

Prepared by: Navin Kishor Sharma 1 RMI and CORBA

Remote Method Invocation(RMI)

The Remote Method Invocation (RMI) model represents a distributed object application. RMI allows an
object inside a JVM (a client) to invoke a method on an object running on a remote JVM (a server) and
have the results returned to the client.

 Therefore, RMI implies a client and a server.
The server application typically creates an object and makes it accessible remotely.

 Therefore, the object is referred to as a remote object.

 The server registers the object that is available to clients.
One of the ways this can be accomplished is through a naming facility provided as part of the JDK, which
is called the rmiregistry. The server uses the registry to bind an arbitrary name to a
remote object. A client application receives a reference to the object on the server and then invokes
methods on it. The client looks up the name in the registry and obtains a reference to an object that is
able to interface with the remote object. The reference is referred to as a remote object reference.
Most importantly, a method invocation on a remote object has the same syntax as a method invocation
on a local object.

RMI Architecture
The interface that the client and server objects use to interact with each other is provided through
stubs/skeleton, remote reference, and transport layers. Stubs and skeletons are Java objects that act as
proxies to the client and server, respectively.

All the network-related code is placed in the stub and skeleton, so that the client and server will not
have to deal with the network and sockets in their code. The remote reference layer handles the
creation of and management of remote objects. The transport layer is the protocol that sends remote
object requests across the network.
A simple diagram showing the above relationships is shown below.

Client Server

Stub Skeleton

Remote Reference Layer Remote Reference Layer

Transport Layer Transport Layer

 Network Connection

Developing a distributed application using RMI involves the following steps:

1. Define a remote interface
2. Implement the remote interface
3. Develop the server
4. Develop a client
5. Generate Stubs and Skeletons, start the RMI registry, server, and client

Prepared by: Navin Kishor Sharma 2 RMI and CORBA

The Remote Interface
The server's job is to accept requests from a client, perform some service, and then send the results
back to the client.The server must specify an interface that defines the methods available to clients as
a service. This remote interface defines the client view of the remote object.The remote interface is
always written to extend the java.rmi.Remote interface. Remote is a "marker" interface that identifies
interfaces whose methods may be invoked from a non-local virtual machine.

//RemoteInterface.java
import java.rmi.*;
public interface RemoteInterface extends Remote
{
 public int add(int x,int y)throws RemoteException;
}

In the example above, add(int x,int y) is a remote method of the remote interface RemoteInterface. All
methods defined in the remote interface are required to state that they throw a RemoteException. A
RemoteException represents communication-related exceptions that may occur during the execution of
a remote method call.

The Remote Object
An implementation of the RemoteInterface interface is shown below.
//ServerImplements.java
import java.rmi.*;
import java.rmi.server.*;
import java.lang.String;
public class ServerImplements extends UnicastRemoteObject implements RemoteInterface
 {
 public ServerImplements()throws RemoteException
 {
 super();
 }
 public int add(int x,int y)
 {
 return (x+y);
 }
}

The implementation is referred to as the remote object. The implementation class extends
UnicastRemoteObject to link into the RMI system. This is not a requirement. A class that does not
extend UnicastRemoteObject may use its exportObject() method to be linked into RMI. When a class
extends UnicastRemoteObject, it must provide a constructor declaring that it may throw a
RemoteException object. When this constructor calls super(), it activates code in UnicastRemoteObject,
which performs the RMI linking and remote object initialization.

Writing the Server
//AdditionServer.java
import java.rmi.Naming;
import java.rmi.registry.LocateRegistry;

Prepared by: Navin Kishor Sharma 3 RMI and CORBA

public class Server
{
 public static void main(String args[])
 {
 try
 {
 ServerImplements s=new ServerImplements();
 LocateRegistry.createRegistry(1099);
 Naming.rebind("SERVICE",s);
 System.out.println("Server Started ");
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
}

The server creates the remote object, registers it under some arbitrary name, then waits for remote
requests. The java.rmi.registry.LocateRegistry class allows the RMI registry service (provided as part of
the JVM) to be started within the code by calling its createRegistry method.
This could have also been achieved by typing the following at a command prompt: start rmiregistry. The
default port for RMI is 1099. The java.rmi.registry.Registry class provides two
methods for binding objects to the registry.
Naming.bind("ArbitraryName", remoteObj); throws an Exception if an object is already bound under
the "ArbitrayName. "
Naming.rebind ("ArbitraryName", remoteObj); binds the object under the "ArbitraryName" if it does
not exist or overwrites the object that is bound.
The example above acts as a server that creates a ServerImplements object and makes it available to
clients by binding it under a name of "SERVICE ".

NOTE: If both the client and the server are running Java SE 5 or higher, no additional work is needed on
the server side. Simply compile the RemoteInterface.java, ServerImplements.java, and
AdditionServer.java, and the server can then be started. The reason for this is the introduction in Java
SE 5 of dynamic generation of stub classes. Java SE 5 adds support for the dynamic generation of stub
classes at runtime, eliminating the need to use the RMI stub compiler, rmic, to pre-generate stub classes
for remote objects.
• Note that rmic must still be used to pre-generate stub classes for remote objects that need to support
clients running on earlier versions.

Writing the Client
//Client.java
import java.rmi.*;
import java.io.*;
public class Client
{
public static void main(String args[])
 {

Prepared by: Navin Kishor Sharma 4 RMI and CORBA

 try
 {
 String ip="rmi://127.0.0.1/SERVICE";
 RemoteInterface s=
 (RemoteInterface)Naming.lookup(ip);
 System.out.println("sum: "+ s.add(1,3));
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }
}

RMI pros and cons
Remote method invocation has significant features that CORBA doesn't possess - most notably the
ability to send new objects (code and data) across a network, and for foreign virtual machines to
seamlessly handle the new object. Remote method invocation has been available since JDK 1.02, and so
many developers are familiar with the way this technology works, and organizations may already have
systems using RMI. Its chief limitation, however, is that it is limited to Java Virtual Machines, and
cannot interface with other languages.

Pros cons

Portable across many platforms Tied only to platforms with Java support

Can introduce new code to foreign JVMs Security threats with remote code execution, and
limitations on functionality enforced by security
restrictions.

Java developers may already have experience with
RMI (available since JDK1.02)

Learning curve for developers that have no RMI
experience is comparable with CORBA

Existing systems may already use RMI - the cost
and time to convert to a new technology may be
prohibitive

Can only operate with Java systems - no support
for legacy systems written in C++, Ada, Fortran,
Cobol, and others (including future languages).

 Common Object Request Broker Architecture(CORBA)

CORBA, or Common Object Request Broker Architecture, is a standard architecture for distributed

object systems. It allows a distributed, heterogeneous collection of objects to interoperate.

The OMG

The Object Management Group (OMG) is responsible for defining CORBA. The OMG comprises over 700
companies and organizations, including almost all the major vendors and developers of distributed
object technology, including platform, database, and application vendors as well as software tool and
corporate developers.
CORBA Architecture
CORBA defines an architecture for distributed objects. The basic CORBA paradigm is that of a request for
services of a distributed object. Everything else defined by the OMG is in terms of this basic paradigm.

Prepared by: Navin Kishor Sharma 5 RMI and CORBA

The services that an object provides are given by its interface. Interfaces are defined in OMG's Interface
Definition Language (IDL). Distributed objects are identified by object references, which are typed by IDL
interfaces.
The figure below graphically depicts a request. A client holds an object reference to a distributed object.
The object reference is typed by an interface. In the figure below the object reference is typed by the
Rabbit interface. The Object Request Broker, or ORB, delivers the request to the object and returns any
results to the client. In the figure, a jump request returns an object reference typed by the
AnotherObject interface.

The ORB
The ORB is the distributed service that implements the request to the remote object. It locates the
remote object on the network, communicates the request to the object, waits for the results and when
available communicates those results back to the client.
The ORB implements location transparency. Exactly the same request mechanism is used by the client
and the CORBA object regardless of where the object is located. It might be in the same process with the
client, down the hall or across the planet. The client cannot tell the difference.
The ORB implements programming language independence for the request. The client issuing the
request can be written in a different programming language from the implementation of the CORBA
object. The ORB does the necessary translation between programming languages. Language bindings are
defined for all popular programming languages.

CORBA as a Standard for Distributed Objects
One of the goals of the CORBA specification is that clients and object implementations are portable. The
CORBA specification defines an application programmer's interface (API) for clients of a distributed
object as well as an API for the implementation of a CORBA object. This means that code written for one
vendor's CORBA product could, with a minimum of effort, be rewritten to work with a different vendor's
product. However, the reality of CORBA products on the market today is that CORBA clients are portable
but object implementations need some rework to port from one CORBA product to another.
CORBA 2.0 added interoperability as a goal in the specification. In particular, CORBA 2.0 defines a
network protocol, called IIOP (Internet Inter-ORB Protocol), that allows clients using a CORBA product
from any vendor to communicate with objects using a CORBA product from any other vendor. IIOP
works across the Internet, or more precisely, across any TCP/IP implementation.
Interoperability is more important in a distributed system than portability. IIOP is used in other systems
that do not even attempt to provide the CORBA API. In particular, IIOP is used as the transport protocol
for a version of Java RMI (so called "RMI over IIOP"). Since EJB is defined in terms of RMI, it too can use
IIOP. Various application servers available on the market use IIOP but do not expose the entire CORBA
API. Because they all use IIOP, programs written to these different API's can interoperate with each
other and with programs written to the CORBA API.

Prepared by: Navin Kishor Sharma 6 RMI and CORBA

CORBA Services
Another important part of the CORBA standard is the definition of a set of distributed services to
support the integration and interoperation of distributed objects. As depicted in the graphic below, the
services, known as CORBA Services or COS, are defined on top of the ORB. That is, they are defined as
standard CORBA objects with IDL interfaces, sometimes referred to as "Object Services."

There are several CORBA services. Below is a brief description of each:
Service Description

Object life cycle Defines how CORBA objects are created, removed, moved, and

copied

Naming Defines how CORBA objects can have friendly symbolic names

Events Decouples the communication between distributed objects

Relationships Provides arbitrary typed n-ary relationships between CORBA objects

Externalization Coordinates the transformation of CORBA objects to and from

external media

Transactions Coordinates atomic access to CORBA objects

Concurrency Control Provides a locking service for CORBA objects in order to ensure

serializable access

Property Supports the association of name-value pairs with CORBA objects

Trader Supports the finding of CORBA objects based on properties

describing the service offered by the object

Query Supports queries on objects

CORBA Products

CORBA is a specification; it is a guide for implementing products. Several vendors provide CORBA

products for various programming languages. The CORBA products that support the Java programming

language include:

Prepared by: Navin Kishor Sharma 7 RMI and CORBA

ORB Description

The Java 2 ORB The Java 2 ORB comes with Sun's Java 2 SDK. It is missing

several features.

VisiBroker for Java A popular Java ORB from Inprise Corporation. VisiBroker is also

embedded in other products. For example, it is the ORB that is

embedded in the Netscape Communicator browser.

OrbixWeb A popular Java ORB from Iona Technologies.

WebSphere A popular application server with an ORB from IBM.

Netscape Communicator Netscape browsers have a version of VisiBroker embedded in

them. Applets can issue request on CORBA objects without

downloading ORB classes into the browser. They are already

there.

Various free or shareware ORBs CORBA implementations for various languages are available for

download on the web from various sources.

CORBA pros and cons
CORBA is gaining strong support from developers, because of its ease of use, functionality, and
portability across language and platform. CORBA is particularly important in large organizations, where
many systems must interact with each other, and legacy systems can't yet be retired. CORBA provides
the connection between one language and platform and another - its only limitation is that a language
must have a CORBA implementation written for it. CORBA also appears to have a performance increase
over RMI, which makes it an attractive option for systems that are accessed by users who require real-
time interaction.

Pros Cons

Services can be written in many different
languages, executed on many different
platforms, and accessed by any language
with an interface definition language (IDL)
mapping

Describing services require the use of an interface
definition language (IDL) which must be learned.
Implementing or using services require an IDL mapping
to your required language - writing one for a language
that isn't supported would take a large amount of work.

With IDL, the interface is clearly separated
from implementation, and developers can
create different implementations based on
the same interface.

IDL to language mapping tools create code stubs based
on the interface - some tools may not integrate new
changes with existing code.

CORBA supports primitive data types, and a
wide range of data structures, as parameters

CORBA does not support the transfer of objects, or code.

CORBA is ideally suited to use with legacy
systems, and to ensure that applications
written now will be accessible in the future.

The future is uncertain - if CORBA fails to achieve
sufficient adoption by industry, then CORBA
implementations become the legacy systems.

CORBA is an easy way to link objects and
systems together.

Some training is still required, and CORBA specifications
are still in a state of flux.

