
3.0 Relational Model

© T. Paneru 1

3.0 Relational Model
Relational database model is a primary data model for commercial data-processing
applications. It is popular because of its simplicity; it provides simple but powerful way of
representing data. It also supports complex query. Database in a relational model is simply
a collection of one or more relations, where each relation is represented by table with rows
and columns. It allows simple high level languages to query data.

3.1 Structure of Relational Databases
In relational model, table is a major construct for representing data. Relational database
consist set of tables. A row in a table represents a relationship among set of values. So
table can be refers as a collection of such relationship.

3.1.1 Basic Construct

 To illustrate the basic structure of database, let us consider a table “account”

account_number branch_name balance
A-1 Kathmandu 500
A-2 Lalitpur 300
A-3 Kathmandu 700
A-4 Bhaktpur 600

 Figure: The account table

The columns of table “account” are: account_number, brance_name and balance refer
attributes. The set of permitted values for each attribute known as domain of that attribute.
For example: set of all accounts numbers is a domain of attribute account_number.

Let D1 denotes set of all account number, D2 denotes set of all branch names and D3
denotes set of all balances. Any row of table “account” must consist 3-tuple (v1, v2, v3),
where v1 is account number (i.e. v1 is a domain of D1), v2 is branch name (i.e. v2 is a
domain of D2), and v3 is account balance (i.e. v3 is a domain of D3). In general, we can
express table “account” will contain only subset of all possible rows. That is, “account” is a
subset of
 D1×D2×D3

In general, a table of n attributes must be subset of

D1×D2×D3×. . ×Dn-1×Dn

This implies that definition of table is almost similar to the definition of relation in
mathematics. In mathematics, relationship is a subset of Cartesian product of a list of
domains. Therefore, in relational model, table can be refer as a relation and row of table can
be refers as tuple. We can define tuple variable to represent a tuple. The above account
relation consist seven tuples. Assume that tuple variable t represents first tuple of the
relation. Then, the notation t[account_number] indicates value of t on account_number
attribute. That is, t[account_number]=”A-1”. Similarly t[branch]=”Kathmandu”, and
t[balance]=500. We can also represent it as follow: t[1] where 1 indicated first attribute of
relation; that is “account_number”. Therefore, t[1]=”A-1”. In relational model, we can also
express relation as a set of tuples. So definitely, t∈r.

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 2

For each relations r, domains of all attributes of r must be atomic. The domain is said to be
atomic if elements of domain is indivisible unit. Domains of multivalued and composite
attributes are nonatomic.

Several attributes may have same domain. Suppose we have two relation customer with
customer_name as one of its attribute and employee is another relation with one of its
attribute as employee_name. It is possible that attribute customer_name and
employee_name may have same domain. If we look attributes: customer_name and
branch_name of relations customer and account respectively, at physical level, their domain
may be same, both are defined by set of character string. But at logical level,
customer_name and branch_name must have distinct domain. Null value is a member of
any possible domain. It signifies value is unknown or does not exist. Domain for
customer_phoneno of customer entity set may null, meaning is that particular customer
does not have any phone number or phone no. is not available.

3.1.2 Database Schema

A relation schema is a list of attributes and their corresponding domains. For example, the
relation schema for relation customer is express as

 Customer-schema = (customer_id, customer_name, customer_city)

We may also specify domains of attributes as

 Customer-schema = (customer_id: integer, customer_name: string,
customer_city:string)

We may state customer is a relation on Customer-schema by

 customer(Customer-schema)

Values or data contain in relation change when it is updated. Relation instance is a snapshot
of data in relation at particular time. But, in general, we simply say relation even it is
actually relation instance.

In terms of relation, relational database is a collection of relations and relational database
schema is a collection of schemas for relations in database. It describes logical design of
database. The instance of relational database is collection of relation instances. It is actually
a snapshot of data in database at a particular time.

Database schemas for banking enterprise

Branch-schema = (branch_name,branch_city,assets)
Account_schema = (account_number,branch_name,balance)
Customer-schema = (customer_id,customer_name,customer_street,customer_city)
Depositor-schema = (customer_id,account_number)
Loan-schema = (loan_number,branch_name,amount)
Borrower-schema = (customer_id,loan_no)

3.1.3 Keys
In relational model, keys (superkey, candidate key and primary key) play important roles.
For example: in Branch-schema, {branch_name} and {branch_name, branch_city} are
superkey. Since {branch_name} itself is a superkey, {branch_name, branch_city} can not

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 3

candidate key in Branch-schema. In Branch-schema, {branch_name} is a single candidate
key so ultimately it is a primary key of Branch-schema.

Let R be a relation schema and K R. If K is superkey for R then it restricts relations r(R) in
which no two distinct tuples have same values on all attribute in K. That is, if t

⊆
1 and t2 are in

r and t1≠ t2 then t1[K]≠ t2[K].

Relational database schema can be derive from an E-R schema where primary key for
relation schema is primary key of entity or relationship set from which relation schema is
derived. If relation is derive from strong entity set then primary key for relation is primary
key of that strong entity set. Similarly, if relation is derived from weak entity set then
primary key for relation is union of primary key of strong entity set and discriminator of
weak entity set. And the relation consist

• all attributes of weak entity set
• primary key of the strong entity set on which weak entity set depends

In relational model, relationship set is also represented by a relation. Its primary key is
depends up on mapping cardinalities of relationship set. If relationship is many to many
then primary key of relation representing relationship set is a union of primary keys of
related entity sets. If relationship is one to one then primary key of relation representing
relationship set is primary key of any one related entity set. Similarly, if relationship is
many to one then primary key of relation representing relationship set is the primary key of
the “many” entity set.

In relational model, one relational schema may contain primary key of another relation
schema. If relation schema r1.contains primary key of another relation schema r2 then this
attribute (i.e. PK in r2) in r1 called foreign key. The relation r1 called referencing relation
(detail table) of the foreign key dependency and r2 called referenced relation (master table).

Example:
In Branch-schema, branch_name is a primary key. In Account-schema, branch_name is a
foreign key referencing Branch-schema. This implies, in any database instance, any tuple ta
in account relation, there must be some tuple, tb in branch relation such that the value of
the branch_name attribute of ta is same as the values of the primary key, branch_name of
tb..

3.1.4 Schema Diagram
Schema diagram is a graphical representation of database schema along with primary key
and foreign key dependencies.
In schema diagram, each relation is represented by box where attributes are listed inside
box and relation name is specified above it. Primary key in relation is place above the
horizontal line that crosses the box. Foreign key in schema diagram appear as arrow from
the foreign key attributes of the referencing relation to the primary key of the referenced
relation.

 Figure: Schema diagram

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 4

Note: The difference between E-R diagram and schema diagram is, E-R diagram do not
shows the foreign key but schema diagram shows it explicitly.

3.1.5 Query Languages
Query language is a language through which user request information from database. Query
languages can be categories in procedural and non procedural. In procedural query
language, user required to specify sequence of operations to system to compute desired
information where as in nonprocedural query language, user need to specify required
information without specifying special procedure for obtaining that information.

Most commercial relational database system offers query language, both procedural and
non procedural. SQL is most popular nonprocedural query language.

In this section we discuss pure query language: relational algebra, tuple relational calculus
and domain relational calculus. These query languages can not commercially use by people
but it describes fundamental techniques for extracting data from database and provides
basis for commercial query language.

3.2 Relational algebra
The relational algebra is a procedural query language. It consist set of operation that takes
one or more relations as inputs and produce a new relation as output. The fundamental
operations in relational algebra are selection, projection, union, set difference, Cartesian
product, and rename. Set intersection, natural join, division and assignments other
operations of relational algebra which can be define in terms of fundamental operations.

3.2.1 Fundamental Operations
The fundamental operations selection, projection and rename on one relation so they called
unary operations. Others operations union, set difference and Cartesian product operates on
pairs of relations and so called binary operations.

The Selection Operation
The Select Operation selects tuples that satisfy a given predicate. Select is denoted by a
lowercase Greek letter sigma (σ), with the predicate appearing as a subscript. The relation
is specifying within parentheses afterσ . That is, general structure of selection is

σ p(r)
where p is selection predicate.

Formally, selection operation define as

σ p(r) = {t|t∈r and p(t)}
where p is formula in propositional calculus consisting terms connected by connectives: ^
(and), (or), ¬ (not). Each term is in the format ∨
 <attribute>op<attribute>or <constant>
where op is one of the comparison operators: =,≠ ,<,≤ ,>, ≥

Examples:

1. Select those tuples of loan relation where the branch is Kathmandu.

 σ branch_name=”Kathmandu”(loan)

 output = {t | t[branch_name] = Kathmandu }
 For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 5

2. Find all tuples in loan relation in which amount loan is more than 5000

 σ amount>5000(loan)

3. Find all tuples in loan relation where amount is more than 5000 and branch is

Kathmandu.

 σ branch_name=”Kathmandu” ^ amount>5000(loan)

The projection Operation

The projection operation retrieves tuples for specified attributes of relation. It eliminates
duplicate tuples in relation. The projection is denoted by uppercase Greak letter pi (∏). We
need to specify attributes that we wish to appear in the result as a subscript to ∏.

The general structure of projection is

 ∏A1,A2, . . ,Ak (r)
where A1, A2, . .Ak are attributes of relation r.

Example:Find account number and their balance from account relation

 ∏account_number,balance(account)

 output== {t | t[account_number, balance]}

Composition of relational operations

Relational algebra operations can be composed together into relational-algebra expression.
This required for complicated query.

Example: Find those customers who say in Kathmandu.

∏customer_name(σ customer_city=”Kathmandu”(customer))

Union Operation

Let r and s are two relations then their union defines as

rU s ={t | t∈r or t∈s}

For r s to be valid, it must hold U

• r,s must have same arity (same number of attributes)
• The attribute domain must be compatible (e.g. domain of ith column of r must deals

with same type of domain of ith column of s)

Example: Find all customers with either account or loan.

∏customer_name(depositor) U ∏customer_name(borrower)

Set difference Operation
The set difference allows us to find tuples that are in one relation but not in another
relation. The expression r-s produces a relation containing those tuples in r but not in s.

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 6

Formally, let r and s are two relations then their difference r-s define as
r-s=={t | t∈r and t∉s}

The set difference must be taken between compatible relations. For r-s to be valid, it must
hold

• R and s must have the same arity
• Attribute domains of r and s must be compatible

Example: Find all customer of the bank who have account but not loan

∏customer_name(depositor) - ∏customer_name(borrower)

Cartesian Product Operation

The Cartesian product operation denoted by cross (×). It allows us to combine information
from any two relations. Cartesian product of two relations r and s, denoted by r×s returns a
relation instance whose schema contains all the fields of r (in same order as they appear in
r(followed all field of s (in the same order as they appear in s). The result of r×s contains
one tuples <r,s> (concatenation of tuples of r and s) for each pair tuples t∈r, q∈s.
Formally,

 r×s={<t,q>|t∈r and q∈s}

Example 1:
 C D E

α 10 a
β 10 a

β 20 b
γ 10 b

 A B

α 1
β 2

 Relation r Relation s

r×s: A B C D E

α 1 α 10 a
α 1 β 10 a

α 1 β 20 b

α 1 γ 10 b
β 2 α 10 a

β 2 β 10 a

β 2 β 20 b

β 2 γ 10 b

σ A=α(r×s):

A B C D E
 α α 1 10 a

α 1 β 10 a

α 1 β 20 b

α 1 γ 10 b

 For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 7

Example 2:

customer_name loan_number
X L01
Y L02

 Relation borrower

loan_number branch_name amount
L01 B1 5000
L02 B2 6000

 Relation loan

Query: Find all customer who taken loan from branch “B1”.

∏customer_name(σ borrower.loan_number=loan.loan_number(σ branch_name=”B1” (borrower×loan)))

Process:

 borrower×loan

customer_name borrower.loan_number loan.loan_number branch_name amount
X L01 L01 B1 5000
X L01 L02 B2 6000
Y L02 L01 B1 5000
Y L02 L02 B2 6000

 σ branch_name=”B1” (borrower×loan)

customer_name borrower.loan_number loan.loan_number branch_name amount
X L01 L01 B1 5000
Y L02 L01 B1 5000

 σ borrower.loan_number=loan.loan_number(σ branch_name=”B1” (borrower×loan))

customer_name borrower.loan_number loan.loan_number branch_name amount
X L01 L01 B1 5000

∏customer_name(σ borrower.loan_number=loan.loan_number(σ branch_name=”B1” (borrower×loan)))

customer_name

X

 For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 8

The Rename Operation

The result of relational-algebra expression does not have a name to refer it. It is better to
give name to result relation. The rename operator is denoted by lower case Greek letter rho
(ρ). Rename operation in relation-algebra expressed as
 ρ x(E)
where E is a relational algebra expression and x is name for result relation. It returns the
result of expression E under the name x.

Since a relation r is itself a relational-algebra expression thus, the rename operation can
also apply to rename the relation r (i.e. to get same relation under a new name). Rename
operation can also used to rename attributes of relation. Assume a relational algebra
expression E has arity n. Then expression
 ρ x(A1,A2, . . ,An)(E)
returns the result of expression E under the name x and it renames attributes to A1,A2, .
.,An.

Example 1: Find the largest account balance in the bank.

∏balance(account) -∏account.balance(σ account.balance<d.balance(account× ρ d(account)))

Process:

account_number balance
A1 500
A2 600
A3 700

 Relation account

Account_number balance
A1 500
A2 600
A3 700

 Relation d

 account×ρ d(account)

account.account_number account.balance d.balance
A1 500 500
A1 500 600
A1 500 700
A2 600 500
A2 600 600
A2 600 700
A3 700 500
A3 700 600
A3 700 700

 ∏account.balance(σ account.balance<d.balance(account× ρ d(account))

Account.balance
For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 9

500
600

 ∏balance(account) -∏account.balance(σ account.balance<d.balance(account× ρ d(account)))

account.balance
500
600

balance
500
600
700

 Output:

balance
700

Example 2: Find the names of all customers who live on the same street and in the same
city as smith.

∏customer.customer(σ customer.customer_street=smith_add.street^customer.customer_city=smith-add.city

 (customer× ρ smith_add(street,city) (∏customer_street,customer_city(σ customer_name=”smith”(customer)))))

3.2.2 Formal Definition of Relational Algebra

Basic expressions in relational algebra are

• Relation in a database
• A constant relation

o A constant relation is expression by listing its tuples
o {(A01,”B1”,500)(A02, “B2”,600)

From the basic expression we can construct other expression. Let E1 and E2 be relational
algebra expression, then following are also relational-algebra expression.
E1U E2

E1-E2

E1×E2

σ p (E1), p is a predicate on attributes in E1.
∏ s(E1), s is a list of some attributes in E1

ρ x(E1), x is the new name for the result of E1

3.2.3 Additional Operations

The fundamental operations of the relational algebra are sufficient to express any relational
algebra query. But for complex query it is difficult. Additional operations (set intersection,
natural join, division, assignment) simplify the common queries.

Set-intersection operation

Let r and s are two relation having same arity and attributes of r and s are compatible then
their intersection r∩ s define as

 r∩ s={t|t∈r and t∈s}

In terms of fundamental operation of relational algebra it can express as

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 10

 r∩ s=r-(r-s)

Example 1:

A B
α 2
β 3

A B
α 1
α 2
β 1

 Relation r relation s

 r∩ s: A B

α 2

Example 2: Find all customer who have both loan and account

 ∏customer_name(borrower) ∩∏ customer_name (depositor)

The natural join operation

The natural join operation generally needs to simplify queries that required a Cartesian
product. The natural join allow to combine certain selections and a Cartesian product into
one operation. It is denoted by symbol

.
The natural join operation forms a Cartesian product of its two arguments, performs a
selection forcing equality on those attributes that appear in both relation schema and finally
removes duplicate attributes.

Formally, let r and s are two relations on schema R and S respectively then r s is a
relation on schema R s. That is, U

r s =∏ R S∪ (σ r.A1=s.A1^r.A2=s.A2^ . .^r.An=s.An(r×s)

where {A1,A2, . .,An} are common attributes in R and S.

Example 1:
Let

R=(A,B,C,D)
S=(E,B,D)

Now,

Result schema=(A,B,C,D,E)
r s is define as
 ∏ r.A,r.B,r.C,r.D,s.E(σ r.B=s.B^r.D=s.D(r×s))

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 11

Suppose r and s are two relation as follow

B D E
1 a α
3 a β

1 a γ

2 b δ
3 b ∈

A B C D
α 1 α a
β 2 γ a
γ 4 β b

α 1 γ a
δ 2 β b

 Relation r relation s

r s:

A B C D E
α 1 α a α

1 α a γ α
1 γ a α α
1 γ a γ α

δ δ β b 2

Example 2: Find the names of all customer who have a loan at the bank

 ∏ customer_name(borrower loan)

Same query is express by fundamental operation as follow

∏customer_name(σ borrower.loan_number=loan.loan_number((borrower×loan))

Example 3: Find names of all branches with customer who have account in the bank and
who live in Kathmandu.

 ∏customer_name(σ customer_city=”Kathmandu” customer account depositor))

Example 4: Find all customers who have both loan and account at the bank.

∏ customer_name(borrower depositor)

In the set intersection form this can be express as

∏ customer_name(borrower) ∏ I customer_name(depositor)

Note 1: Let r(R) and s(S) e relations without any attributes in common. That is RI S=Φ
then

r s=r×s

Note 2: Theta Join

The theta join is an extension to the natural join operations that allow us to combine a
selection and a Cartesian product into a single operation with predicate on attributes.

Let relation r® and s(S), and be a predicate on attributes in the schema RU S then theta

join operation r

Θ
Θ s is defined as

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 12

r Θ s=σ Θ (r×s)

Example: Find all customers who have loan and stay in Kathmandu.

∏ customer_name(borrower customer_city=”Kathmandu” loan)

Division Operation

Let r and s be the relations on schemas R and S respectively where S R (i.e. every
attributes of schema S is also in schema R) then r

⊆
÷ s is a relation on schema (R-S), define

as

r s={t|t∈∏ ÷ R-S(r) ^ u∈s(tu∀ ∈r)}

Example:

A B
α 1
 α 2
α 3
β 1
γ 1
δ 1

δ 3

δ 4 B
∈ 6 1
∈ 1
β

2
2

 Relation r Relation s
r s : ÷

Example 2:

A
α
β

A B C D E
α a α a 1
α a γ a 1
α a γ b 1
β a γ a 1

β a γ b 3
γ a γ a 1
γ a γ b 1
γ a

 Relation r Relation s
Example: Find all customers who have an account at all the branches located in Kathmandu.

β b 1

D E
a 1
b 1

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 13

We can obtain all branches in Kathmandu by expression
r1=∏branch_name(σ cbranch_city=”Kathmandu”(branch))

We can obtain all (customer_name, branch_name) pair for the customer who have account.

r2=∏customer_name, branch_name(depositor account)

The required customer can obtain from

r2 r1 ÷
That is,

∏customer_name,

branch_name(depositor account)÷ ∏branch_name(σ cbranch_city=”Kathmandu”(branch))

The assignment operations

The assignment operation provides convenient way to express complex query. The
assignment operation denoted by ←, works like assignment in programming language. The
evaluation of an assignment does not result any relation being displayed to the user. But
the result of the expression to the right of the ← is assigned to the relation variable. This
relation variable may used in subsequent expressions. With the assignment expression, a
query can be written as a sequential program consisting a series of assignments followed by
an expression whose value is displayed as the result of the query.

Example: Find all customer who taken loan from bank as well as he/she has bank account.

Temp1←∏customer_name(borrower)

Temp2←∏customer_name(depositor)
result← Temp1 temp2 I

3.2.4 Extended Relational-Algebra operations

Generalized projection, outer join and aggregation function are extension on basic relational
algebra operation.

Generalized Projection

Generalized projection operation allows arithmetic functions in the projection list. The
general structure is
 ∏F1,F2, . .Fn(E)
where E is any relational algebra expression. Each F1,F2, . .Fn are arithmetic expression
involving constraints and attributes in the schema of E.

Example 1:

Suppose a relation
 credit_info(customer_name, credit_limit,credit_balance)

Query: Find how much more each person can spend.
 ∏customer_name, credit_limit - credit_balance(credit_info)

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 14

The resulting attribute from credit_limit – credit_balance does not have name; its name can
be specify as below
 ∏customer_name, credit_limit - credit_balance as credit_available(credit_info)

Example 2:

Suppose relation
 employee(employee_id,ename,salary)

Find employee and their corresponding bonus, assume that bonus for each employee is
10% of his/her salary.
 ∏ ename,salary*1.10 as bonus(employee)

Aggregate function and operations

Aggregate function takes a collection of values and return as a single value as a result.
Some aggregate functions are

• AVG: average value
• MIN: minimum value
• SUM: sum of values
• Count: number of values

The aggregate operation in relational algebra denoted by the symbol (i.e. is the letter
G in calligraphic font). The general structure is

 G1,G2, . . ,Gn F1(A1),F2(A2), . .,Fn(An)(E)

where E is any relational algebra expression.

• G1,G2, . .,Gn is a list of attributes on which to group (it could be empty)
• Each Fi is aggregate function.
• Each Ai is an attribute name

Example:

A B C
α α 7
α β 7

α β 3

β β 10

 Relation r

sum(C)(r):
Sum-C
27

Example 2: Find the balance to each branch.

 branch_name sum(blance) as sum-blance(account)

Example 3: Find no. of account in each branch

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 15

 branch_name count(account_number) (account)

Outer join

The outer-join operation is extension to natural join. It has a capability to deal with missing
information. There are three form of outer-join operation

(a) Left outer-join ()
• Takes all tuples in the left relation. If there are any tuples in right relation

that does not match with tuple in left relation, simply pad these right relation
tuples with null.

• Add them to the result of the left outer-join.
(b) Right outer-join()

• Takes all tuples in the right relation. If there are any tuples in the left relation
that does not match with tuple in right relation, simply pad left relation tuples
with null.

• Add them to the result of the left outer-join.
(c) Full outer-join ()

• Pad tuples from the left relation that that did not match any from the right
relation

• Pad tuples from the right relation that that did not match any from the left
relation

• Add them to the result of full outer-join.

Example:

Consider relations

loan_number branch_name amount
L01 B1 500
L02 B2 600
L05 B1 700

 Relation loan

customer_name loan_number
X L01
Y L02
Z L07

 Relation borrower

Natural join (Inner join)

 Loan borrower

loan_number branch_name amount customer_name
L01 B1 500 X
L02 B2 600 Y

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 16

Left outer-join

 loan borrower

loan_number branch_name amount customer_name
L01 B1 500 X
L02 B2 600 Y
L05 B1 700 null

Right outer-join

 Loan borrower

loan_number branch_name amount customer_name
L01 B1 500 X
L02 B2 600 Y
L07 null null Z

Full outer-join

 Loan borrower

loan_number branch_name amount customer_name
L01 B1 500 X
L02 B2 600 Y
L05 B1 700 null
L07 null null Z

3.2.5 Null Values

Tuples may not have any values for some of the attributes. At that time the attribute is said
to have null value and is denoted by null. It simplifies an unknown value or a value does not
exist. The result of any arithmetic or comparison involving null is null. There are often more
than one possible way of dealing with null values, as a result our definition can sometimes
be arbitrary. Therefore arithmetic operations and comparison on null values should avoid if
possible.

Comparison involving nulls may occur inside Boolean expression: AND, OR and NOT
operations. Boolean operation deal with null value is as follow.

AND: (true and null)=null
 (false and null)=false
 (null and null)=null

OR: (null or true)=true
 (null or false)=null
 (null or null)=null

NOT: (not null)=null

 For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 17

How different relation operations deal with null values ?
Select
The select operation evaluates predicate p in σ p(E) on each tuple t in E. If predicate returns
true value then t is added to the result. Otherwise predicate returns null or false and t is not
added to the result.
Join
In natural join, r s, if two tuples tr∈r and ts∈s, both have a null values in common
attributes then tuples do not match.
Projection
The projection treats null just like any other value when eliminating duplicates. If two tuples
in the projection result are exactly the same, and both have nulls in the same fields, they
are treated as duplicated. For example

A B C
α γ null

γ α null

Here, projection assumes these two tuples are duplicates.

This is arbitrary decision since without knowing the actual value, we can not tell two
instances of null are duplicates or not.

Union, intersection and difference
These operation also treats null value as any other values when eliminating duplicates.
These operations treat tuples that have same values on all fields as duplicates even if some
of the fields have null values in both tuples. This decision is arbitrary, especially in the case
of intersection and difference since the actual values (if any) represented by nulls are same.

Generalized projection
It treats null value same as projection.

Outer join
Outer join operation behaves null value just like natural join operation. In outer join, tuples
that do not occur in the natural join result may be added to the result of outer join padded
with nulls.

3.2.6 Modification of the database
Insertion, deletion and updating operations are responsible for database modification.

Deletion
 A delete request is expressed similarity to the query, except instead of displaying tuples,
the selected tuples are removed from the databases. Delete request can delete only whole
tuples, can not delete values on only particular attributes. Deletion is expressed as
 r←r-E
where r is a relation and E is a relational algebra query.

Example 1: Delete all account in the “B1” branch.
 account ←account - σ branch_name=”B1”(account)

Example 2: Delete all records with account in the range of 0 to 5.
 loan←loan - σ amount>0 and amount≤ 50(loan)

insertion

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 18

to insert data into relation we can either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. In relational-algebra, an insertion is express
by
 r←r∪ E
where r is a relation and E is a relational algebra expression.

Example: insert information in the database specifying customer “X” has 5000 in account
A1 at the kathmandu city.

account←account {(A1,”kathmandu”,5000)} ∪
depositor←depositor {(“x”,A1)} ∪

Updating
Updating allow to change a value in a tuple without changing all values in tuple. In
relational algebra, updating express by
 r←∏ F1,F2, . . ,Fn(r)
where each Fi is either

• ith attributes of r, if the ith attribute is not updated or
• expression involving only constant and attributes of r, if the attribute is to be

updated. It gives the new value for the attribute.

Example 1: increase balance by 5% to all branches.
 account←∏ account_number,branch_name,balance*1.05(account)

Example 2: Increase the balance by 6% for those account which balance is over 5000 and
for the rest of account increase balance by 5%.

account←∏ account_number,branch_name,balance*1.06(σ balance>5000(account))
 ∏ U account_number,branch_name,balance*1.05(σ balance≤5000(account))

3.2.7 Views
For a security reason, it is not desirable for all users to see the entire logical model of
database (i.e. all actual relations stored in database). We may required certain data to be
hidden from users. We may wish to create a personalized collection of relations that is
better matched to certain user’s intuition than whole database. For example, an employee
in advertising department might to see a relation consisting of the customers who have
either an account or loan at the bank and the branches with which they do business. In
relational algebra it is express by

∏ branch_name,customer_name(depositor account) ∏ U

branch_name,customer_name(borrower loan)

Any relation that is not the part of the logical model, but it is made visible to a user as a
virtual relation called a view. There would no. of views for any given set of actual relations.

3.2.8 View Definition
View is defined by using the create view statement. The general structure is

Create view <view name> as <query expression>
where <query expression> is any legal relational-algebra query expression. Once a view is
defined, it can refer by its virtual name, called view name.

Example: Create a view “all-customer” consisting branches and their customers.
 Create view all-customer as

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 19

 ∏ branch_name,customer_name(depositor account) ∏ U

branch_name,customer_name(borrower loan)

We can query on this view as in other relation. For example,

Query: find all customer of “B1” branch.

 ∏ customer_name(σ branch_name=”B1”(all-customer))

View definition is not same as creating a new relation evaluating the query express. It is
actually substitution to query expression from which it is defined. If the view is stored, it
may become out of date. If the relations used to be define it are modified. To avoid this,
database system stores the definition of view itself, rather than the result of evaluation of
relational-algebra expression that defines the view. Whenever we evaluate the query, the
view relation is recomputed.

Certain database system stores result of evaluation of the relational algebra expression that
defines view. If the actual relation used in the view definition change, the view need to kept
up to date; such view called materialized view. The process of keeping the view up to date
called view maintenance.

3.2.9 Updates through view and null values

Although views are useful tool for queries, it gives serious problem if we allow insertion,
deletion and updates from view. Any modification made by view must be translated to
actual relations in database. It is difficult task. In some case, it is not possible Let us
consider example to illustrate this.
Consider a view loan-branch which is provided to clerk to see all loan data in loan relation,
except loan amount.

Create view loan-branch as
 ∏ loan_number,branch_name(loan)

Assume that clerk try to insert loan information and write
 loan-branch←loan-branch {(L01,”B1”)} U
In fact, this insertion must made to the relation loan. However to insert a tuple into loan,
we must have value for account. To deal with this problem we may choose to options

• Reject insertion and return an error message to the user
• Insert tuple (L01,”B1”,null) into a loan relation.

Let us consider another view to illustrate another problem with modification of the database
through view.
Consider a view loan-info providing loan amount for each loan of customer

Create view loan-info as
 ∏ customer_name,amount(borrower loan)

Assume that following insertion is perform to view

loan-info←loan-info {(“X”,5000)} U

Since view loan-info is created from multiple relation (i.e customer_nae is taken from
borrower, account is taken from loan). So we have to insert tuple (“X”,null) into borrower
and (null,null,5000) into loan. This insertion may leads several complication, loan can be
taken with out loan number so it is impossible to map loan and their corresponding
customer in actual relation.If loan_number is define as primary key in loan relation then
this insertion is not possible. Because of these problems, modification on view is not
permitted generally.

For more notes visit https://collegenote.pythonanywhere.com

3.0 Relational Model

© T. Paneru 20

3.2.10 Tuple relational calculus
Tuple relational calculus is nonprocedural query language. It describes desired information
without specifying procedure for obtaining that information. The general structure of query
in relational calculus is express as

{t|p(t)}
read as; set of all tuples t such that predicate p is true for t.

General notation

• t is a tuple variables.
• T[A] denotes the value of tuple ton attribute A.
• t∈r denotes the tuple t in relation r.
• p is a formula similar to the predicate calculus. Predicate calculus formula consist

o set of attributes and constant
o set of comparison operator (e.g. <,≤,=,≠,>,≥)
o set of connectives: and (^), or (), not (∨ ¬)
o implication (): X⇒Y (i.e. if X is true, then Y is true) ⇒
o set of quantifiers

 t∈r(Q(t)) : “there exist” a tuple t in relation r such that predicate
Q(t) is true.
∃

 t∈r(Q(t)) : Q is true “for all” tuples t in relation r ∀ ∃
Example queries
1. Find the loan number, branch name and amount for loan of over 5000

{t|t∈loan ^ t[amount]>5000}
2. Find the loan number for each loan of account greater than 1200.

{t| s∈loan(t[loan_number]=s[loan_number]^s[amount]>1200)} ∃
3. Find the names of all customer having a loan, an account or n=both at the bank.
 {t| s∈borrower(t[customer_name]=s[customer_name] ∨ ∃
 ∃ u∈depositor(t[customer_name]=u[customer_name])
4. Find the names of all customers who have a loan and account at the bank.

{t| s∈borrower(t[customer_name]=s[customer_name] ∃ ∧
∃ u∈depositor(t[customer_name]=u[customer_name])

5. Find the names of all customers having a loan at the “B1’ branch.
{t| s∈borrower(t[customer_name]=s[customer_name] ∃

 u∈loan(u[branch_name]=”B1” ∧ ∃ ∧u[loan_number]=s[loan_numnber]))}
6. Find the names of all customers who have a loan at the “B1” branch, bt no. amount at

any branch of the bank.
{t| s∈borrower(t[customer_name]=s[customer_name] ∃
∃ u∈loan(u[branch_name]=”B1” ∧u[loan_number]=s[loan_numnber]

 not v∈depositor(v[customer_name]t[customer])} ∧ ∃
7. Find the names of all customer and their city they stay having a loan from the branch

“b1”
{t| s∈loan(s[branch_name]=”B1” ∃

 u∈borrower(u[loan_number]=s[loan_number]
t[customer_name]=u[customer_name])

∧ ∃
∧

 v∈customer(u[customer_name]=v[customer_name] ∧ ∃
 t[customer_city]=v[customer_city]=v[customer_city])))} ∧

8. Find the names of all customers who have an account at all branch located in
“Kathmandu”.
{t| c∈customer(t[customer_name]=c[customer_name] ∃

 s∈branch(s[branch_city]=”Kathmandu”
u∈account(s[branch_name]=u[branch_name]

∧ ∀ ⇒
∃
 s∈depositor(t[customer_name]=s[customer_name] ∧ ∃
 s[account_number]=u[account_number])))} ∧ For more notes visit https://collegenote.pythonanywhere.com

	3.0 Relational Model
	3.1 Structure of Relational Databases
	3.1.1 Basic Construct
	 To illustrate the basic structure of database, let us consider a table “account”
	3.1.2 Database Schema
	3.1.3 Keys
	3.1.4 Schema Diagram
	3.1.5 Query Languages

	3.2 Relational algebra
	3.2.1 Fundamental Operations
	3.2.2 Formal Definition of Relational Algebra
	3.2.3 Additional Operations
	3.2.4 Extended Relational-Algebra operations
	3.2.5 Null Values
	3.2.6 Modification of the database
	3.2.7 Views
	3.2.8 View Definition
	3.2.9 Updates through view and null values
	Although views are useful tool for queries, it gives serious problem if we allow insertion, deletion and updates from view. Any modification made by view must be translated to actual relations in database. It is difficult task. In some case, it is not possible Let us consider example to illustrate this.
	3.2.10 Tuple relational calculus

