Advanced Java Programming Reference Note

Unit-1
Programming in Java

Introduction

Java is general purpose, object oriented, high-level programming language. It runs on a variety
of platforms, such as Windows, Mac OS, and the various versions of UNIX. Java is used to
develop Mobile apps, Web apps, Desktop apps, Games and much more.

Java Architecture

Java Architecture 1s a collection of components, i.e., JVM, JRE, and JDK. It integrates the
process of interpretation and compilation. It defines all the processes involved in creating a
Java program. Java Architecture explains each and every step of how a program is compiled
and executed.

The below-mentioned points and diagram will simply illustrate Java architecture:
1. There is a compilation and interpretation process in Java.

2. After the JAVA code is written, the JAVA compiler comes into the picture that converts
this code into byte code that can be understood by the machine.

3. After the creation of bytecode JAVA virtual machine(JVM) converts it to the machine
code, 1.e. (.class file)

4. And finally, the machine runs that machine code.

Java Virtual
SHit s Co Machine (JVM)
Java Compiler Operating System(O5)

+

Components of Java Architecture

= JVM (Java Virtual Machine): The main feature of Java is Write Once Run Anywhere.
The feature states that we can write our code once and use it anywhere or on any operating
system. Our Java program can run any of the platforms only because of the Java Virtual
Machine. It is a Java platform component that gives us an environment to execute java
programs. JVM’s main task is to convert byte code into machine code.

= Java Runtime Environment (JRE): It provides an environment i which Java programs
are executed. JRE takes our Java code, integrates it with the required libraries, and then
starts the JVM to execute it. The JRE contains libraries and software needed by your Java
programs to run.

= Java Development Kit (JDK): JDK is a software development environment used to develop
Java applications and applets. It contains JRE and several development tools, an
interpreter/loader (java), a compiler (javac), an archiver (jar), a documentation generator
(yavadoc) accompanied with another tool.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Java Buzzwords / Features of Java

The Java programming language is a high-level language that can be characterized by all of the
following buzzwords:

= Simple: Java programming language is very simple and easy to learn, understand, and code.
Most of the syntaxes in java follow basic programming language C and object-oriented
programming concepts are similar to C++. In a java programming language, many
complicated features like pointers, operator overloading, structures, unions, etc. have been
removed.

= Secure: Java 1s said to be more secure programming language because it does not have
pointers concept, java provides a feature "applet" which can be embedded into a web
application. The applet in java does not allow access to other parts of the computer, which
keeps away from harmful programs like viruses and unauthorized access.

= Portable: Portability is one of the core features of java which enables the java programs to
run on any computer or operating system. For example, an applet developed using java runs
on a wide variety of CPUs, operating systems, and browsers connected to the Internet.

= Object-oriented: Java is a pure object-oriented language, almost everything in java i1s an
object, all program code and data reside within object and classes that is everything in java
1s defined within a class.

= Robust: Java i1s more robust because the java code can be executed on a variety of
environments, java has a strong memory management mechanism (garbage collector), java
1s a strictly typed language, it has a strong set of exception handling mechanism, and many
more.

= Architecture Neutral: Java language and Java Virtual Machine (JVM) helped i achieving
the goal of “write once; run anywhere, any time, forever.” Changes and upgrades in
operating systems, processors and system resources will not force any changes in Java
Programs.

= Multithreaded: Java supports multi-threading programming that allows to write programs
to do several works simultaneously. A thread is an individual process to execute a group of
statements. JVM utilizes multiple threads to execute different blocks of code. Creating
multiple threads is called ‘multithreaded’ in Java.

= Interpreted: During compilation, Java compiler converts the source code of the program
into byte code. This byte code can be executed on any system machine with the help of
Java interpreter mn JVM.

= High performance: Java performance is high because of the use of bytecode. The bytecode
was used so that it was easily translated into native machine code.

= Distributed: Java programming language supports TCP/IP protocols which enable the java
to support the distributed environment of the Internet. Java also supports Remote Method
Invocation (RMI), this feature enables a program to invoke methods across a network.

= Dynamic: Java programs access various runtime libraries and information inside the
compiled code (Bytecode). This dynamic feature allows to update the pieces of libraries
without affecting the code using it.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Path and ClassPath Variables

Path

ERTL TR

Once we installed Java on our machine, it is required to Set the PATH environment variable to
conveniently run the executable (javac.exe, java.exe, javadoc.exe, and so on) from any
directory without having to type the full path of the command, such as:

C:\javac TestClass.java
Otherwise, you need to specify the full path every time you run it, such as:

C:\Java\jdk1.7.0\bin\javac TestClass.java

New User Variable ﬂ
Variable name: PATH
Variable value: | C:\Program Files \Java\jdk1.7.0_21\bin;

r oK - Cancel

ClassPath

R e e

ClassPath 1s system environment variable used by the Java compiler and JVM.
Java compiler and JVM is used Classpath to determine the location of required class files. It
contains a path of the classes provided by JDK.

C:\Program Files\Java\jdkl.6.0\bin

New User Variable
Variable name: dasspath
Variable value: __Z: 'iProgiam Files pavayg 1.6 .D_\,j_re\li_tlh_'t.j_ar___
| OK | Cancel

Sample Java Program
Let's create the Hello World program:

class HelloWorld {
public static void main(String[] args) {
System.out.printin("'Hello World!");
/
/

= In our Hello World program, we have a class called HelloWorld. As a convention, always
start the name of your classes with an uppercase letter. To create a class, you use
the class keyword, followed by the name of the class.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

= Every Java program must have a main method. This tells the Java compiler that this is the
beginning of the Java program. The program then executes all the statements following the
main method. Here's what the main method looks like:

public static void main(String[] args) {
f

= System.out.printin() 1s used to print statement. Here, System 1s a class, out is an object
of the PrintStream class, println() is a method of the PrintStream class.

ComEi]ing and Runm’ng Java Programs

Step 1: Write a program on the notepad and save it with .java (for example, DemoProg.java)
extension.

class DemoProg
{
public static void main(String args/[/])
{
System.out.printin("Hello!");
System.out.printin("Jayanta");

/
/

Step 2: Open a command prompt window and go to the directory where you saved the class.
Assume it's C:\\demo

Step 3: Type ' javac DemoProg.java ' and press enter to compile your code. If there are no
errors in your code, the command prompt will take you to the next line.

Step 4: Now, type ' java DemoProg.java ' to run your program.

Output Methods print() and println()

The printin(”...") method prints the string "...”” and moves the cursor to a new line.
The print("..."") method instead prints just the string "...", but does not move the cursor to a
new line. Hence, subsequent printing instructions will print on the same line.

The printin() method can also be used without parameters, to position the cursor on the next
line.

Example
public class JavaExample {
public static void main(String[] args) { Output

System.out.printin("Welcome to Collegenote!");
System.out.printin("Welcome to Collegenote!");
System.out.print("Collegenote"); Welcome to Collegenote!

Welcome to Collegenote!

System.out.print("Collegenote”); CollegenoteCollegenote

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Reading Data InEut from Users

Java Scanner class allows the user to take input from the console. It belongs to java.util
package.

Syntax: Scanner sc = new Scanner(System.in);

Example
!l AddTwoNumbers.java: This program read two numbers from user and finds their sum.

import java.util. Scanner;
public class AddTwoNumbers {

public static void main(String[] args) {
int numl, num?2, sum;
Scanner sc = new Scanner(System.in),
System.out.printin("Enter First Number: ");

numl = sc.nextInt();

System.out.printin("Enter Second Number: "),
num?2 = sc.nextint();

sum = numl + num?2;
System. out.printin("Sum of these numbers: "+sum);

Arrays in Java

Java array 1s a collection of similar type of elements that have contiguous memory location. It
1s a data structure where we store similar elements. We can store only a fixed set of elements
in a Java array.

Array in java 1s index based, for n —sized array first element of the array is stored at 0 index
and last element 1s stored in index n — 1.
Element
First index (at index 8)

!.
o] 1+ 2 3 4 5 6 7\8 9 —indices

LLELLE 1 [mi

Array length is 10

There are two types of array: One-Dimensional Array & Multi-Dimensional Array

One-Dimensional Arrays

In one-dimensional arrays, a list of items can be given one variable name using only one
subscript.

Svatax to Declare an Array in Java

data-type arrayName[], OR data-type[] arrayName;

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

For example: int[] nums;

Here, nums is an array that can hold values of type int.

Creation: When an array 1s declared, only a reference of an array is created. After declaring an
array, we need to create it in the physical memory. Java allows us to create arrays using new
operator only, as shown below:

arrayName = new type[size]

Example:
intf] nums; // declare an array
nums = new int[10]; // allocate memory
OR

int[] nums = new int[10]; // combining both statements in one

Initialization: In Java, we can initialize arrays during declaration. For example,
int[] age = {12, 4, 5, 2, 5}; //declare and initialize an array
We can also initialize arrays in Java, using the index number. For example,
// declare an array
int[] age = new int[5];
// initialize array
age[0] = 12;
age[l] = 4;
agef2] =5;

Accessing Array Elements: We can access the element of an array using the index number.
Here is the syntax for accessing elements of an array,

arrayfindex]
Example:
class Main {
public static void main(String/[] args) {

// create an array
int[| age = {12, 4, 5, 2, 5};

// access each array elements
System.out.printin("Accessing Elements of Array:");
System.out.printin("First Element: " + age[0]),
System.out.printin("Second Element: " + age[1]);
System.out.printin("Third Element: " + age[2]),
System.out.printin("Fourth Element: " + age[3]);
System.out.printin("Fifth Element: " + age[4]),

Collegenote Prepared By: Jayanta Poudel

| Advanced Java Programming Reference Note

Q. Write a Java program to find sum and average of all elements in an array.
Solution:

//Sum_Average.java

import java.util. Scanner;
public class Sum_Average
{
public static void main(String[] args)
{
int n, sum = 0;
float average;
Scanner s = new Scanner(System.in),
System.out.print("Enter no. of elements you want in array:");
n = s.nextInt();
int af] = new int[n];
System.out.printin("Enter all the elements:");
for(inti=0;i<n;it+)
{
afi] = s.nextInt();
sum = sum + afif;
/
System.out.printin("Sum:"+sum);
average = (float)sum / n;
System.out.printin("Average:"+average);

/
/

Multi-Dimensional Arrays

In such case, data is stored in row and column based index (also known as matrix form).
Syntax to Declare Multidimensional Array in Java:
dataTypel][] arr, OR datalype arr[][];
Example to instantiate Multidimensional Array in Java:
int[][] ar = new int[3][4]; //3 row and 4 column

Here, we have created a multidimensional array named ar. It 1s a 2-dimensional array, that can
hold a maximum of 12 elements,

Column Column Column Column
1 2 3 4

a[e][e]

a[e][1] | a[e][2] | a[e][3]

a[1][e] | a[1][1] | a[1][2] | a[2][3]

a[2][e] | a[2][1] | a[2][2] | a[2][3]

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Example:

public class multiDimensional {
public static void main(String args[])
/

// declaring and initializing 2D array
intar(][] ={{2,7,9,5},{3,6, 1,8}, {7,4,2 3})};
// printing 2D array
for(inti=0;i<3;i++){
for (intj=0;j<4;j++){
System.out.print(ar[i][j] + " "),
/

System.out.printin(),

/

Output

/

/

Q. Write a Java program to enter two 3x3 matrices and calculate the sum of given matrices.

Solution:

import java.util.Scanner;
public class Main {
public static void main(String[] args) {

Scanner ed = new Scanner(System.in);
int row, col, i, j;
System.out. print("Enter number of rows:");
row = ed.nextInt(),
System.out.print("Enter number of column:");
col = ed.nextInt();

int[][] a = new int[row][col];
int[][] b = new intfrow][col];
int[][] sum = new int[row] [col],
System.out.println("Enter first matrix:");
for (i=0;i<row; it+){
Jor G=0;j<col; j++) {
afil [j] = ed.nextInt(),

/

} number of rows:3
’ number of column:3
System.out.printin("Enter Second matrix:"); o e

for (i=0;i<row; i++){
for (i=0,j <col; j++) {
b[i][j] = ed.nextInt();
/

/
for (i=0;i<row; it+){
for (G =0; 7 < col; j++) {
} sum{i][j| = b[i][j] + a[i][j];

Second matrix:

2
E
2

two matrices:

g =
o= = NW-d et Wl

o W W

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

System.out.printin("Sum of two matrices:");

Jor (i=0;i<row; i++){
JorG=0;7<vcol; j+H{

System.out.print(sum[i] [/ +" "),

/
System.out.print("\n");

/

/
/

For Each Loop

In Java, the for-each loop is used to iterate through elements of arrays and collections (like
ArrayList). It is also known as the enhanced for loop.

Advantages:
= It makes the code more readable.
= [t eliminates the possibility of programming errors.

Disadvantages:
= It cannot traverse the elements in reverse order.
= We donot have the option to skip any element because it does not work on an index basis.

Syntax
for (data_type variableName : array | collection) {

// code block to be executed

/

For each iteration, the for-each loop takes each element of the collection and stores it in a loop
variable. Thus, it executes the code written in the body of the loop for each element of the array
or collection.

Example

class Main {
public static void main(String/[] args) {

// create an array
int[] numbers = {3, 9, 5, -5};

// for each loop
for (int number: numbers) {
System.out.println(number);

/
/

/

Here, the for-each loop traverses over each element of the array numbers one by one until the
end.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Class and Object

Class

BT SR

A class is a blueprint or prototype that defines the variables and methods common to all objects
of a certain kind. It is a template or blueprint from which objects are created.

To define a class in java we use a keyword class. The general form to define a direct new class
1s as follows:
<Access><Modifier> class <className> {

/ifield, constructor, and method declarations
/

The general form to define a new class by extending the class and implementing the interfaces
1s as follows:
<Access> <Modifier> class <className> extends <superClass> implements <YourInterface> {

/ffield, constructor, and method declarations

/
Example

public class Person

{

//state or field or variable
String name = "Jayanta",;
int age = 20;

/ereating the methods of the class
void study()
{

//methodBody

/
void play()

{
//methodBody
/

public static void main(String args/[])
/
System.out.println("Name of the person: " +name);
System.out.printin("Age of the person: " +age);
/
1

Object

0 A

An object 1s an instance of a class. To create an object of a class, first, we need to declare it
and then instantiate it with the help of a “new” keyword.

Syntax of creating an object of a class: ClassName objectName = new ClassName();

Example: Person object] = new Person(),

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Accessing the members of a Java Class: We can access the data members of a class using the
object of the class. We just write the name of the object which is followed by a dot operator
then we write the name of the data member (either variables or methods) which we want to
access.

Syntax:
objectName.variableName;, //accessing the variables
objectName. MethodName(), //accessing the methods
Example:
objectl.age; //accessing the variables
objectl play(); //accessing the methods

Q. Write a Java program fo create Rectangle class with data member length and breadth.
Include methods getData() and displayArea() in the class. Finally create an object of
Rectangle class and display its area.

Solution:

import java.util.Scanner;
class Rectangle{
intl b,
void getData(){
Scanner in = new Scanner(System.in),
System.out.print("Enter length : ");
I=in.nextInt();

System.out.print("Enter breadth : ");
b=in.nextInt();

/
void displayArea(){
inta;
a = [*b;
System.out.printin("Area = "+a);
/

public static void main(String args[]){
Rectangle obj = new Rectangle(),
obj.getData();
obj.displayArea();

Enter length :

Enter breadth
LArea = 15

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming

Constructors

Reference Note

A constructor in Java is a special method that is used to initialize objects. The constructor is
called when an object of a class is created. It can be used to set initial values for object
attributes. At the time of calling constructor, memory for the object is allocated in the memory.

Constructor has the same name as its class and is syntactically similar to a method. However,
constructors have no return type. All classes have constructors, whether you define one or not,
because Java automatically provides a default constructor that initializes all member variables
to zero. However, once you define your own constructor, the default constructor is no longer

used.

Types of Constructor:

No-Argument Constructors

Parameterized Constructors

The no-argument constructor of Java does
not accept any parameters instead, using
these constructors the instance variables of a
method will be initialized with fixed values
for all objects.

Example:

class Rectangle

{
double length;

double breadth;

Rectangle()
/

length = 15.5;

breadth = 10.67;
/
double calculateArea(){

return length*breadth;

/

//No-arg constructor

/

class Rectangle Main {
public static void main(String/[] args) {
double area;
Rectangle myrec = new Rectangle(),
area = myrec.calculateArea();
System.out.printin("The area of the
Rectangle: " +area);

/
/

A Java constructor can also accept one or
more parameters. Such constructors are
known as parameterized constructors
(constructor with parameters).

Example:

class Rectangle

{
double length;

dotible breadth;
// Parameterized constructor
Rectangle(double I, double b)

/
length = I;

breadth = b;
/

double calculateArea(){
return length*breadth;
/

/

class Rectangle Main {
public static void main(String[] args) {
double area;

Rectangle myrec = new
Rectangle(41,56);

area = myrec.calculateArea();

System.out.printin("The area of

Rectangle: " +area),

/
/

Collegenote

Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Method Overloading

If a class has multiple methods having same name but different in parameters (different number
of parameters, different types of parameters, or both), it is known as Method Overloading.

When a method 1s invoked, Java matches up the method name first and then the number and
type of parameters to decide which one of the definition is execute.

Example
public class Sum {

// Overloaded the method sum(). This sum takes bwo int parameters as input
public int sum(int a, int b)

{
/

return (a + b);

// Overloaded the method sum(). This sum takes three int paramefters as input
public int sum(int a, int b, int c)

f
/

// Overloaded the method sum(). This sum takes two double parameters as input
public double sum(double a, double b)

{
’

// Main code
public static void main(String args(])

return (a +b + ¢);

return (a + b);

{
Sum s = new Sum();
System.out.printin(s.sum(3, 2));
System.out.printin(s.sum(2, 2, 4));
System.out.printin(s.sum(10.5, 20.5));

v

/
Qutput

In this example, the number of parameters as well as its data type is changed to overload the
method. If the parameters provided are both int then the first sum method is executed. If there
are three parameters, all int then the second method is invoked. In case two double data type
parameters are given then the third method 1s invoked.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming

Static Modifier

Reference Note

The static keyword is a non-access modifier used for methods and wvariables. Static
methods/variables can be accessed without creating an object of a class.

The main purpose of using the static keyword in Java is to save memory. When we create a
variable in a class that will be accessed by other classes, we must first create an instance of the
class and then assign a new value to each variable instance — even if the value of the new
variables are supposed to be the same across all new classes/objects. But when we create a
static variables, its value remains constant across all other classes, and we do not have to create
an instance to use the variable. This way, we are creating the variable once, so memory is only

allocated once.

= Static Methods: Static methods are also called class methods. It is because a static method
belongs to the class rather than the object of a class. And we can invoke static methods

directly using the class name. For example,

class StaticTest

{

// non-static method
int multiply (int a, int b)

{

returna * b;

/

// static method
static int add (int a, int b)

{

return a + b;

/
}

public class StaticMethodDemo
{

public static void main (String[]args)

{

// create an instance of the StaticTest class
StaticTest st = new StaticTest ();

// call the nonstatic method
System.out.println (" 5 * 5 =" + st.multiply (3, 5));

// call the static method

/

/

System.outprintln (" 5 + 3 =" + StaticTest.add (5, 3));

There are two main restrictions for the static method. They are:

1. The static method cannot use non-static data members
directly.

2. this and super cannot be used in a static context.

Collegenote

or call the non-static method

Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

= Static Variables: If we declare a variable static, all objects of the class share the same static
variable. It 1s because like static methods, static variables are also associated with the class.
And, we don't need to create objects of the class to access the static variables. For example,

class Test {
// static variable
static int max = 10;

// non-static variable
int min = 5;

/

public class Main {
public static void main(String[] args) {
Test obj = new Test(),

// access the non-static variable
System.out.printin("min + 1 =" + (obj.min + 1)),

// access the static variable
System.out.println("max + 1 =" + (Testmax + 1));

/

/

Access static Variables and Methods within the Class

We are accessing the static variable from another class. Hence, we have used the class name
to access it. However, if we want to access the static member from inside the class, it can be
accessed directly. For example,

public class Main {

// static variable
static int age;

// static method

static void display() {
System.out.printin("Static Method");

v

public static void main(String[] args) {

// access the static variable
age = 30;
System.out.println("Age is " + age),

// access the static method
display();

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Inheritance

Inheritance is the mechanism of deriving a new class from existing class. The existing class 1s
known as the superclass or base class or parent class and the new class 1s called subclass or
derived class or child class or extended class. The subclass inherits some of the properties from
the superclass and can add its own properties as well.

extends 1s the keyword used to inherit the properties of a class.

Syntax:
class BaseClass
: //methods and fields
iiass DerivedClass extends BaseClass
j //methods and fields

Types of Inheritance

1. Single Inheritance: In single inheritance, a class is derived from only one existing class.

class A
Class A Parent {
" //methods and fields
class B extends A
//methods and fields
Class B Child 2 f
Example:
class Af
void funcl()
{
System.out.printIn{"Method funcl belongs to parent class A");
}
}
class B extends A{ // Notice the extends keyword (inheriting B from A)
void func2 ()
{
System.out.println("Method funcZ belongs te child class B");
}
}

class Single({
public static void main(String[] args)

{

B obj = new B():

obj.func2 () ;

obj.fundl{); // Note that object of class B is used to invoke funel ()
}

ethod func2 belongs to child cla

Output' ethod funcl belongs to parent cl

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming

Reference Note

2. Multilevel Inheritance: The mechanism of deriving a class from another subclass is known
as multilevel inheritance.
class A
Class A Parent {
3 //methods and fields
class B extends A
Intermediate
Class B e
N //methods and fields
class C extends B{
Class C Chila //methods and fields
Example:
class Af{
void funcl(){
System.out.println("Method funcl longs to parent class A");
}
}
claszs B extends A{ // Notice the extends keyword (inheriting B from B)
void func2(){
System.out.println("Method funcZ belongs to intermediate class B");
}
}
class C extends B{
vold func3(){
System.out.println("Method func3 ongs 11d lass Sy
}
H
class Multilevel({
public statiec void main(String[] args){
C cb] = new C();
obj.func3 () ;
obj.func2 () ;
obj .funecl () ;
1 }

ethod func3 belongs to child class C
ethod func2 belongs to intermediate class B
()HQHH" ethod funcl belongs to parent class

3. Hierarchical Inheritance: In this type, two or more classes inherit the properties of one
existing class.
class A
/
ClassA | Parent //methods and fields
/ % /
4 D class B extends A
Class B Class C {
. . }//merhods and fields
class C extends A{
//methods and fields
/
Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Example:
class Values({
int len,bre;
id getValue(int l,int b){
len=l;
bre=b;
}

: Rect extends Values({
1d recAreal() {

System.out.println("A ' "+({len*bre)):;
}
}
class Square extends Values{
id sgArea() {
System.out.println(" "+(len*len}):;
}
}
class Heirarchical({
public static void main(String[] args) {
Rect r = new Rect();
Square sg = new Square();
r.getVialue(10,20);
r.recAreal() ;
sg.getValue (2 ' T
sg.sqAreal() ;
}
}

Area of rectangle = 200
Oatput' Area of Square = 180

4. Multiple Inheritance: When one class inherits multiple classes, it is known as multiple
inheritance.

ClassA ClassB

N/

ClassC

Java doesn’t support multiple inheritance. We can achieve multiple inheritances only with
the help of Interfaces.

Q. Why multiple inheritance is not supported in Java?
Solution:

In Java multiple inheritance is not supported because it may become ambiguous in case if more
than one parent class have same method. Consider a scenario where A, B and C are three
classes. The C class inherits A and B classes. If A and B classes have same method and we call
it from child class object, there will be ambiguity to call method of A or B class. To prevent
such situation, multiple mheritances is not allowed in java.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Access Modifiers

The access modifiers in Java specifies the accessibility or scope of a field, method, constructor,
or class. There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be accessed
from outside the class. E.g.
class A{
private int data=40;
private void msg(){System.out.printin("Hello");}

/

public class Bf
public static void main(String args[]){
A obj = new A();
System.out.println(obj.data); //Compile Time Error

obj.msg(); //Compile Time Error
/

/

2. Default: The access level of a default modifier is only within the package. It cannot be

accessed from outside the package. If we do not specify any access level, it will be the
default. E.g.

//save by A.java //save by B.java
package pack; package mypack;
class A{ import pack. *;

void msg(){System.out.printin("Hello");} | class B{
} public static void main(String args[]){

A obj = new A(); //Compile Time Error

The scope of class A and its method msg() obj.msg(); //Compile Time Error
1s default so it cannot be accessed from | }
outside the package. }

3. Protected: The access level of a protected modifier 1s within the package and outside the

package through child class. If we do not make the child class, it cannot be accessed from
outside the package. E.g.

//save by A.java //save by B.java
package pack; package mypack;
public class A{ import pack. *;

protected void msg(){

; ; - class B extends A{
}Sysrem.out.p pni Hello'), public static void main(String args/[]){

B obj = new BY);
} obj.msg();
/

/
Output: Hello

4. Public: The access level of a public modifier is everywhere. It can be accessed from within
the class, outside the class, within the package and outside the package.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming

Method Overridjng

Reference Note

Declaring a method in subclass which is already present in parent class is known as method
overriding. Overriding is done so that a child class can give its own implementation to a method
which is already provided by the parent class. In this case the method in parent class is called
overridden method and the method in child class is called overriding method. For method
overriding, the method must have same name and same type signature or parameters in both

the superclass and the subclass.

We can use super keyword to call overridden member of superclass from subclass.

Example:

class Animal {

public void eat(){

/
/

class Dog extends Animal {
//eat() method overridden by Dog class.
public void eat(){
super.eat()

/

public static void main(String[] args) {
Dog d = new Dog(),
d.eat();

/

/

System.out.println("Eat all eatables");

//This will call the eat() method of parent class
System.out.printin("Dog likes eating bones");

Difference Between Method Overloading and Method Overriding

Method Overloading

Method overloading 1s a compile-time
polymorphism.

Method Overriding
Method overriding 1s a
polymorphism.

run-time

Method overloading is used to increase the
readability of the program.

Method overriding is used to provide the
specific implementation of the method that is
already provided by its super class.

In method overloading, methods must have
the same name and different signatures.

In method overriding, methods must have
the same name and same signature.

In method overloading, the return type can or
cannot be the same, but we just have to
change the parameter.

In method overriding, the return type must be
the same or co-variant.

It occurs within the class.

It is performed in two classes with
inheritance relationships.

Method overloading may or may not require
inheritance.

Method overriding always needs inheritance.

Private and final methods be

overloaded.

can

Private and final methods can’t be

overridden.

Argument list should be different while
doing method overloading.

Argument list should be same in method
overriding.

Collegenote

Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Final Modifier

Java final keyword is a non-access modifier that is used to restrict a class, variable, and method.

final variable — cannever be modified
final method — can never be overriden
final class — can never be inherited

1. Final Variable: Once we declare a variable with the final keyword, we can’t change its
value again. If we attempt to change the value of the final variable, then we will get a
compilation error. Generally, we can consider a final variable as a constant, as the final
variable acts like a constant whose values cannot be changed. For example,

class Main {
public static void main(String[] args) {
// create a final variable
final int AGE = 20);
// try to change the final variable
AGE = 25;
System.out.printin("Age: " + AGE);
/
/
In the above program, we have tried to change the value of the final variable. When we run
the program, we will get a compilation error.

2. Final Method: The method with final keyword cannot be overridden in the subclasses. The
purpose of creating the final methods is to restrict the unwanted and improper use of method
definition while overriding the method. For example,

public class Parent {
final void final method() {
//definition of the Final Method
/
V.
public class Child extends Parent {
final void final method() // overriding the method from the parent class

{

// another definition of the final method

/

/

The above example of the final method generates a compile-time error.

3. Final Class: When we declare a class as final, we cannot inherit or extend it. If another
class attempts to extend the final class, then there will be a compilation error. For example,

final class A {
// methods and variables of the class A
/

class B extends A {
// COMPILE- TIME error as it extends final class
Vi

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Interface

Interface looks like a class but it is not a class. An interface can have methods and variables
just like the class but the methods declared in interface are by default abstract (only method
signature, no body). Interface cannot be instantiated — they can only be implemented by classes
or extended by other interfaces. By default all variables defined in interfaces are constants and
all the members in an interface are public implicitly. Also, the variables declared in an interface
are public, static & final by default.

To use an interface, other classes must implement it. A class that implements an interface must
implement all the methods declared in the interface.

We use the interface keyword to create an interface in Java.

Syntax Example
interface InterfaceName{ interface Area{

// constant fields/variable declaration float PI = 3.1415;

// abstract methods declaration float computeArea(float x, float y),
/ /

The method signature have no braces and are terminated with a semicolon.

Implementing Interfaces

To use an interface, other classes must implement it. We use the “implements” keyword to
implement an interface. A class can implement any number of interfaces.

Syntax:

class ClassName implements InterfaceNamel, InterfaceName2, ...{
//define interface methods here

/
Example

interface Person {
int PERSON AGE = 20;
String PERSON NAME = "JAYANTA",
public void displayInfo(),

h

public class InterfaceExamples implements Person {
public void displayInfo() {
System.out.printin("Person Name : "+ PERSON NAME);
System.out.printin("Person Age : " + PERSON AGE);

/

public static void main(String[] args) {
InterfaceExamples exp = new InterfaceExamples();
exp.displaylnfo(),

/

/

The above example shows that the InterfaceExamples class implements the Person Interface.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming

Extending Interfaces

Reference Note

Similar to classes, interfaces can extend other interfaces. The extends keyword is used for

extending interfaces. For example,

interface Line {
// members of Line interface
/

interface Polygon extends Line {
// members of Polygon interface
// members of Line interface

/

Here, the Polygon interface extends the Line interface. Now, if any class implements Polygon,
it should provide implementations for all the abstract methods of both Line and Polygon.

Extending Multiple Interfaces: An interface can extend multiple interfaces. For example,

interface A {
interface B {

interface C extends A, B {

4

Use of Interface for achieving Multiple Inheritance

We can achieve multiple inheritance, by using the concept of interface in two ways:

1) By implementing more than one interface

interface AnimalEat {
void eat();
/

interface AnimalTravel {
void travel(),

/

public void eat() {
System.out.printin("Animal is eating");

/

public void travel() {
System.out.println("Animal is travelling”);

}

/
public class Demo {

public static void main(String args[]) {
Animal a = new Animal();
a.eat();
a.travel();

/
/

class Animal implements AnimalEat, AnimalTravel {

Collegenote

Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

2) By extending one class and implementing another interface

class A{
inta=10;
int add (int y)
/
intb=y;
return (a+b);

/

/

interface B{
int x = 20;
void display();
/

class C extends A implements B{
int mul = a * x;
int sum = add(20);
public void display(){
System.out. println("Sum = "+sum),
System.out. println("Product = "+mul);

/
/
class Main{
public static void main (String/[] args) {
C obj = new C(); Output
obj.display();
; :

Inner Class

An inner class in Java is defined as a class that is declared inside another class. We use inner
classes to logically group classes in one place to be more readable and maintainable.

Additionally, it can access all the members of the outer class, including private data members
and methods.

Syntax of Inner Class:
class OQuterClass

Since the inner class exists within the outer class, we must instantiate the outer class first, in
order to instantiate the inner class.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Example

class CPU {
double price;

class Processor{
double cores;
String manufacturer;

double getCache(){
return 4.3;
/
/
/

public class Main {
public static void main(String/[] args) {

// create object of Outer class CPU
CPU cpu = new CPU();

// create an object of inner class Processor using outer class
CPU.Processor processor = cpu.new Processor();

System.out.printin("Processor Cache = " + processor.getCache()),

/
/

Packages

A package 1s a collection of related classes and interfaces that provides access protection and
name space management. Packages are divided into two categories:
= Built-in Packages (packages from the Java API)

= User Defined Packages (create your own packages)

1. Built-in Packages

Built-in packages are existing java packages that come along with the JDK (Java
Development Kit). They consist of a huge number of predefined classes and interfaces that
are a part of Java API’s. Some of the examples of built-in packages are: Java.lang, Java.io,
Java.util, Java.applet, Java.awt, Java.net etc.

To use a class or a package from the library, we need to use the import keyword:

Syntax:
import packageName.className; // Import a single class
import packageName.*; // Import the whole package
Example:
import java.util. Scanner; // Import the class Scanner

In the example above, java.util 1s a package, while Scanner is a class of the java.util
package.

This package also contains date and time facilities, random-number generator and other
utility classes. To import a whole package, end the sentence with an asterisk sign (*).

import java.util. *;

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

2. User Defined Packages

The package which is defined by the user is called a User-defined package. It contains user-
defined classes and interfaces. Java supports a keyword called “package” which is used to
create user-defined packages in java programming. It has the following general form:

package packageName;

Example:

//AddOperation.java
package myFirstPackage; /luser defined package
public class AddOperation{
public double add(double x, double y){
return (x+y);
/

/

Using package myFirstPackage in program which we define above:

//SumTwoNum. java
import myFirstPackage.AddOperation /importing package
class SumTwoNum{
public static void main (String[] args) {
AddOperation obj = new AddOperation();
System.out.printin("Sum is = "+ obj.add(30, 20));
/

/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

ExceEtion Handling

An exception 1s an event, which occurs during the execution of a program that disrupts the
normal flow of the program. There are three categories of exceptions:

» Checked Exceptions: A checked exception is an exception that occurs at the compile time
of program and forces programmers to deal with the exception otherwise program will not
compile. Normally these are exceptions raised due to user error. They extend
java.lang. Exception class. E.g. IOException, SQLException, FileNotFoundException,
ClassNotFoundException etc.

= Unchecked Exceptions: An unchecked exception is an exception that occurs at runtime of
a program. They are ignored at compile time. They are logical programming errors and
extend the javalang RuntimeException class. E.g. ArithmeticException,
NullPointerException, ArraylndexOutOfBoundException etc.

= Errors: Errors are the problems that arises beyond the control of the user or the
programmer. They are also ignored at the time of compilation. E.g. OutOfMemoryError,
VirtualMachineError, AssertionError etc.

Exception handling is a mechanism to handle runtime errors so that normal flow of the
program can be maintained. It is important to handle exceptions because otherwise program
would terminate abnormally whenever an exceptional condition occurs. Exception handling
enables a program to deal with exceptional situations and continue its normal execution.
The steps in exception handling mechanism:

= Find the problem (Hit the exception)

= Inform that an error has occurred (Throw the exception)

= Receive the error mformation (Catch the exception)

= Take corrective actions (Handle the exception)

In Java, Exception Handling can be done by using five Java keywords: fry, catch, throw,
throws and finally.

try and catch keyword

A try block 1s used to enclose the code section which might throw an exception. Every try block
1s followed by a catch block.

The catch block 1s used to handle the exception. When an exception occurs, it is caught by the
catch block. The catch block cannot be used without the 7y block.

Synfax:
ry {
// code
/

catch(Exception e) {
// code

/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Example:

class Main {
public static void main(String[] args) {
try {
// code that generate exception
int divideByZero = 5/ 0;
System.out.println("Rest of code in try block”);

catch (ArithmeticException e) {
System.out printin("ArithmeticException => " + e.getMessage());

/
/

/

[finally keyword

The finally block follows a try block or a catch block. In Java, the finally block is always
executed no matter whether there is an exception or not. The finally block is optional. And, for
each 7y block, there can be only one finally block.

The basic syntax of finally block is:

try{
//code
£

catch (ExceptionTypel el) {
// eateh block

/
finally {
// finally block always executes

/
Example:

class Main {
public static void main(String[] args) {

y {
int divideByZero = 5/ 0;

/

catch (ArithmeticException e) {
System.out printin("ArithmeticException => " + e.getMessage());

/

finally {
System.out.println("This is the finally block");

/
/

/

Note: Tt 1s a good practice to use the finally block. It is because it can include important cleanup
codes like,

= code that might be accidentally skipped by return, continue or break

= closing a file or connection

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

throw keyword

The throw keyword is used to throw an exception explicitly whenever an exceptional condition
occurs. It 1s followed by only one single instance of the exception class we want to throw. The
general form of throw is: throw new exception_class("error message");

Example:

public class ExceptionDemo {
static void canVote(int age){

try{
iflage<li8)
throw new ArithmeticException("You are not an adult!");
else
System.out.printin("You can vote!");
/

catch(Exception e){
System.out println(e.getMessage()),
J

/
public static void main (String/[] args) {

canVote(20);
canVote(10);

/

/

throws keyword

The throws keyword indicates what exception type may be thrown by a method. It is used to
handle checked Exceptions as the compiler will not allow code to compile until they are
handled. We use the thirows keyword in the method declaration to declare the type of exceptions
that might occur within it.

Synfax:
accessModifier returnType methodName() throws ExceptionTypel, ExceptionType?2 ... {
// method code

/
Example:
public class ExceptionDemo {
static void func(int a) throws ArithmeticException{
System.out.printin(10/a);
/
public static void main (String[] args) {
try{
Sfune(10);
Sfunc(0);
Jeatch(Exception e){
System.out.printin("can’t divide by zero");
/
/
/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Multiple Catch Blocks

A try block can be followed by one or more catch blocks. Each catch block must contain a
different exception handler. So, if you have to perform different tasks at the occurrence of

different exceptions, use java multi-catch block.

Example:

class Main {
public static void main(String[] args) {

/
/

try {
int array[] = new int[10];
array[10] =30/ 0;

} catch (ArithmeticException e) {
System.out.println(e.getMessage()),

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println(e.getMessage()),

/

Creating Exception Class

Steps to create a custom exception:

Create a new class whose name should end with Exception like ClassNameException.
This 1s a convention to differentiate an exception class from regular ones.

Make the class extends one of the exceptions which are subtypes of
the java.lang Exception class. Generally, a custom exception class always extends
directly from the Exception class.

Create a constructor with a String parameter which is the detail message of the exception.
In this constructor, simply call the super constructor and pass the message.

Example:

The following is a custom exception class which is created by following the above steps:

class InvalidAgeException extends Exception

public InvalidAgeException (String str)
/

super(str); // calling the constructor of parent Exception

/

/

And the following example shows the way a custom exception is used is nothing different than
built-in exception:

public class TestCustomException

{

static void validate (int age) throws InvalidAgeException{
iftage < 18){

throw new InvalidAgeException("age is not valid to vote"),

/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

else {
System.out. println("welcome to vote");
/

/

// main method
public static void main(String args[])

{
ry
{

// calling the method
validate(15);

/
catch (Invalid4AgeException ex)

{

System.out.printin("Exception occured: " + ex);
) 2 P s

/
/

/

Multithreading

The process of executing multiple threads simultaneously is known as multithreading. The
main purpose of multithreading is to provide simultaneous execution of two or more parts of a
program to maximum utilize the CPU time. A multithreaded program contains two or more
parts that can run concurrently. Each such part of a program called thread.

Life Cycle of a Thread (Thread States)

A thread goes through various stages in its life cycle. A thread can be in one of the five stages:
New, Runnable, Running, Blocked and Terminated/Dead.

Mewthread (MNew Bom

start()
Active stop() o Dead
Sasd Runming Runnat:lc
4
vield()
suspend()
deep() resume() OQD
Ay L
wait() noti fy()
1
Idle thread Blocked

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

1. Newborn State: When a new thread 1s created, it 1s in the new state. It remains in this state
until the program starts the thread. A thread is started by calling its start() method.

2. Runnable State: If the thread is ready for execution but waiting for the CPU the thread is
said to be in runnable state. All the events that are waiting for the processor are queued up
in the runnable state and are served in FIFO manner or priority scheduling. From this state
the thread can go to running state if the processor 1s available using the scheduled() method.

3. Running State: If the thread is in execution then it is said to be in running state. The thread
can finish its work and end normally. The thread can also be forced to give up the control
when one of the following conditions arise:

- A thread can be suspended by suspend() method. A suspended thread can be revived
by using the resume() method.

- A thread can be made to sleep for a particular time by using the sleep(milliseconds)
method. The sleeping method re-enters runnable state when the time elapses.

- A thread can be made to wait until a particular event occur using the wait() method,
which can be run again using the notify() method.

4. Blocked State: A thread is said to be in blocked state if it is prevented from entering into
the runnable state and so the running state. The thread enters the blocked state when it is
suspended, made to sleep or wait. A blocked thread can enter into runnable state at any
time and can resume execution.

5. Dead State: The running thread ends its life when it has completed executing the run()
method which is called natural dead. The thread can also be killed at any stage by using the
stop() method.

Writing Multithreaded Programs

There are two ways to create a thread:
= By extending Thread class
= By implementing Runnable interface

1. Thread creation by extending the Thread class

We create a class that extends the java.lang Thread class. This class overrides the run()
method available in the Thread class. A thread begins its life inside »un() method. We create
an object of our new class and call star() method to start the execution of a thread. Start()
invokes the run() method on the Thread object.

Example:

class MultithreadingDemo extends Thread{
public void run(){
System.out.println("My thread is in running state.");
/
public static void main(String args[]){
MultithreadingDemo obj=new MultithreadingDemo();
obj.start();

;

/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

2. Thread creation by implementing the Runnable Interfuce

We create a new class which implements java.lang. Runnable interface and override run()
method. Then we instantiate a Thread object and call szarf() method on this object.

Example:

class MultithreadingDemo implements Runnable{
public void run(){
System.out.println("My thread is in running state.");
’
public static void main(String args[]){
MultithreadingDemo obj=new MultithreadingDemo();
Thread tobj =new Thread(obj);
tobj.start();
/
/

Q. Write a program to create two threads. The first thread should print numbers from 1 fo
10 at intervals of 0.5 second and the second thread should print numbers from 11 to 20 at
the interval of 1 second.

Solution:

class First extends Thread
{
public void run()
/
for (int i=1; i<=10; i++)
/
Iry
/
System.out.printin(i);
Thread.sleep(500);
/

catch (InterruptedException e)

{
System.out.printin(e.getMessage());
/
/
/
/
class Second extends Thread
/
public void run()
{
for (inti=11; i<=20; i++)
/

try{
System.out.printin(i);

Thread.sleep(1000);

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

/

catch (InterruptedException e)

{
System.out.printin(e.getMessage());
/
/
/
/

;zs'ubh'c class Threadlnterval

{
public static void main(String[] args)

{
Thread first = new First();
Thread second= new Second(),
first.start();
second.start();
/
4

— start(): This method starts the execution of the thread by calling its run() method.
— run(): This method is used to do an action for a thread.

— sleep(): It sleeps a thread for a specified amount of time.
Thread.sleep() statement must be enclosed within try-catch block.

Thread Priorities

Thread Priorities determines how a thread should be treated with respect to others. Several
threads executes concurrently. Every thread has some priority. Which thread will get a chance
first to execute it is decided by thread scheduler based on thread priority. High priority threads
can get more chances of execution. The valid range of thread priority is 1 to 10 (i.e.
1,2,3.4.....10.) and 1 1s the min priority and 10 is the max priority. We can also represent thread
priority in terms of constants. Basically, we have three types of constants like
MIN PRIORITY, MAX PRIORITY, NORM PRIORITY. By default, every thread is given
priority NORM_PRIORITY (a constant of 3).

To set thread’s priority, we use setPriority() method, which 1s a member of Thread class. The
general form is:

final void setPriority(int level)
To get the current priority of thread, we use getPriority() method. The general form is:

final int getPriority()

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming

Reference Note

Q. Write a program to execute multiple threads in priority base.

Solution:

class First extends Thread

{
public void run()

{
for (inti=1;i<=10;it+)
{
System.out.printin(i);
/
/
/

class Second extends Thread

{
p_ubh‘c void run()

{
for Ginti=11;i<=20;i++)
{
System.out.printin(i);
/
/
/

class Third extends Thread

{
public void run()

{
for (inti=21;i<=30;it++)
/
System.out.printin(i);
/

/
/

public class ThreadPriority
/

public static void main(String[] args) throws InterruptedException

{
Thread t1 = new First();

Thread t2 = new Second();
Thread t3 = new Third();

t1.setPriority(Thread MAX PRIORITY),
t2.setPriority(Thread MIN PRIORITY);
t3.setPriority(Thread NORM PRIORITY),

t1.start();
t2.start();
t3.start();

Collegenote

Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Synchronizafion

When two or more threads need to access to a shared resource, they need some way to ensure
that the resource will be used by only one thread at a time. The process by which this achieved
1s called synchronization.

If we do not use synchronization, and let two or more threads access a shared resource at the
same time, it will lead to distorted results. Consider an example, suppose we have two different
threads T1 and T2, T1 starts execution and save certain values in a file femporary.txt which
will be used to calculate some result when T1 returns. Meanwhile, T2 starts and before T1
returns, T2 change the values saved by T1 in the file temporary.txt (temporary.txt is the shared
resource). Now obviously T1 will return wrong result.

To prevent such problems, synchronization was introduced. With synchronization in above
case, once T1 starts using temporary.txt file, this file will be locked, and no other thread will
be able to access or modify it until T1 returns.

We can add the synchronized keyword in the method declaration to make the method
synchronized. The synchronized method is accessible for only one thread at a time.

Example:

class PrintTable{
public synchronized void printTable(int n){
System.out.println("Table of " + n);
Sfor(int i=1;i<=10;i++){
System.out. println(n™i),
try{
Thread.sleep(500);
Jeatch(Exception e){
System.out.printin(e);

/
/

¥
/
class MyThreadl extends Thread{

PrintTable pt;
MyThreadl (PrintTable pt){

this.pt=pt;
/

public void run(){
pt.printTable(2);
/
/

class MyThread?2 extends Thread{
PrintTable pt;
MyThread2(PrintTable pt){

this.pt=pt;
/

public void run(){
pt.printTable(5);
/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

public class MultiThreadExample{
public static void main(String args[]){
//creating PrintTable object.
PrintTable obj = new PrintTable();

//creating threads.
MyThreadl t1=new MyThreadl (obj),
MyThread?2 t2=new MyThread2(obj),

//start threads.
tl.start();
t2.start();

File Handling

File handling implies performing I/O on files. In Java, file I/O is performed through streams.

Streams are the sequence of bits (data). There are two types of streams: Input Streams and
Output streams

= Input Streams: Input streams are used to read data from various input devices like
keyboard, file, network etc.

= Quiput Streams: Output streams are used to write the data to various output devices like
monitor, file, network etc.

Streams Based on Data

There are two types of streams based on data:

= Byte Stream: Java Byte streams are used to perform input and output of 8-bit bytes. We do
this with the help of different Byte stream classes. Two most commonly used Byte stream
classes are FileInputStream and FileOutputStream .

= Character Stream: Java Character streams are used to perform input and output of
characters. For input and output of characters, we have Character stream classes. Two most
commonly used Character stream classes are FileReader and FileWriter.

/ ja\a Fl]'e 1 0 \

Byte Streams Character Streams
Classes InputStream OutputStream Reader Writer
h a A Y
FileInputStream FileOutputStream FileReader FileWriter

Fig: Classes used for file handling in Java

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Methods for reading bytes:
int read() Returns an integer representation of the next available byte of
input. =1 is returned when the end of the file is encountered.
int read (byte buffer{ |) Attempts to read up to bufferlength bytes into buffer and returns the
actual number of bytes that were successfully read. -1 is returned
when the end of the file is encountered.
int read (byte buffer] |, Attempts to read up to numBytes bytes into buffer starting at
int offset, buffer] offset], returning the number of bytes successfully read. -1
int numBytes) is returned when the end of the file is encountered.

Methods for writing bytes:

void write (int) Writes a single byte to an output stream. Note that the
parameter is an int, which allows you to call write() with an
expression without having to cast it back to byte.

void write (byte buffer|) Writes a complete array of bytes to an output stream.
void write (byte buffer| |, Writes a subrange of numBytes bytes from the array buffer,
int offset, beginning at buffer offset].

int numByles)

FileInputStream

The FilelnputStream class creates an InputStream that we can use to read bytes from a file. Its
two most common constructors are shown here:

FilelnputStream(String filepath)

FileInputStream(File fileObj)
They can throw a FileNotFoundException. Here, filepath 1s the full path name of a file, and
[fileObj 1s a File object that describes the file.

E.g.
FilelnputStream f0 = new FileInputStream("D:\abc.txt")
File f = new File("D:\abc.txt");
FileInputStream f1 = new FilelnputStream(f);
Example:
import java.io.*;
class ReadHello{
public static void main(String args[]){
try{
FilelnputStream fin=new FileInputStream(“hello.txt”);
int i=0;

while((i=fin.read())!=-1){
System.out.printin((char)i);
/

fin.close();
} catch(Exception e){

system.out.println(e); }

/
/

/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

FileOQutputStream

FileOutputStream creates an OutputStream that we can use to write bytes to a file. Its most
commonly used constructors are shown here:
FileOutputStream(String filePath), FileOutputStream(File fileObyj),
FileOutputStream(String filePath, boolean append)
Here, filePath 1s the full path name of a file, and fileObj 1s a File object that describes the file.
If append is true, the file is opened in append mode.

Example:

import java.io.*;
public class WriteHello{
public static void main(String args[]){
try{
FileOutputstream fo=new FileOutputStream(“hello.txt”),
String i= “Hello World!!!”’;
byte b[] =i.getBytes(); //converting string into byte array
fo.write(i);
fo.close(),
/

catch(Exception e){
system.out.println(e);
/

/

/

FileReader

The FileReader class creates a Reader that we can use to read the contents of a file. Its two
most commonly used constructors are shown here:

FileReader(String filePath), FileReader(File fileObj)
Either can throw a FileNotFoundException. Here, filePath is the full path name of a file, and
fileOb; is a File object that describes the file.

Example:
import java.io.FileReader,
import java.io.IOException;
public class FileReaderDemo {
public static void main(String[] args) {
try {
FileReader fr = new FileReader("test.txt");
int c;
while ((c = fr.read()) I=-1) {
System.out.print((char) c);

/
/
catch (IOException ex) {
ex.printStackTrace();
/
/
/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

FileWriter

FileWriter creates a Writer that we can use to write to a file. Its most commonly used
constructors are shown here:

FileWriter(String filePath)

FileWriter(String filePath, boolean append)

FileWriter(File fileObj)

FileWriter(File fileObj, boolean append)
They can throw an IOException. Here, filePath 1s the full path name of a file, and fileObj 1s a
File object that describes the file. If append is true, then output is appended to the end of the
file.

Example:

import java.io.File Writer,

import java.io.IOException;

class WriteTest

{

public static void main(String args[]){
{
ry

{
FileWriter fw = new FileWriter("D:\\myfile.txt");

String str="Write this string to my file",
Sw.write(str);
fw.close();

catch (IOException e){
e.printStackTrace();
/

/
/

Random Access File

In java, the java.io package has a built-in class RandomAccessFile that enables a file to be
accessed randomly. The RandomAccessFile class has several methods used to move the cursor
position in a file.

* Java allows a program to performrandom file access

* |Inrandom file access, a program may immediately jump to any
location in the file.

* Tocreate and work with random access files in Java, you use the

RandombccessFile class. * The RandomzncessFileclass lets you move the

file pointer.

* This allows data to be read and written at any byte
location in the file.

* The seek method is used to move the file pointer.

RandomAccessFile (String filename, String mode)

— filenams:the name of the file.

— mode: a string indicating the mode in which you wish to use rndFile.seek (long position);
the file.
« "' =reading * The argumentis the number of the byte that you
+ "rw' = for reading and writing. want to move the file pointer to.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Example:
import java.io.™;
public class RandomAccessFileDemo {
public static void main(String []args) {
inta=123;
long b=435525;
String s="Here is some text";
try{
RandomAccessFile raf=RandomAccessFile("Demo.txt","rw");
raf-writelnt(a); /fwriting integer value in file
raf-writeLong(b); /fwriting long value in the file
raf-writeUTF(s) /fwriting string in the file
raf.seek(0); //set pointer beginning of the file
System.out.printin(vaf-read());
raf-close();
/
catch(IOException e){
e.printStackTrace();
/
/
/

Q. Write a simple Java program to read from and write fo files.
Solution:

Let us suppose we have a file named “fest.txt” in D-drive. Now we first read from this file
character-by-character and later we write the contents of this file to another file say
“testwrite.txt” in E-drive. For these tasks, we use the character stream classes namely
FileReader and FileWriter. The code 1s given below:

import java.io.™;
public class FileReadWrite {
public static void main(String []args) {
try{
FileReader fr = new FileReader("D:\\test.txt");
FileWriter fw = new FileWriter("E:\\testwrite.txt"),
int c;
while((c=fr.read())!=-1) {
fw.write(c);
System.out.print((char)c);
/
fr.close(),
Sfw.close();

/
catch (IOException ex){

ex.printStackTrace();

/
/
/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Q. Write a program to duplicate each character in a text file and write the ouiput in a
separate file using character stream.

e.g. source.Ixt: csit, destination.ixt: ccssiift

Solution:

import java.io.FileReader,
import java.io.FileWriter,

public class CharacterStreamDemo

{
public static void main(String[] args) throws Exception
{
FileReader in = new FileReader("source.txt");
FileWriter out = new FileWriter("destination.txt");
int charData;
while(true)
/
charData = in.read(),
if (charData == -1)
break;
else
{
out.write(charData);
out.write(charData);
/
/
in.close();
out.close(),
/
/

Q. Write a program to read an input string from the user and write the vowels of that string
in VOWEL.TXT and consonants in CONSONANT.TXT.

Solution:

import java.io.FileWriter,
import java.io.IOException,
import java.util.Scanner;

public class Main {
public static void main(String/[] args) throws IOException {
Scanner sc = new Scanner(System.in),
System.out.print("Enter a string: "),
String input = sc.nextLine();

FileWriter vowels = new FileWriter("VOWEL.TXT"),
FileWriter consonants = new FileWriter("CONSONANT.TXT");

for (inti = 0; i < input.length(); i++) {
char ¢ = input.charAt(i),

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

fle=="a'||c=="¢||c=—="1'|| e =="o'|| e = ']
c==t'|[c=="E'||c==T || e =="0"||c=="U) {
vowels.write(c + "\n");
Jelse{
consonants.write(c + "\n");
/
/

vowels.close();
consonants.close();
se.close();

/
/

Serialization

Serialization can be defined as a process by which we convert the object state into its equivalent
byte stream to store the object into the memory in a file or persist the object.

When we want to retrieve the object from its saved state and access its contents, we will have
to convert the byte stream back to the actual Java object and this process is called
deserialization.

Byte

A 4

Stream = Stream
Database
LA
Serialization %] De-serialization

T
Memory

The class whose objects are serialized must implement java.io.Serializable interface. Then the
object of this class (implementing Serializable interface) will use writeObject () and
readObject () methods respectively for serializing and deserializing the class object.

- When we serialize an object in Java we use objectOutputStream’s writeObject method to
write the object to a file.

- For deserializing the object in Java we use the ObjectInputStream’s readObject () method
to read the contents of the file and read them into an object.

Steps to store (write) objects in a file

1. First, connect obffile.txt file to FileOutputStream. It will write data into objfile.txt file.
FileOutputStream fos = new FileOutputStream("objfile.txt");

2. Then, connect FileOutputStream to ObjectOutputStream by code below:
ObjectOutputStream oos = new ObjectOutputStream(fos);

3. Now, call writeObject() method of ObjectOutputStream to write objects to
FileOutputStream, which stores them into objfile.txt file.

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

Steps to read objects from file

1. Connect objfile.txt file to FileInputStream. It will read objects from objfile.txt file.
FilelnputStream fis = new FileInputStream("objfile.txt");

2. Connect FilelnputStream to ObjectInputStream to retrieve objects from FilelnputStream.
ObjectinputStream ois = new ObjectInputStream(fis);

3. Now, call readObject() method of ObjectInputStream class to read objects by code below:

Employee e = (Employee) ois.readObject(); // Here, Employee is class that
implements Serializable interface.

Example

Q. Write a java program that writes objects of Employee class in the file named emp.doc.
Create Employee class as of your interest.
Solution:

import java.io.FileOutputStream;
import java.io.IOException,

import java.io.ObjectOutputStream;
import java.io.Serializable,

public class Employee implements Serializable {
String name;
int age;
String department;

public Employee(String name, int age, String department) {
this.name = name;
this.age = age;
this.department = department;
/

class EmployeeSerialize{
public static void main(String[] args) {
Employee empl = new Employee("Jayanta”, 20, "IT");
Employee emp2 = new Employee("Manoj", 25, "HR");

ry {
FileOutputStream fileOut = new FileOutputStream("emp.doc");
ObjectOutputStream out = new ObjectOutputStream(fileOut),
out.writeObject(empl),
out.writeObject(emp2),
out.close(),
fileOut.close(),
System.out.printin("Employee objects written to emp.doc”);
} catch (IOException e) {
e.printStackTrace(),

/
/
/

Collegenote Prepared By: Jayanta Poudel

Advanced Java Programming Reference Note

-\

Please let me know if I missed anything or
anything is incorrect.

poudeljavanta99(@gmail.com

Collegenote Prepared By: Jayanta Poudel

