
6.0 Relational Database Design 
 

©T Paneru 1

6.0 Relational Database Design 

6.1 Pitfall of relational model 
• The main goal of relational database is to create / find good collection of relational schemas. 

Such  that  database  should  allow  us  to  store  data  /  information  without  unnecessary 
redundancy  and  should  also  allow  to  retrieve  information  easily.  That  is  the  goal  of  
relational database design should concentrated  

o To avoid redundant data from database. 
o To ensure that relationships among attributes are represented. 
o To facilitate the checking of updates for the violation of database integrity 

constraints. 
 

• A bad relational database design may lead to: 
o Repetition of information. 

- That is, it leads data redundancy in database, so obviously it requires much 
space. 

o Inability to represent certain information. 
 

Example 1: Consider  the relational schema 
 

  Branch_loan = ( beranch_name, branch_city, assets, customer_name, loan_no, amount) 
 

branch_name branch city assets customer name loan no amount 
kathmandu baneshwor 25000 rohan L - 15 3000 

Lalitpur patan 19000 mohan L - 17 5000 
Kathmandu baneshwor 25000 raju L - 19 10000 

Pokhara Prithibi nagar 17000 manoj L - 10 7000 
Lalitpur patan 19000 swikar L - 30 9000 

  
 
 
 
 
 
 

Redundancy: 
• Data for branch_name, branch_city, assets are repeated for each loan that provides 

by bank.  
• Storing information several times leads waste of storage space / time. 
• Data redundancy leads problem in Insertion, deletion and update. 

 
Insertion problem 

• We cannot store information about a branch without loan information, we can use 
null values for loan information, but they are difficult to handle. 

Deletion problem 
• In  this  example,  if  we  delete  the  information  of  Manoj  (i.e.  DELETE  FROM 

branch_loan WHERE customer_name =  ‘Manoj’;), we cannot obtain the 
information of pokhara branch (i.e. we don’t know branch city of pokhara, total 
asset of pokhara branch etc. 

Update problem 
• Since data are duplicated so multiple copies of same fact need to update while 

updating one. It increases the possibility of data inconsistency. When we made 
update in one copy   there is possibility that only some of the multiple copies are 
update but not all, which lead data/database in inconsistent state.. 

 

For more notes visit https://collegenote.pythonanywhere.com



6.0 Relational Database Design 
 

©T Paneru 2

6.2 Decomposition 
 
The idea of decomposition is break down large and complicated r elation in no. of simple and 
small  relations  which  minimized  data  redundancy.  It  can  be  consider  principle  to  solve  the 
relational model problem. 
 
Definition 
 
The decomposition of relation schema R= (A1, A2, . ,An) is a set of relation schema  { R1, R2, ---
-- Rm}, such that Ri ⊆ R  1 ≤ i≤ m and  R∀ 1 RU 2  . . URU m = R. 
 
That is all attributes of an original schema (R) must appear in the decomposition (R1, R2).  
That  is,  R=  R1UR2. if  R   R≠ 1UR2 then  such  decomposition  called  lossey  join  decomposition. 
That is, R≠∏R1(R)   ∏R2(R). Decomposition should lossless join decomposition.   
 
A decomposition of relation schema R into R1 and R2 is lossless join iff at least one of the 
following dependencies is in F+. 

R1 I R2→R1

R1 I R2→R2

 
Example 1: The problems in the relational schema branch_loan (illustrated in above example) 
can be resolved if we replace it with the following relation schemas. 

 
Branch (# branch_name, branch_city, assets) 
Loan (customer_name, loan_number, branch_name, amoun) 

 
Example 2: Consider the relation schema to store the information a student maintain by the 
university. 

        Student_info (#name, course, phone_no, major, prof, grade) 
   

name course phone_no major prof grade 
John 353 374537 Computer Science Smith A 
Scott 329 427993 Mathematics James S 
John 328 374537 Computer Science Adams A 
Allen 432 729312 Physics Blake C 

Turner 523 252731 Chemistry Miller B 
John 320 374537 Computer Science Martin A 
Scott 328 727993 Mathematics Ford B 

 
 
 
 
 
 
 
 

Problems:                                          
 
Redundancy: 

• Data for major and phone_no of student are stored several times in the database 
once for each course that is taken by a student. 

 
Complicates updating: 

• Multiple copies of some facts may lead to update which leads possibility of 
inconsistency.  

• Here,  change  of  phone_no  of  John  is  required  we  need  to  update  three  records 
(tuples) corresponding to the student John. If one of the three tuples is not changed 
there will be inconsistency in the date. 

For more notes visit https://collegenote.pythonanywhere.com



6.0 Relational Database Design 
 

©T Paneru 3

Complicate insertion 
 

• If  this  is  only  the  relation  in  the  database  showing  the  association  between  a  faculty 
member and the course he / she teaches, then the information that a given professor is 
teaching a given course cannot be entered in the database unless a student is registered 
in the course. 

 
 
Deletion Problem: 
 

• If the only one student is registered in a given course then the information as to which 
professor is of fering  the course will be lost if this is only the relation in the database 
showing the association between the faculty member and the course he / she teaches. If 
database have another relation that establishes the relationship between a course, the 
deletion  of  4th  &  5th  tuple  in  this  relation  will  not  cause  the  information  about  the 
councils teach to be lost. 

 
Solution? 
 
⇒ Decomposition  
 
The problems in this relation schema student_info can be resolved if we it with the following 
relation schemas. 

Students (#name, phone_no, major) 
Transcript (#name, course, grade) 
Teacher (course, prof) 

 
• Here, first relat ion schema gives the phone number and major subject of each student 

such information will be stored only once for each student. Thus, any changes in the 
phone number will thus require changes in only one tuple of this relation  

• The  second  relation  schema  ‘TRANSCRIP’  stores  the  grade  of  each  student  in  each 
course. So, to insert information about student phone number, major and the course 
teaches by which the professor. 

• Third relation schema records the teacher of each course. 
 

What is the problem of such of such decomposition? 
 

• One  of  the  disadvantages  of  original relation  relation  schema  ‘student_info’  with 
these  true  relational  schemas  is  that  retrieval  of  certain  information  required  to 
performed natural join operation. 

• We know that to resolve the problem of bad relat ional database design we need to 
decompose relation but the problem is that how to decompose relation. That is, we 
require to process decomposition of relation that may give good relational database. 
Normalization gives the approach for designing the best relational  database under 
the five normal forms. 

 

For more notes visit https://collegenote.pythonanywhere.com



6.0 Relational Database Design 
 

©T Paneru 4

6.3 Normalization: 
 
Normalization is the process of reducing redundant data / information in the database by 
decomposing the long relation. It is an approach for designing reliable database system. 
Normalization theory is built under the concept of the normal form. There are several normal 
form called 

First Normal Form. (1NF) 
Second Normal Form (2NF) 
Third Normal Form (3NF) 
Fourth Normal Form (4NF) 
Fifth Normal Form (5NF) 

 
A relation is said to in particular normal form if it satisfy the set of this particular normal form if 
it satisfy the set of this particular normal form’s constraints. In practical, third normal form is 
sufficient to design reliable database system. 
 
Normalization theory is based on: 

• Functional dependencies 
• Multi valued dependencies. 

6.3.1 Needs of normalization 
In  database,  there  is  considerable  amount  of  data  redundancy  and  also  serious  insertion, 
deletion and update. Thus to reduce the data redundancy as far as possible and for easy insert, 
delete and update operation in relational database system we require normalization. It does not 
allow any inconsistency in database system.  

6.3.2 Objectives of Normalization 
Dr. codd suggested five normal form for relational database design without data redundancy 
and serious insertion, update and deletion. According to him, the objectives of normalization 
are: 
 

1. To free a collection of relation from undesirable insertion, update and deletion. 
2. To move the relational model more informative to use. 
3. To increase the lifetime of application programs. 

6.3.3 Properties of relation after normalization 
1. No data value should be duplicate in different row or tuple. 
2. A value must be specified for every attribute in a tuple. 
3. Important information should not be accidentally lost. 
4. When new data / record are inserted to relation, other relation in database should not 

be affected  

 

For more notes visit https://collegenote.pythonanywhere.com



6.0 Relational Database Design 
 

©T Paneru 5

6.3.4 Non -Normalized Relation 
A relation schema R is said to be non-normalized relation if any domain of attributes of R are 
non atomic. 
 
 Example: 

course faculty prof 
course_name department 

DBMS Computer 
Software 

Engineering 
Computer 

X 

Microprocessor Electronics 
Mathematical 

Analysis 
Math 

 
  

  
 
 
 

computer 

Y 

Probability Theory Stat 
Modern Physic Physics Z 

Z Dynamics Physics 

 
 
 
  

Physics 
P Vector Analysis Math 

 
 

Figure:  non-normalized relation 
• Here, the attribute of relation schema, that is course is divided into course_name and 

department. That is, domain of attribute course is non atomic. 
• Here, each row contains multiple set of values. 

 

6.3.5 Key and non key attribute (prime and non prime attribute) 
 
An attribute A in relation R is said to be key attribute if A is any part of candidate key; 
otherwise A is called non key attribute. 
 
Example: Consider a relational schema ‘student_course_info’ 

  Student_course_info=(#name,course,grade,phone,major,department) 
 With the following FDs  
 F={name→phone_no,major, course Mathdepartment, name,course Mathgrade} 

 
• Here, name and course are key attributes and phone_no, major and department are non 

key attribute. 
 
Example: Let R=(A,B,C,D,E) and FDs F={AB →C,B →D,C→E} 
• Here AB is composite primary key (composite candidate key) so attribute A and B are key 

attributes and attributes C, D and E are non key attributes. 

 

6.4 Normal Forms  

6.4.1 First Normal Form 
• A relation schema R is said to be in first normal form if domain of all attributes of R are 

atomic. That is, for any relational schema R to be in first normal form, each attribute of 
relation not divisible and each row must contain single set of values for all attributes. 

• The previous relational schema ‘course_info’ can be covert into first normal form as below 
 

For more notes visit https://collegenote.pythonanywhere.com



6.0 Relational Database Design 
 

©T Paneru 6

prof course_name faculty  department 
X DBMS computer Computer 
X Software Engineering computer Computer 
X Microprocessor computer Electronics 
Y Mathematical Analysis computer Math 
Y Probability Theory computer Stat 
Z Modern Physic Physics Physics 
Z Dynamics Physics Physics 
P Vector Analysis Physics Math 

 
                        Figure: course_info relation in fi rst normal form 
• First normal form enforce relation in tabular form.  

Here, FDs F={prof → faculty,course_name→department} 
• Here key attributes are prof and course and key of relation is {prof,course_name} 
• The representation of relation ‘course_info’ in first normal form has several drawbacks. 

Major problem is data redundancy. 
 
Data redundancy 

o Given professor assigned to corresponding faculty is repeated a number of times. 
o Given course offered by corresponding department is repeated number of times. 
o Data redundancy leads problem in insertion, deletion and update. 

 
Update problem 

o If  professor  change  faculty  to  teach  then  we  must  change  all  rows  where  that 
professor appears, it may leads inconsistency in database. 

Deletion problem  
o If we have to delete the professor who teach only one subject (course_name) in such 

case deletion cause the loss of information about the department to which the course 
belongs. 

Insertion problem 
o Suppose department i ntroduce new course (i.e. course_name) such  information can 

not  insert  without  professor  name  and  assigned  faculty.  This  is  possible  inserting 
only null values instead of professor name and his/her assigned faculty. 

6.4.2 Second Normal Form 
• A relation schema R is said to be in second normal form (2NF) if it is first normal form and 

all non key attributes are fully functionally dependent on relation key (s). 
• A second normal from does not allow partial dependency between  non key attribute and 

relation  key  (s).  But  it  does  nor  enforce  that  non  key  attribute  may  not  functionally 
dependent on another non key attribute. (In fact, 2NF that does not allow such dependency 
called relation in 3NF). 

 
Example: Let us consider the relation ‘student_info’ 

Student-info=(#name,course,phone_no,major,prof,grade) 
               with the functional dependencies 

F={name→phone_no,name→major,course→prof,name,course→grade} 
• Here,  in  this  relation  grade  is  fully  functionally  dependent  on  key  (name,course).  But 

phone_no and  major  are  partially  dependent  on  name  and  prof  and  prof  is  partially 
dependent on course. 

• Since,  second  normal  form  does  not  allow  partial  dependency  so  the  given  relation 
‘student_info’ is only in 1NF but not in 2NF. 

 

For more notes visit https://collegenote.pythonanywhere.com



6.0 Relational Database Design 
 

©T Paneru 7

Remarks: The relation can be converted into 2NF as below: 
Student-general-info=(name,phone_mno,major) 
Transcript=(#name,course,grade) 
Teacher=(#course,prof) 

• Here the functional dependencies on relations are as below: 
 
Student-general-info 
 

F={name→phone_no,name→major} 
 
Phone_no and major are fully functional dependent on key ‘name’ of relation schema ‘student-
general-info’. So the is in 2NF. Moreover, here is no functional dependency between non key 
attributes (phone_no & major). So this relation is also in 3NF (discuss later) 
 
Transcript 
 

F={name,course→grade} 
 
Here grade is fully functionally dependent on relation key (name, course). So this relation is in 
2NF. Moreover, here is no fu nctional dependency between non key attributes because here is 
only one non key attribute grade. 
 
Teacher 
 

F={course→prof} 
 
Here.  Prof  is  fully  functionally  dependent  on  relation  key  course.  So  this  relation  is  in  2NF. 
Moreover, here is no functional dependency between non key attributes. Here is only one non 
key attributes prof. 

6.4.3 Third Normal Form 
• A relation R is said to be in third normal form if it is in 2NF, every non key attributes in non 

transitively and fully functionally dependent on the every candidate key. 
• That is, relational schema in 3NF does not allow partial dependency, transitive dependency. 

For  any  relation  that  is  in  3NF,  it  must  in  2NF,  every  non  key  attribute  must  fully 
functionally dependent on relation key (s) and relation must not exist partial dependency, 
transitive dependency and no functional dependency between non key attribute. 

• The problems with a relation schema that is not in 3NF (problems with a relational schema 
in 2NF) are 
• If a relation schema R contains a transitive dependency Z →X→A , we can not insert an 

values for x in relation along with X value. That is, we can not independently record the 
fact  that  for  each  value  of  X  there  is  one  value  of  A  (insertion  problem).  Similarly, 
deletion of  a Z →A association also required  the deletion of X →A association  (deletion 
problem). 

• If a relation schema R contains a partial dependency (That is, an attribute A dependent 
on  subset  X  of  the  key  K  of  R..  i.e  K  is  key  of  R,  X K  and  X→A)  then  association 
between  X  and  A  (i.e.  X→A)  can  not  express  (insert)  unless  remaining  part  of  K  is 
present in a tuple, remaining part of k must also be express (insert) since K is a key of 
relation, these part can not be null. 

⊂

• In the above relation ‘course_detail’ 
Course_detail=(#course,prof,#room,enroll_limit) 

 

For more notes visit https://collegenote.pythonanywhere.com



6.0 Relational Database Design 
 

©T Paneru 8

There  is  a  transitive  dependency,  course→room→enroll_limit).  We  can  eliminate  this 
transitive dependency by decomposing the relation ‘course_detail’ info into the relations 

Course_prof_info=(#course,prof,enroll_limit) 
Fds={course→prof,course→enroll_limit} 
 
Course_room_info=(course,room) 
Fds=no  functional  dependency  exist  because  course  and  room  both  are  here 

foreign key. 
 
That is, all relations in 3NF are as below: 
 
Given relation in 1NF 
 

Course_detail=(#course,prof,room,room_capacity,enroll_limit) 
Fds={course→(prof,room,room_capacity,enroll_limit),room→room_capacity} 

 
Relations in 2NF 
 

Course_detail=(#course,prof,room,emroll_limit) 
FDs={course→prof,course→room,course→enroll_limit,room→enroll_limit} 
 
Room_detail=(#room,room_capacity) 
Fds={room→room_capacity} 

 
Relations in 3NF 
 

Course_prof_info=(#course.prof,enroll_limit) 
FDs={course→prof, course→enroll_limit} 
 
Course_room_info=(course,room) 
No FDs 
 
Room_detail=(#room,room_capacity) 
FDs={room→eoom_capacity} 

6.5 Boyce Codd Normal Form (BCNF) 
A relation schema R is said to be in Boyce Codd normal form if it is in 3NF and every FDs in F +

 

should be in the form  X→A where X S and A⊆ ∈S and at least one of the following condition 
hold: 

(a) X→A is a trival FD (i.e.  A∈X) or 
(b) X→R (i.e. X is a superkey of R, here X called determinant of functional dependency 
X→R) 

•  
• The BCNF imposes stronger constraints on the type of FDs allow in a relation. 

o It  allows  only  those  non  trivial  functional  dependencies  whose  determinants  are 
candidate  sperkeys  of  relation.  But  in  case  of  3NF,  it  allow  non  trivial  FDs  whose 
determinant  is  not  a  candidate  superkey  if  right-hand  side  of  FDs  contained  a 
candidate key. 

o That is BCNF enforce more stronger constraints than 3NF. 
 
Example: Let us consider the relation schema “grade” which is in 3NF. 

Grade=(#name,student_id,course,grade) 

For more notes visit https://collegenote.pythonanywhere.com



6.0 Relational Database Design 
 

©T Paneru 9

 
• Assume that , each student has unique name and unique student_id then set of FD 

FDs={name,course →grade, 
student_id,course→grade,name→student_id,student_id→name} 

 
• Here this rela tion has two candidate keys {name,course} and {student_id,course}. Each of 

those composite key has common attribute course. 
• Here the relation grade is not in BCNF because the dependencies 

{student_id→name}and {name→student_id} are non trivial and there determinants are not 
superkey of relation grade. 

 
Drawback of this relation (which is not 3NF) 

• Data  redundancy:  The  association  between name  and  corresponding  student_id  are 
repeated. 

• Update problem: Any changes in one of these attribute value (name or student_id) has 
to reflected all tuples; otherwise there will be inconsistency in the database. 

• Insertion problem: The student_id can not be associated with the student name unless  
the student has registered in a course. 

• Deletion problem: The association between student_id and student name is lost if the 
student deletes all courses he/she  is reistered in. 

• Solution ? 
student_info=(#student_id,name) 
grade(#student_id,course,grade) 

 
These problems of relation schema i n 3NF occur since relation may have overlapping candidate 
keys. BCNF removes this problem. So it is stronger than 3NF. 
 
Example: Let us consider the relational schema 

Student_info=(student_id,name,phone_no,major)  
 
where student_id, name and phone_no assumed to be unique in this relation. The following FDs 
satisfy this relation. 

FDs={student_id→name,student_id→phone_no,student_id→major, name→student_id, 
name→phone_no,  name→major, 
phone_no→student_id,phone_no→name,phone_no→major} 

 
Here each non trivial FD involves candidate key as determinant. Hence the relation 
‘student_info’ is in BCNF. 
 
 
 

 
 

 
 

For more notes visit https://collegenote.pythonanywhere.com


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

