
Prepared by: Navin Sharma 1 Unit-7: Servlets and JSP

Unit 7. Servlets and Java Server Pages

Servlets

Servlets are small programs that execute on the server side of a Web connection. Just as applets

dynamically extend the functionality of a Web browser, servlets dynamically extend the functionality of

a Web server.

A servlet is a Java programming language class used to extend the capabilities of servers that host

applications accessed via a request-response programming model. Although servlets can respond to any

type of request, they are commonly used to extend the applications hosted by Web servers. For such

applications, Java Servlet technology defines HTTP-specific servlet classes.The javax.servlet and

javax.servlet.http packages provide interfaces and classes for writing servlets. All servlets must

implement the Servlet interface, which defines life-cycle methods.

The Life Cycle of a Servlet

Three methods are central to the life cycle of a servlet. These are init(), service(), and destroy(). They

are implemented by every servlet and are invoked at specific times by the server. Let us consider a

typical user scenario to understand when these methods are called.

First, when a user enters a Uniform Resource Locator (URL) to a Web browser. The browser then

generates an HTTP request for this URL. This request is then sent to the appropriate server.

Second, this HTTP request is received by the Web server. The server maps this request to a particular

servlet. The servlet is dynamically retrieved and loaded into the address space of the server.

Third, the server invokes the init() method of the servlet. This method is invoked only when the

servlet is first loaded into memory. It is possible to pass initialization parameters to the servlet so it may

configure itself.

Fourth, the server invokes the service() method of the servlet. This method is called to process the

HTTP request. It is possible for the servlet to read data that has been provided in the HTTP request. It

may also formulate an HTTP response for the client. The servlet remains in the server’s address space

and is available to process any other HTTP requests received from clients. The service() method is called

for each HTTP request.

Finally, the server may decide to unload the servlet from its memory. The server calls the destroy()

method to relinquish any resources such as file handles that are allocated for the servlet. Important

data may be saved to a persistent store. The memory allocated for the servlet and its objects can then

be garbage collected.

The Servlet API

Two packages contain the classes and interfaces that are required to build servlets. These are

javax.servlet and javax.servlet.http. They constitute the Servlet API.These packages are not part of the

Java core packages. Instead, they are standard extensions. Therefore, they are not included in the Java

Software Development Kit. You must download Tomcat or Glass Fish server to obtain their functionality.

Prepared by: Navin Sharma 2 Unit-7: Servlets and JSP

The javax.servlet Package

The javax.servlet package contains a number of interfaces and classes that establish the framework in

which servlets operate.

The following table summarizes the core interfaces that are provided in this package. The most

significant of these is Servlet. All servlets must implement this interface or extend a class that

implements the interface.

The ServletRequest and ServletResponse interfaces are also very important.

Interface Description

Servlet Declares life cycle methods for a servlet.

ServletConfig Allows servlets to get initialization parameters.

ServletContext Enables servlets to log events and access information about

 their environment.

ServletRequest Used to read data from a client request.

ServletResponse Used to write data to a client response.

SingleThreadModel Indicates that the servlet is thread safe.

The following table summarizes the core classes that are provided in the javax.servlet package.

Class Description

GenericServlet Implements the Servlet and ServletConfig interfaces.

ServletInputStream Provides an input stream for reading requests from a client.

ServletOutputStream Provides an output stream for writing responses to a client.

ServletException Indicates a servlet error occurred.

UnavailableException Indicates a servlet is unavailable.

The Servlet Interface

All servlets must implement the Servlet interface. It declares the init(), service(), and destroy()

methods that are called by the server during the life cycle of a servlet. The methods defined by Servlet

are shown below:

Prepared by: Navin Sharma 3 Unit-7: Servlets and JSP

The ServletRequest Interface

The ServletRequest interface is implemented by the server. It enables a servlet to obtain information

about a client request. Several of its methods are summarized in Table below.

Prepared by: Navin Sharma 4 Unit-7: Servlets and JSP

Prepared by: Navin Sharma 5 Unit-7: Servlets and JSP

The ServletResponse Interface

The ServletResponse interface is implemented by the server. It enables a servlet to formulate a

response for a client. Several of its methods are summarized in Table below.

Note: For detailed information about javax.servlet package refer to the following link

http://docs.oracle.com/javaee/1.4/api/javax/servlet/package-summary.html

Reading Servlet Parameters

The ServletRequest class includes methods that allow to read the names and values of parameters that

are included in a client request. We will develop a servlet that illustrates their use. The example contains

two files. A Web page is defined in index.jsp and a servlet is defined in PostParametersServlet.java. The

HTML source code for index.jsp is shown in the following listing. It defines a table that contains two

labels and two text fields. One of the labels is Employee and the other is Phone. There is also a submit

button. Notice that the action parameter of the form tag specifies a URL. The URL identifies the servlet

to process the HTTP POST request.

//index.jsp

<html>

<body>

<center>

http://docs.oracle.com/javaee/1.4/api/javax/servlet/package-summary.html

Prepared by: Navin Sharma 6 Unit-7: Servlets and JSP

<form name="Form1" method="post" action="PostParametersServlet">

<table>

<tr>

<td>Employee</td>

<td><input type=textbox name="e" size="25" value=""></td>

</tr>

<tr>

<td>Phone</td>

<td><input type=textbox name="p" size="25" value=""></td>

</tr>

</table>

<input type=submit value="Submit">

</body>

</html>

//PostParametersServlet.java

import java.io.*;

import java.util.*;

import javax.servlet.*;

public class PostParametersServlet extends GenericServlet {

 public void service(ServletRequest request,ServletResponse response)

 throws ServletException, IOException {

// Get print writer.

PrintWriter pw = response.getWriter();

// Get enumeration of parameter names.

Enumeration e = request.getParameterNames();

// Display parameter names and values.

while(e.hasMoreElements()) {

String pname = (String)e.nextElement();

pw.print(pname + " = ");

String pvalue = request.getParameter(pname);

pw.println(pvalue);

}

pw.close();

}

}

output

e = navin

p = 9841

Prepared by: Navin Sharma 7 Unit-7: Servlets and JSP

The javax.servlet.http Package

The javax.servlet.http package contains a number of interfaces and classes that are commonly used by

servlet developers. You will see that its functionality makes it easy to build servlets that work with HTTP

requests and responses.

The following table summarizes the core interfaces that are provided in this package:

Interface Description

HttpServletRequest Enables servlets to read data from an HTTP request.

HttpServletResponse Enables servlets to write data to an HTTP response.

HttpSession Allows session data to be read and written.

HttpSessionBindingListener Informs an object that it is bound to or unbound

 from a session.

The following table summarizes the core classes that are provided in this package. The most important

of these is HttpServlet. Servlet developers typically extend this class in order to process HTTP requests.

Class Description

Cookie Allows state information to be stored on a client

 machine.

HttpServlet Provides methods to handle HTTP requests and

 responses.

HttpSessionEvent Encapsulates a session-changed event.

HttpSessionBindingEvent Indicates when a listener is bound to or unbound from a session

 value, or that a session attribute changed.

The HttpServletRequest Interface

The HttpServletRequest interface is implemented by the server. It enables a servlet to obtain

information about a client request. Several of its methods are shown in Table below.

Prepared by: Navin Sharma 8 Unit-7: Servlets and JSP

The HttpServletResponse Interface
The HttpServletResponse interface is implemented by the server. It enables a servlet to formulate an
HTTP response to a client. Several constants are defined. These correspond to the different status codes
that can be assigned to an HTTP response. For example, SC_OK indicates that the HTTP request
succeeded and SC_NOT_FOUND indicates that the requested resource is not available. Several methods
of this interface are summarized in Table below.

Prepared by: Navin Sharma 9 Unit-7: Servlets and JSP

The Cookie Class
The Cookie class encapsulates a cookie. A cookie is stored on a client and contains state information.
Cookies are valuable for tracking user activities. For example, assume that a user visits an online store. A
cookie can save the user’s name, address, and other information. The user does not need to enter this
data each time he or she visits the store. A servlet can write a cookie to a user’s machine via the
addCookie() method of the HttpServletResponse interface. The data for that cookie is then included in
the header of the HTTP response that is sent to the browser.
The names and values of cookies are stored on the user’s machine. Some of the information that is

Prepared by: Navin Sharma 10 Unit-7: Servlets and JSP

saved for each cookie includes the following:

 The name of the cookie

 The value of the cookie

 The expiration date of the cookie

 The domain and path of the cookie
The expiration date determines when this cookie is deleted from the user’s machine. If an expiration
date is not explicitly assigned to a cookie, it is deleted when the current browser session ends.
Otherwise, the cookie is saved in a file on the user’s machine.
The domain and path of the cookie determine when it is included in the header of an HTTP request. If
the user enters a URL whose domain and path match these values, the cookie is then supplied to the
Web server. Otherwise, it is not.
The methods of the Cookie class are summarized in Table below

The HttpServlet Class
The HttpServlet class extends GenericServlet. It is commonly used when developing servlets that receive

Prepared by: Navin Sharma 11 Unit-7: Servlets and JSP

and process HTTP requests. The methods of the HttpServlet class are summarized in Table below.

Handling HTTP Requests and Responses
The HttpServlet class provides specialized methods that handle the various types of HTTP requests. A
servlet developer typically overrides one of these methods. These methods are doDelete(), doGet(),
doHead(), doOptions(), doPost(), doPut(), and doTrace().

Handling HTTP GET Requests
Here we will develop a servlet that handles an HTTP GET request. The servlet is invoked when a form on
a Web page is submitted.
//index.jsp
<html>

Prepared by: Navin Sharma 12 Unit-7: Servlets and JSP

 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Testing GET</title>
 </head>
 <body>
 <form action="testingget" method="get">
 <label style="color: green;"> Testing Get:</label>
</br>
 First Name: <input type="text" name="firstName" size="20">

 Last Name: <input type="text" name="surname" size="20">

 <input type="submit" value="Submit"></br></br>
 </form>
</body>
</html>

//TestingGet
import java.io.PrintWriter;
import java.io.IOException;
import java.sql.*;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.UnavailableException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class TestingGet extends HttpServlet {

 private Connection connection;
 private Statement statement;

 // set up database connection and create SQL statement
 public void init(ServletConfig config) throws ServletException
 {
 // attempt database connection and create Statement
 try
 {

 connection=DriverManager.getConnection("jdbc:mysql://localhost:3306/testingget","root","");

 // create Statement to query database
 statement = connection.createStatement();
 } // end try
 // for any exception throw an UnavailableException to
 // indicate that the servlet is not currently available
 catch (Exception exception)
 {
 exception.printStackTrace();

Prepared by: Navin Sharma 13 Unit-7: Servlets and JSP

 throw new UnavailableException(exception.getMessage());
 } // end catch
 } // end method init

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 String firstName = request.getParameter("firstName").toString();
 String surname = request.getParameter("surname").toString();
 try {
 statement = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

 ResultSet uprs = statement.executeQuery(
 "SELECT * FROM names");

 uprs.moveToInsertRow();
 uprs.updateString("firstname",firstName);
 uprs.updateString("lastname",surname);
 uprs.insertRow();
 uprs.beforeFirst();
 }
 catch (SQLException sqlException)
 {
 sqlException.printStackTrace();
 }
 try
 {

 // create Statement for querying database
 statement = connection.createStatement();

 // query database
 ResultSet resultSet = statement.executeQuery(
 "SELECT * from names");
 out.println("<html>");
 out.println("<head>");
 out.println("</head>");
 out.println("<body>");
 out.println("<p>Welcome " + firstName + " " + surname + "</p>");
 out.println("<p>People currently in the database:</p>");
 // process query results
 ResultSetMetaData metaData = resultSet.getMetaData();
 int numberOfColumns = metaData.getColumnCount();
 for (int i = 1; i <= numberOfColumns; i++)

Prepared by: Navin Sharma 14 Unit-7: Servlets and JSP

 out.println("<label style='color:red'>"+ metaData.getColumnName(i)+"</label>");
 out.println("</br>");
 while (resultSet.next())
 {
 for (int i = 1; i <= numberOfColumns; i++)
 out.println("<label style='color:blue'>"+ resultSet.getObject(i)+"</label>");
 out.println("</br>");
 } // end while
 out.println("</body>");
 out.println("</html>");
 } // end try
 catch (SQLException sqlException)
 {
 sqlException.printStackTrace();
 } // end catch

 }//end try

 finally {
 out.close();
 }
 }
 // close SQL statements and database when servlet terminates
 public void destroy()
 {
 // attempt to close statements and database connection
 try
 {
 statement.close();
 connection.close();
 } // end try
 // handle database exceptions by returning error to client
 catch(SQLException sqlException)
 {
 sqlException.printStackTrace();
 } // end catch
 } // end method destroy

}
Handling HTTP POST Requests
Here we will develop a servlet that handles an HTTP POST request. The servlet is invoked when a form
on a Web page is submitted.

//index.jsp
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Testing POST</title>

Prepared by: Navin Sharma 15 Unit-7: Servlets and JSP

 </head>
 <body>
 <form action="testingpost" method="post">
 <label style="color: red;"> Testing Post:</label>
</br>
 First Name: <input type="text" name="firstName" size="20">

 <input type="submit" value="Submit">

 </form>
</body>
</html>

//TestingPost
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class TestingPost extends HttpServlet {
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 String firstName = request.getParameter("firstName").toString();
 out.println("<html>");
 out.println("<head>");
 out.println("</head>");
 out.println("<body>");
 out.println("<label style='color:red'>Welcome </label>");
 out.print("<label style='color:green'>"+firstName+"</label>");
 out.println("</body>");
 out.println("</html>");}
 finally {
 out.close();
 }
 }
}

Using Cookies
Now, let’s develop a servlet that illustrates how to use cookies. The servlet is invoked when a form on a
Web page is submitted. The example contains three files as summarized here:
File Description
index.jsp Allows a user to specify a value for the cookie
 named MyCookie.
AddCookie.java Processes the submission of AddCookie.htm.
GetCookie.java Displays cookie values.

Prepared by: Navin Sharma 16 Unit-7: Servlets and JSP

//index.jsp
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Testing Cookies</title>
 </head>
 <body>
 </form>
 <form action="addCookie" method="post">
 <label style="color: red;"> Testing Cookies</label>
</br>
 Enter the value for cookie</br>
 First Name: <input type="text" name="firstName" size="20">

 Last Name: <input type="text" name="surname" size="20">

 <input type="submit" value="Submit">

 </form>
 <label>Click below to get Cookies Value</label></br>
 click here

</body>
</html>

//AddCookie.java
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 // Get parameter from HTTP request.
 String data = request.getParameter("firstName");
 String data1 = request.getParameter("surname");

 // Create cookie.
 Cookie cookie = new Cookie("FirstCookie", data);
 Cookie cookie1 = new Cookie("SecondCookie", data1);

 // Add cookie to HTTP response.
 response.addCookie(cookie);
 response.addCookie(cookie1);
 // Write output to browser.
 out.println("<html>");

Prepared by: Navin Sharma 17 Unit-7: Servlets and JSP

 out.println("<head>");
 out.println("<title>Servlet AddCookie</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("MyCookie has been set to");
 out.println(data);
 out.println("
");
 out.println(data1);
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
}

//GetCookie.java
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 Cookie[] cookies = request.getCookies();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet GetCookie</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("");
 for(int i = 0; i < cookies.length; i++) {
 String name = cookies[i].getName();
 String value = cookies[i].getValue();
 out.println("name = " + name +
 "; value = " + value);
 out.println("</br>");
 out.println("</body>");
 out.println("</html>");
 }
 }
 finally {

Prepared by: Navin Sharma 18 Unit-7: Servlets and JSP

 out.close();
 }
 }
}

Session Tracking
HTTP is a stateless protocol. Each request is independent of the previous one. However, in some
applications, it is necessary to save state information so that information can be collected from several
interactions between a browser and a server. Sessions provide such a mechanism.

A session can be created via the getSession() method of HttpServletRequest. An HttpSession object is
returned. This object can store a set of bindings that associate names with objects. The setAttribute(),
getAttribute(), getAttributeNames(), and removeAttribute() methods of HttpSession manage these
bindings. It is important to note that session state is shared among all the servlets that are associated
with a particular client.

//index.jsp
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Testing Cookies</title>
 </head>
 <body>
 <label style="color: blue">Testing Session</label></br>
 <label>Click below to get Session Value</label></br>
 click here
</body>
</html>

//GetSession.java
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 // Get the HttpSession object.
 HttpSession hs = request.getSession(true);
 // Get writer.
 // response.setContentType("text/html");

Prepared by: Navin Sharma 19 Unit-7: Servlets and JSP

 //PrintWriter pw = response.getWriter();
 out.print("");
 // Display date/time of last access.
 Date date = (Date)hs.getAttribute("date");

 // Display current date/time.

 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet GetSession</title>");
 out.println("</head>");
 out.println("<body>");
 if(date != null) {
 out.print("Last access: " + date + "
");
 }
 date = new Date();
 hs.setAttribute("date", date);
 out.println("Current date: " + date);
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
}

JavaServer Pages (JSP)
In the previous chapter, you learned how to generate dynamic Web pages with servlets. You probably
have already noticed in our examples that most of the code in our servlets generated output that
consisted of the HTML elements that composed the response to the client. Only a small portion of the
code dealt with the business logic. Generating responses from servlets requires that Web application
developers be familiar with Java. However, many people involved in Web application development, such
as Web site designers, do not know Java. It is difficult for people who are not Java programmers to
implement, maintain and extend a Web application that consists of primarily of servlets. The solution to
this problem is JavaServer Pages (JSP)an extension of servlet technology that separates the presentation
from the business logic. This lets Java programmers and Web-site designers focus on their
strengthswriting Java code and designing Web pages, respectively.

JavaServer Pages simplify the delivery of dynamic Web content. They enable Web application
programmers to create dynamic content by reusing predefined components and by interacting with
components using server-side scripting. Custom-tag libraries are a powerful feature of JSP that allows
Java developers to hide complex code for database access and other useful services for dynamic Web
pages in custom tags. Web sites use these custom tags like any other Web page element to take
advantage of the more complex functionality hidden by the tag. Thus, Web-page designers who are not
familiar with Java can enhance Web pages with powerful dynamic content and processing capabilities.

The classes and interfaces that are specific to JavaServer Pages programming are located in packages

Prepared by: Navin Sharma 20 Unit-7: Servlets and JSP

javax.servlet.jsp and javax.servlet.jsp.tagext.

JavaServer Pages Overview
There are four key components to JSPs-directives, actions, scripting elements and tag libraries.
Directives are messages to the JSP container-the server component that executes JSPs-that enable the
programmer to specify page settings, to include content from other resources and to specify custom tag
libraries for use in a JSP. Actions encapsulate functionality in predefined tags that programmers can
embed in a JSP. Actions often are performed based on the information sent to the server as part of a
particular client request. They also can create Java objects for use in JSP scriptlets. Scripting elements
enable programmers to insert Java code that interacts with components in a JSP (and possibly other
Web application components) to perform request processing. Scriptlets, one kind of scripting element,
contain code fragments that describe the action to be performed in response to a user request. Tag
libraries are part of the tag extension mechanism that enables programmers to create custom tags.
Such tags enable Web page designers to manipulate JSP content without prior Java knowledge.

In some ways, JavaServer Pages look like standard XHTML or XML documents. In fact, JSPs normally
include XHTML or XML markup. Such markup is known as fixed-template data or fixed-template text.
Fixed-template data often helps a programmer decide whether to use a servlet or a JSP. Programmers
tend to use JSPs when most of the content sent to the client is fixed-template data and little or none of
the content is generated dynamically with Java code. Programmers typically use servlets when only a
small portion of the content sent to the client is fixed-template data. In fact, some servlets do not
produce content. Rather, they perform a task on behalf of the client, then invoke other servlets or JSPs
to provide a response. Note that in most cases servlet and JSP technologies are interchangeable. As with
servlets, JSPs normally execute as part of a Web server.

When a JSP-enabled server receives the first request for a JSP, the JSP container translates the JSP into a
Java servlet that handles the current request and future requests to the JSP. Literal text in a JSP
becomes string literals in the servlet that represents the translated JSP. Any errors that occur in
compiling the new servlet result in translation-time errors. The JSP container places the Java statements
that implement the JSP's response in method _jspService at translation time. If the new servlet compiles
properly, the JSP container invokes method _jspService to process the request. The JSP may respond
directly or may invoke other Web application components to assist in processing the request. Any errors
that occur during request processing are known as request-time errors.

Overall, the request-response mechanism and the JSP life cycle are the same as those of a servlet. JSPs
can override methods jspInit and jspDestroy (similar to servlet methods init and destroy), which the JSP
container invokes when initializing and terminating a JSP, respectively. JSP programmers can define
these methods using JSP declarations--part of the JSP scripting mechanism.

A Simple JSP Example
JSP expression inserting the date and time into a Web page.
//test.jsp
<html>
 <head>
 <meta http-equiv = "refresh" content = "60" />
 <title>A Simple JSP Example</title>
 <style type = "text/css">
 .big { font-family: helvetica, arial, sans-serif;

Prepared by: Navin Sharma 21 Unit-7: Servlets and JSP

 font-weight: bold;
 font-size: 2em; }
 </style>
 </head>
 <body>
 <p class = "big">Simple JSP Example</p>
 <table style = "border: 6px outset;">
 <tr>
 <td style = "background-color: black;">
 <p class = "big" style = "color: cyan;">
 <!-- JSP expression to insert date/time -->
 <%= new java.util.Date() %>
 </p>
 </td>
 </tr>
 </table>
 </body
</html>

output

As you can see, most of test.jsp consists of XHTML markup.In cases like this, JSPs are easier to
implement than servlets. In a servlet that performs the same task as this JSP, each line of XHTML
markup typically is a separate Java statement that outputs the string representing the markup as part of
the response to the client. Writing code to output markup can often lead to errors.That's whhy in such
scenarios JSP is preferred than Servlets.The key line in the above program is the expression

 <%= new java.util.Date() %>

JSP expressions are delimited by <%= and %>. The preceding expression creates a new instance of class
Date (package java.util). By default, a Date object is initialized with the current date and time. When the
client requests this JSP, the preceding expression inserts the String representation of the date and time

Prepared by: Navin Sharma 22 Unit-7: Servlets and JSP

in the response to the client. [Note: Because the client of a JSP could be anywhere in the world, the JSP
should return the date in the client locale's format. However, the JSP executes on the server, so the
server's locale determines the String representation of the Date.

We use the XHTML meta element in line 9 to set a refresh interval of 60 seconds for the document. This
causes the browser to request test.jsp every 60 seconds. For each request to test.jsp, the JSP container
reevaluates the expression in line 24, creating a new Date object with the server's current date and
time.

When you first invoke the JSP, you may notice a brief delay as GlassFish Server translates the JSP into a
servlet and invokes the servlet to respond to your request

Implicit Objects
Implicit objects provide access to many servlet capabilities in the context of a JavaServer Page. Implicit
objects have four scopes: application, page, request and session. The JSP container owns objects with
application scope. Any JSP can manipulate such objects. Objects with page scope exist only in the page
that defines them. Each page has its own instances of the page-scope implicit objects. Objects with
request scope exist for the duration of the request. For example, a JSP can partially process a request,
then forward it to a servlet or another JSP for further processing. Request-scope objects go out of scope
when request processing completes with a response to the client. Objects with session scope exist for
the client's entire browsing session. Figure below describes the JSP implicit objects and their scopes.

Prepared by: Navin Sharma 23 Unit-7: Servlets and JSP

fig. JSP implicit objects.

Scripting
JavaServer Pages often present dynamically generated content as part of an XHTML document that is

Prepared by: Navin Sharma 24 Unit-7: Servlets and JSP

sent to the client in response to a request. In some cases, the content is static but is output only if
certain conditions are met during a request (e.g., providing values in a form that submits a request). JSP
programmers can insert Java code and logic in a JSP using scripting.

Scripting Components
The JSP scripting components include scriptlets, comments, expressions, declarations and escape
sequences.

Scriptlets are blocks of code delimited by <% and %>. They contain Java statements that the container
places in method _jspService at translation time.

JSPs support three comment styles: JSP comments, XHTML comments and scripting-language
comments. JSP comments are delimited by <%-- and --%>. These can be placed throughout a JSP, but
not inside scriptlets. XHTML comments are delimited with <!-- and -->. These, too, can be placed
throughout a JSP, but not inside scriptlets. Scripting language comments are currently Java comments,
because Java currently is the only JSP scripting language. Scriptlets can use Java's end-of-line //
comments and traditional comments (delimited by /* and */). JSP comments and scripting-language
comments are ignored and do not appear in the response to a client. When clients view the source code
of a JSP response, they will see only the XHTML comments in the source code. The different comment
styles are useful for separating comments that the user should be able to see from those that document
logic processed on the server.

JSP expressions are delimited by <%= and %> and contain a Java expression that is evaluated when a
client requests the JSP containing the expression. The container converts the result of a JSP expression
to a String object, then outputs the String as part of the response to the client.

Declarations, delimited by <%! and %>, enable a JSP programmer to define variables and methods for
use in a JSP. Variables become instance variables of the servlet class that represents the translated JSP.
Similarly, methods become members of the class that represents the translated JSP. Declarations of
variables and methods in a JSP use Java syntax. Thus, a variable declaration must end with a semicolon,
as in

 <%! int counter = 0; %>

Special characters or character sequences that the JSP container normally uses to delimit JSP code can
be included in a JSP as literal characters in scripting elements, fixed template data and attribute values
using escape sequences. Figure below shows the literal character or characters and the corresponding
escape sequences and discusses where to use the escape sequences.

Prepared by: Navin Sharma 25 Unit-7: Servlets and JSP

fig. JSP escape sequences

Scripting Example
//welcome.jsp
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Processing "get" requests with data</title>
 </head>
 <!-- body section of document -->
 <body>
 <% // begin scriptlet
 String name = request.getParameter("firstName");

 if (name != null)
 {
 %> <%-- end scriptlet to insert fixed template data --%>

 <h1>
 Hello <%= name %>,

 Welcome to JavaServer Pages!
 </h1>

 <% // continue scriptlet

 } // end if
 else {

 %> <%-- end scriptlet to insert fixed template data --%>

Prepared by: Navin Sharma 26 Unit-7: Servlets and JSP

 <form action = "welcome.jsp" method = "get">
 <p>Type your first name and press Submit</p>

 <p><input type = "text" name = "firstName" />
 <input type = "submit" value = "Submit" />
 </p>
 </form>

 <% // continue scriptlet

 } // end else

 %> <%-- end scriptlet --%>
 </body>
</html>

Output

Standard Actions
Standard actions provide JSP implementors with access to several of the most common tasks performed
in a JSP, such as including content from other resources, forwarding requests to other resources and
interacting with JavaBean software components. JSP containers process actions at request time.
Actions are delimited by <jsp:action> and </jsp:action>, where action is the standard action name. In
cases where nothing appears between the starting and ending tags, the XML empty element syntax <jsp:
action /> can be used. Figure below summarizes the JSP standard actions.

Prepared by: Navin Sharma 27 Unit-7: Servlets and JSP

fig. JSP standard actions

<jsp:include> Action
JavaServer Pages support two include mechanisms-the <jsp:include> action and the include directive.
Action <jsp:include> enables dynamic content to be included in a JavaServer Page at request time. If the
included resource changes between requests, the next request to the JSP containing the <jsp:include>
action includes the resource's new content. On the other hand, the include directive copies the content
into the JSP once, at JSP translation time. If the included resource changes, the new content will not be
reflected in the JSP that used the include directive, unless that JSP is recompiled, which normally would
occur only if a new version of the JSP is installed. Figure below describes the attributes of action
<jsp:include>.

Prepared by: Navin Sharma 28 Unit-7: Servlets and JSP

fig. Action <jsp:include> attributes.

//index.jsp
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>LN TECH PVT. LTD</title>

 <style type = "text/css">
 body
 {
 font-family: tahoma, helvetica, arial, sans-serif;
 }

 table, tr, td
 {
 font-size: .9em;
 border: 3px groove;
 padding: 5px;
 background-color: yellowgreen;
 }
 </style>

 </head>
 <body>
 <table style="width: 1280px; height: 675px">
 <tr>
 <td style = "width: 215px; text-align: center">
 <img src = "LN_Tech_logo.jpg"
 width = "140" height = "93"
 alt = "LN Tech Logo" />
 </td>
 <td>
 <%-- include banner.html in this JSP --%>
 <jsp:include page = "banner.html"

Prepared by: Navin Sharma 29 Unit-7: Servlets and JSP

 flush = "true" />
 </td>
 </tr>
 <tr>
 <td style = "width: 215px">
 <%-- include toc.html in this JSP --%>
 <jsp:include page = "toc.html" flush = "true" />
 </td>
 <td style = "vertical-align: top">
 <%-- include clock.jsp in this JSP --%>
 <jsp:include page = "clock.jsp"
 flush = "true" />
 </td>
 </tr>
 </table>
 </body>
</html>

//banner.html
<!DOCTYPE html>
<html>
 <head>
 <title></title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 </head>
 <body>
<div style = "width: 580px">
 <p>
 LN Tech....a dedicated team of Engineers
 Working
 in the field of Web

 welcomes you to explore our site
 </p>
 <p>
 admin@lntech.com

Baneshwor
Kathmandu, Nepal
 </p>
</div>
 </body>
</html>

//toc.html
<!DOCTYPE html>
<html>
 <head>
 <title></title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 </head>
 <body>

mailto:admin@lntech.com

Prepared by: Navin Sharma 30 Unit-7: Servlets and JSP

<p>
 Sign up
</p>
<p>
 About us
</p>

<p>
 Services
</p>

<p>
 Our works/Porfolios
</p>

<p>
 Jobs
</p>
<p>
 Home Page
</p>

<p>Send questions or comments about this site to

 admin@lntech.com

 Copyright 2009-2012 by LN Tech Pvt Ltd.
 All Rights Reserved.
</p>
 </body>
</html>

//clock.jsp
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Clock Page</title>
 </head>
 <body>
 <table>
 <tr>
 <td style = "background-color: blanchedalmond;">
 <p class = "big" style = "color: black; font-size: 3em;
 font-weight: bold;">

 <%-- script to determine client local and --%>
 <%-- format date accordingly --%>

http://theastutetech.com/index.php?page=about-us
http://theastutetech.com/index.php?page=services
http://theastutetech.com/index.php?page=our-works
http://theastutetech.com/index.php?page=jobs
http://theastutetech.com/
mailto:lntech.com

Prepared by: Navin Sharma 31 Unit-7: Servlets and JSP

 <%
 // get client locale
 java.util.Locale locale = request.getLocale();

 // get DateFormat for client's Locale
 java.text.DateFormat dateFormat =
 java.text.DateFormat.getDateTimeInstance(
 java.text.DateFormat.LONG,
 java.text.DateFormat.LONG, locale);

 %> <%-- end script --%>

 <%-- output date --%>
 <%= dateFormat.format(new java.util.Date()) %>
 </p>
 </td>
 </tr>
</table>
 </body>
</html>

//signup.jsp
<!DOCTYPE html>
<html>
 <!-- head section of document -->
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Sign up Page</title>
 </head>
 <!-- body section of document -->
 <body>
 <% // begin scriptlet

 String name = request.getParameter("firstName");

 if (name != null)
 {
 %> <%-- end scriptlet to insert fixed template data --%>

 <h1>
 Hello <%= name %>,

 Welcome to LN Tech!
 </h1>

 <% // continue scriptlet

 } // end if
 else {

Prepared by: Navin Sharma 32 Unit-7: Servlets and JSP

 %> <%-- end scriptlet to insert fixed template data --%>

 <form action = "signup.jsp" method = "get">
 <p>Type your first name and press Submit</p>

 <p><input type = "text" name = "firstName" />
 <input type = "submit" value = "Submit" />
 </p>
 </form>

 <% // continue scriptlet

 } // end else

 %> <%-- end scriptlet --%>
 </body>
 </body>
</html> <!-- end XHTML document -->

output

