 

The language of DFA  M = (Q, Σ, δ, q0, F) denoted by L(M) is a set of strings over Σ* that are 

accepted by M. 

 

i.e; L(M) = {w/  ̂ (q0, w) = p ∈  F} 

 
That is; the language of a DFA is the set of all strings w that take DFA starting from start state to one 

of the accepting states. The language of DFA is called regular language. 

 

Examples (DFA Design for recognition of a given language) 

 
1. Construct a DFA, that accepts all the strings over Σ = {a, b} that do not end with ba. 

 

 
2. DFA accepting all string over Σ = {0, 1} ending with 3 consecutive 0‟s. 
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3. DFA over {a, b} accepting {baa, ab, abb} 

 

 
 

 

4. DFA accepting zero or more consecutive 1‟s. 

i.e. L (M) = {1n / n = 0, 1, 2, ……} 

 

 
 

5. DFA over {0, 1} accepting {1, 01} 
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6. DFA over {a, b} that accepts the strings ending with abb. 

 
 

 

Exercises: (Please do this exercise as homework problems and the question in final exam 

will be of this patterns) 

 

1. Give the DFA for the language of string over {0.1} in which each string end with 11. 

[2067,TU BSc CSIT] 

 

2. Give the DFA accepting the string over {a,b} such that each string does not end with 

ab.[2067, TU B.Sc CSIT] 

 

3. Give the DFA for the language of string over {a,b} such that each string contain aba 

as substring. 

4. Give the DFA for the langague of string over {0,1} such that each string start with 01. 

5. The question from book: 2.2.4, 2.2.5 of chapter 2. 
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2.3. Non-Deterministic Finite Automata (NFA) 

 
A non-deterministic finite automaton is a mathematical model that consists of: 

 

‐ A set of states Q, (finite) 

‐ A finite set of input symbols Σ, (alphabets) 

‐ A transition function that maps state symbol pair to sets of states. 

‐ A state q0 ∈  Q, that is distinguished as a start (initial) state. 

‐ A set of final states F distinguished as accepting (final) state. F   Q. 

 
Thus, NFA can also be interpreted by a quintuple; (Q, Σ, δ, q0, F) where δ is Q × Σ =2Q. Unlike DFA, 

a transition function in NFA takes the NFA from one state to several states just with a single input.  

 

For example; 

 

1. 

 

 
 

 

Here, from state q1, there is no any arc for input symbol 0 & no any arc out of q2  for 0 & 1. So, we 

can conclude in a NFA, there may be zero no. of arcs out of each state for each input symbol. While 

in DFA, it has exactly one arc out of each state for each input symbol. 

 

δ, the transition function is a function that takes a state in Q and an input symbol in ∑ as arguments 

and returns a subset of Q The only difference between an NFA and DFA is in type of value that δ 

returns. In NFA, δ returns a set of states and in case of DFA it returns a single state. 

 
For input sequence w = 00101, the NFA can be in the states during the processing of the input are as: 
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2. NFA over {0, 1} accepting strings {0, 01, 11}. 
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The Extended transition function of NFA 

As for DFA‘s, we  need to define the extended transition function  ̂ that takes a state q and a 

string of input symbol w and returns the set of states that is in if it starts in state q and processes 

the string w. 

 

Definition by Induction: 

 

Basis Step:  ̂  (q, ε) = {q} i.e. reading no input symbol remains into the same state. 

 

Induction: Let w be a string from Σ* such that w = xa, where x is a substring of without last symbol  

  a. 

 

 Also let, 

 ̂ (q, x) = {p1, p2, p3, …pk} 

 

and 
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Then,  ̂ (q, w) = {r1, r2, r3, …rm} 

 

Thus, to compute  ̂ (q, w) we first compute  ̂ (q, x) & then following any transition from each of 

these states with input a. 

 

Consider, a NFA, 

 
Now, computing for  ̂ (q0, 01101)  

 

 
 

Since the result of above computation returns the set of state {q0,q2) which include the 

accepting state q2 of NFA so the string 01101 is accepted by above NFA. 

 

Examples (Design NFA to recognize the given language) 
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1. Construct a NFA over {a, b} that accepts strings having aa as substring. 

 
2. NFA for strings over {0, 1} that contain substring 0110 or 1001 

 
 

 

3. NFA over {a, b} that have “a” as one of the last 3 characters. 

 
 

 

4. NFA over {a, b} that accepts strings starting with a and ending with b. 
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Language of NFA 

 

The language of NFA, M = (Q, Σ, δ, q0, F), denoted by L (M) is; 

L (M) = {w/  ̂ (q, w) ∩ F ≠ φ} 

i.e. L(M) is the set of strings w in ∑* such that  ̂(q0,w) contains at least one state  

accepting state. 

 

Examples 

 

1. Design a NFA for the language over {0, 1} that have at least two consecutive 0‟s 

or1‟s 

 
 

Now, compute for acceptance of string 10110; 

 

Solution 

 

 ̂  (q0, 10110) 

 

Start with starting state as 

 ̂ (q0, ε) = {q0} 
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 ̂ (q0, 1) = {q0, q3} 

(q0, 10) = δ (q0, 0) ∪ δ (q3, 0) = {q1,q0} ∪ {q1} = {q1, q0} 

(q0, 101) = δ (q1, 1) ∪ δ (q0, 1) = {q3} ∪ {q3} = {q3} 

(q0, 1011) = δ (q3, 1) = {q4} 

(q0, 10110) = δ (q4, 0) = {q4} = {q4} 

 

So accepted (since the result in final state) 

 

Exercise 
1. Question from book: 2.3.4 of chapter 2 

2. Give a NFA to accept the language of string over{a.b} in which each string contain abb 

as substring. 

3. Give a NFA which accepts binary strings which have at least one pair of „00‟ or one 

pair of „11‟. 

 

 

2.4. Equivalence of NFA & DFA 

 
Although there are many languages for which NFA is easier to construct than DFA, it can be 

proved that every language that can be described by some NFA can also be described by some 

DFA. 

 

The DFA has more transition than NFA and in worst case the smallest DFA can have 2
n
 state 

while the smallest NFA for the same language has only n states. 

 

 We now show that DFAs & NFAs accept exactly the same set of languages. That is non-

determinism does not make a finite automaton more powerful. 

 

To show that NFAs and DFAs accept the same class of language, we show; 

 

Any language accepted by a NFA can also be accepted by some DFA. For this we describe an 

algorithm that takes any NFA and converts it into a DFA that accepts the same language. The 

algorithm is called ―subset construction algorithm‖. 

 

The key idea behind the algorithm is that; the equivalent DFA simulates the NFA by keeping 

track of the possible states it could be in. Each state of DFA corresponds to a subset of the set of 

states of the NFA, hence the name of the algorithm. If NFA has n-states, the DFA can have 2
n
 

states (at most), although it usually has many less. 

 

The steps are: 

 
To convert a NFA, N = (QN, Σ, δN, q0, FN) into an equivalent DFA D = (QD, Σ, δD, q0, FD), we 

have following steps. 
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1.The start state of D is the set of start states of N i.e. if q0 is start state of N then D has start state 

as {q0}. 

 

2.QD is set of subsets of QN i.e. QD = 2
QN

. So, QD is power set of QN. So if QN  has n states then 

QD will have 2
n
 states. However, all of these states may not be accessible from start state of QD 

so they can be eliminated. So QD will have less than 2
n
 states. 

 

3.FD is set of subsets S of QN such that S ∩ FN ≠ φ i.e. FD is all sets of N‘sstates that include at 

least one final state of N. 

 

For each set S ⊆ QN & each input a ∈ Σ, δD (S, a)= 

 

i.e. for any state {q0, q1, q2, … qk} of the DFA & any input a, the next state of the DFA is the 

set of all states of the NFA that can result as next states if the NFA is in any of the state‘s q0, q1, 

q2, … qk when it reads a. 

 

 

For Example 
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The same table can be represented with renaming the state on table entry as 

 
 

 

The equivalent DFA is 

 
 

Or 

 
 

The other state are removed because they are not reachable from start state. 

 

Example2 

 

Convert the NFA to DFA 
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Solution: using the subset construction we have the DFA as 

 

 

            

            

     

 

 

 

 

 

 

 

 

Draw the DFA diagram from above transition table yourself. 

 

Exercises 

 

1. Convert the following NFA to DFA 

 

 
 

 

2. 
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3.Question from text book: 2.3.1, 2.3.2 

 

Theorem 1: 

For any NFA, N = (QN, Σ, δN, q0, FN) accepting language L ⊆ Σ* there is a 

DFA D = (QD, Σ, δD, q0’,FD) that also accepts L i.e. L (N) = L (D). 

 

Proof: - 

 

The DFA D, say can be defined as; 

QD = 2
QN

 , q0 = {q0} 

 

Let S = { p1, p2, p3, … pk} ∈ QD. Then for S ∈ QD & a ∈ Σ,  

 

δD (s, a) =  

 

FD = {S / S ∈ QD & S ∩ FN ≠ φ} 

 

The fact that D accepts the same language as N is as; 

for any string w ∈ Σ*; 

 ̂N (q0, w) =  ̂D (q0, w) 

 

Thus, we prove this fact by induction on length of w. 

 

Basis Step: 

 

Let |w| = 0, then w = ε, 

 

 ̂N(q0, ε)= {q0)=q0= ̂D(q0, ε) 

 

Induction step; 

 

Let |w| = n + 1 is a string such that w = xa & |x| = n, |a| = 1; a being last symbol. 

Let the inductive hypothesis is that x satisfies. 

Thus, 

 ̂D (q0‘, x) = ̂N (q0, x), let these states be {p1, p2, p3, … pk} 
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Now, 

 ̂N (q0, w)  =  ̂N (q0, xa) 

= δN ( ̂N (q0, x), a) 

= δN ({p1, p2, p3, … pk}, a) [Since, from inductive step] 

=U δN(pi,a)…………………….(1) 

 

Also 

  ̂D (q0‘, w)  =  ̂D (q0‘, xa) 

= δD ( ̂D (q0‘, x), a) 

= δD ( ̂N (q0, x), a)  [Since, by the inductive step as it is true for x] 

= δD ({p1, p2, p3, … pk}, a) [Since, from inductive step] 

  

Now, from subset construction, we can write, 

δD ({p1, p2, p3, … pk}, a) =UδN(pi,a) 

 

so, we have 

 ̂D (q0‘, w) = UδN(pi,a)………………………..(2) 

 

Now we conclude from 1 and 2 that  

 ̂N (q0, w) =  ̂D (q0‘, w). 

Hence, if this relation is true for |x| = n, then it is also true for |w| = n + 1. 

 

∴DFA D & NFA N accepts the same language. 

i.e. L (D) = L (N) Proved. 

 

Theorem 2: 

A language L is accepted by some DFA if and only if L is accepted by some NFA. 

 

Proof: 

 

‗if‘ part (A language is accepted by some DFA if L is accepted by some NFA): 

 

It is the subset construction and is proved in previous theorem. In exam, you 

should write the proof of previous theorem here. 

 

Only if part (a language is accepted by some NFA if L is accepted by some DFA): 

 Here we have to convert the DFA into an identical NFA. 

 

Consider we have a DFA D = (QD, Σ, δD, q0, FD). 
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This DFA can be interpreted as a NFA having the transition diagram with exactly one 

choice of transition for any input. 

 

Let NFA N = (QN, Σ, δN, q0‘, FN) to be equivalent to D. 

Where QN = QD, FN = FD, q0‘ = q0 and δN is defined by the rule 

If δD(p,a)=q then  δN(p,a)= {q}. 

.  

Then to show if L is accepted by D then it is also accepted by N, it is sufficient to show, 

for any string w ∈ Σ*,   ̂D (q0, w) =  ̂N (q0, w) 

 

We can proof this fact using induction on length of the string. 

Basis step: - 

 

Let |w| = 0 i.e. w = ε 

∴ ̂D (q0, w) = ̂D (q0, ε) = q0 

   ̂N (q0, w) =  ̂N (q0, ε) = {q0} 

∴ ̂D (q0, w) =  ̂N (q0, w) for |w| = 0 is true. 

Induction: - 

Let |w| = n + 1 & w = xa. Where |x| = n & |a| = 1; a being the last symbol. 

Let the inductive hypothesis is that it is true for x. 

∴if  ̂D (q0, x) = p, then  ̂N (q0, x) = {p} 

 

i.e.  ̂D (q0, x) =  ̂N (q0, x) 

 

 Now, 

 ̂D (q0, w)  =  ̂D (q0, xa) 

= δD ( ̂D (q0, x), a) 

= δD (p, a)  [ from inductive step  ̂D (q0, x,=p] 

= r, say 

Now, 

 ̂N (q0, w)  =  ̂N (q0, xa) 

= δN ( ̂N (q0, x), a)  [from inductive steps] 

= δN({p}, a) 

   =r [from the rule that define δN) 

 

Hence proved. i.e.  ̂D (q0, w)=  ̂N (q0, w) 

 

NFA with ε-transition (ε-NFA) 
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This is another extension of finite automation. The new feature that it incorporates is, it allows a 

transition on ε, the empty string, so that a NFA could make a transition spontaneously without 

receiving an input symbol. 

 

Like Non-determinism added to DFA, this feature does not expand the class of language that can 

be accepted by finite automata, but it does give some added programming connivance. This are 

very helpful when we study regular expression (RE) and prove the equivalence between class of 

language accepted by RE and finite automata. 

 

A NFA with ε-transition is defined by five tuples (Q, Σ, δ, q0, F), where; 

 

Q = set of finite states 

Σ = set of finite input symbols 

q0 = Initial state, q0 ∈ Q 

F = set of final states; F ⊆ Q 

δ = a transition function that maps; 

Q × Σ ∪ {ε}--> 2
Q 

 

 

For examples: 

1. 

 

 

This accepted the language {a,aa,ab,abb,b,bbb,…………………} 

 

2. 

  

For more notes visit https://collegenote.pythonanywhere.com



Compiled by Tej Shahi  Page 31 

 

 
 

 

ε-closure of a state: 

 

ε-closure of a state ‗q‘ can be obtained by following all transitions out of q that are labeled ε. 

After we get to another state by following ε, we follow the ε-transitions out of those states & so 

on, eventually finding every state that can be reached from q along any path whose arcs are all 

labeled ε. 

 

 

Formally, we can define ε-closure of the state q as; 

 

Basis: state q is in ε-closure (q). 

 

Induction: If state q is reached with ε-transition from state q, p is in ε-closure (q). And if there is 

an arc from p to r labeled ε, then r is in ε-closure (q) and so on. 

 

 

Extended Transition Function of ε-NFA: - 

 

The extended transition function of ε-NFA denoted by  ̂ ,is defined as; 

i) BASIS STEP: -  ̂ (q, ε) = ε-closure (q) 

ii) INDUCTION STEP: - 

 

Let w = xa be a string, where x is substring of w without last symbol a and a ∈ Σ 

but a ≠ ε. 

 

Let  ̂ (q, x) = {p1, p2, … pk} i.e. pi‘s are the states that can be reached from q following 

path labeled x which can end with many ε & can have many ε. 

 

Also let, 
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then 

 
 

Example 

 

  
 

 

Now compute for string ba 

 

- ̂ (p, ε)= ε-closure(p)={p,q,r,u} 

 

Compute for b i.e. 

- δ(p,b)U δ(q,b)U δ(r,b)U δ(u,b)={s,v} 

- ε-colsure(s)U ε-closure(v)={s,t,v} 

 

Computer for next input ‗a‘ 

- δ(s,a)U δ(t,a)U δ(v,a)={y,w} 

- ε-closure(y)U ε-closure(w)={y,w} 

 

The final result set contains the one of the final state so the string is accepted. 
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