
4.0 Structure Query Language (SQL)

© T. Paneru 1

4.0 Structure Query Language (SQL)
SQL was developed in 1970’s in an IBM laboratory “San Jose Research Laboratory”
(now the Amaden Research center). SQL is derived from the SEQUEL one of the
database language popular during 1970’s. SQL established itself as the standard
relational database language. Two standard organization (ANSI) and International
standards organization (ISO) currently promote SQL standards to industry.
In 1986 ANSI & ISO published an SQL standard called SQL-86. In 1987, IBM
published its own corporate SQL standard, the system application Architecture
Database Interface (SAA-SQL). In 1989, ANSI published extended standard for SQL
called, SQL-89. The next version was SQL-92, and the recent version is SQL: 1999.

4.1 Basic Term and Terminology
Query: is a statement requesting the retrieval of information.
Query language: language through which user request information from database.
These languages are generally higher level language than programming language.

 The two types of query language are:

(i) Procedural language

• User instructs the system to perform sequence of operation on the
database to compete the desired result. Example : relational algebra

 ii) Non- procedural language

• User describes the desired information without giving a specific procedure
for obtaining that desired information.

• Examples: tuple relational calculus and domain relational calculus.

4.2 Database Languages
Two types of database language
1. Data Definition Language (DDL)
2. Data Manipulation Language (DML)

Data Definition Language

• Specifies the database schema.
• For e.g.: The following statement in SQL defines relation named `student’.

CREATE TABLE student
(
 student_id VARCHAR2(3),
 address VARCHAR(30)
);

The execution of this DDL statement creates the `student’ table. It also updates a
special set of tables called data dictionary or data directory. A data dictionary
contains metadata, that is data about data. The schema of table is an example of
metadata. A database system consults data dictionary or data directory.

Through the set of special type of DDL, called data storage definition language, we
may specify the storage structure (like size of database, size of table etc) and access
methods.

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 2

The DDL allow to enforce constrains in the database. For example: student_id
should begin with `S’, address could not be null etc.

CREATE TABLE STUDENT
(
 student_id VARCHAR2 (3),
 address VARCHAR2 NOT NULL,
 CONSTRAINT ch_student_id CHECK (student_id LIKE `S%’)
);

 The database systems check these constraints every time the database is updated.

Data Manipulation Language:
• A data manipulation language is a language that enables users to access or

manipulate the data in database. The data manipulation means :
o Retrieval of information stored in database.
o The insertion of new information into database.
o Deletion of information from database.
o Modification of data in database.

Two types of data manipulation languages are:
• Procedural DML: User need to specify what data are needed to retrieve (modify)

and how to retrieve those data.
• Non Procedural (Declarative DML) : User requires to specify what data are

needed to retrieve without specifying how to get (retrieve) those data.
o Non procedural DML are easier to understand and use than procedural

DML, since user does not have to specify now to get data from database.
o The DML component of SQL is non procedural language.

Example: Consider a simple relational database.

The customer table The account table

 The depositor table

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 3

 Some queries and their equivalent SQL statement

Query: Find the name of customer whose customer_id C001.

 SELECT customer. customer_name FROM customer
 WHERE customer.customer_id = ` C001’;
 OR
SELECT customer_name FROM customer
 WHERE customer_id = ` C001’;

Note: We don’t need to specify the table name while referencing column_name if we
are taking column from only one table.

Query: Find the name and balance of the customer.

SELECT customer.customer_name,account.balance
 FROM customer,account.balance
 WHERE customer.customer_id= depositor.customer_id
 AND depositor.acount_no = account.account_no;

Problem : Insert record to customer table.
 customer_id : C005
 customer_name : MICHAEL
 address : KATHMANDU

INSERT INTO customer (customer_id, customer_name, address)
 VALUES (`C005’ , `MICHAEL’ , `KATHMANDU’) ;

OR
INSERT INTO Customer values (`C005’ , `MICHAEL’ , `KATHMANDU’);

Note: Column name need not to specify if we are going to insert values for all
columns of table.

Query: Delete record from depositor whose customer_id is `C004’.
:
 DELETE FROM depositor WHERE Customer_id = `C004’;

What happen if we execute DELETE statement as below?

DELETE FROM depositor;

• Deletes all records from the table `depositor’

Problem: If you attempt to delete all records of customer from customer
table, what happen ?

• You cannot delete all records, only when “account” and “deposit” tables are
empty or only when these table contains records that are not related to the
customer.

Query: Increase the balance by 5% in account table whose account no is
`A101’ or current balance is only 200.

 UPDATE account
 SET balance = balance + (balance + 0.05)
 WHERE account_no = `A1001’ OR balance = 200;

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 4

Note:
 Sometimes database languages are also categorized with Data Control
Language.
 That is

1. Data Definition Language (DDL)
2. Data Control Language (DCL)
3. Data Manipulation (DML)

 Data Control language is a language that controls the behavior of database.

 In SQL, COMMIT, ROLLBACK, commands go under Data Control Language.

• COMMIT: Saves the changes made to database.
• ROLLBACK: Undo changes to database from the current state database to last

commit state.

Question: Why we need query language, even we have formal languages?
 (formal languages, relational algebra, relational calculus)

• The formal languages provides concise notation for representing query.
But commercial database system requires more user friendly query
language. This is a main reason for why we need query languages, even
we have formal languages.

• The formal languages form the basis for data manipulation language of
DBMS only but DBMS/commercial DBMS also supports data definition
capabilities as well as data manipulation capabilities.

• SQL is a most popular and powerful query language. It can do much more
than just query database. It ca define structure of data, modify data in
database and allow to specify security constraints.

• SQL is a truly non procedural language. It has all features of relational
algebra, relational calculus as well as its own powerful features.

4.3 Different parts of SQL Language

1. Data Definition Language (DDL):

SQL DDL provides commands for defining relation schemas, deleting schema,
deleting relations and modifying relational schemas.

Example:
 CREATE, ALTER, DROP

CREATE TABLE dept
(
 dept no NUMBER(2) PRIMARY KEY,
 dname VARCHAR2(20) NOT NULL
);

CREATE TABLE emp
(
 empno NUMBER(5) PRIMARY KEY,
 deptno NUMBER(3),
 ename VARCHAR2(10) NOT NULL,
 sal NUMBER(5) NOT NULL,
 CONSTRAINT fk_emp_dept FOREIGN KEY(deptno) REFERENCES dept

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 5

);

ALTER TABLE dept ADD (loc VARCHAR2(10));
ALTER TABLE emp MODIFY (empno NUMBER(10));
ALTER TABLE emp ADD UNIQUE (ename);
DROP TABLE emp;
DROP constraint fk_emp_dept;

2. Data Manipulation Language (DML):

The SQL DML includes query language based on relational algebra and relational
calculus. It includes commands for insert tuples, delete tuples and modify tuples in
database.

Example: INSERT, DELETE, UPDATE, SELECT etc. statements.

3. View Definition:
The SQL DDL includes for defining views e.g.
 Syntax:

 CREATE VIEW <view name> AS
 (<query expression>);

4. Transaction Control: (Data Control Language):
SQL includes commands for specifying integrity constraints that the data stored in
database must satisfy.

5. Embedded SQL and dynamic SQL:
Embedded SQL & dynamic SQL dynamic SQL is that SQL with general purpose
programming language; such as C, C++, JAVA, COBAL, PASCAL, FORTRAN.

6. Integrity:
SQL DDL includes commands for specifying integrity constraints that the data stored
in database must satisfy.

7. Authorization:
SQL DDL commands used for specifying access right to relation relations and views.

4.4 General overview of SQL:
Though SQL user / programmer / DBA can perform the following task:

• Create database.
• Modify a database structure.
• Add user permissions to database or tables.
• Changes system security.
• Query a database for a retrieval of information.
• Updates the contents of information.

Note: Commands in SQL are not necessarily a question, request to the database. It
could be a command to do one of the following.

• Build or delete a table.
• Insert, Modify or delete rows or fields.
• Search several tables for specific information and returns the result in specific

order.
• Modify security information.

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 6

Note: Commands in SQL are not case-sensitive. But generally conversation is write
a keywords as a capital and other should be in small letter.

Data Manipulation Language in SQL:

SQL provides the following basic data manipulation statements: SELECT, UPDATE,
DELETE and INSERT.
The select statements:
- The SELECT statement is most commonly used SQL statement. It is only a data

retrieval statement in SQL.
- The basic syntax for select statement is

 SELECT [DISTINCT / ALL] <attributes> 1
 FROM <relations> 2
 [WHERE <predicate>] 3

1. <attribute> -> columns name
2. <relations> -> tables name
3. <predicated> -> conditions

• SELECT, FROM are necessary clause.
• WHERE is optional clause.
• DISTINCT / ALL are optional clause.
• SELECT clause used to list the attributes that required in the result in query.
• FROM clause list the relation/s from where specified attributes are to be selected.
• WHERE clause are used to specify the condition/s while we require retrieving

particular data. One or more condition can be specified using where clause by
using SQL logical connectives can be any comparison operators <, <=, >, >=, =
and < >. SQL also includes BETWEEN comparisons.

• DISTINCT key word is used to eliminate duplicate value.
• ALL key word is used to explicitly allow duplicates.

Example: Assumed simple relational database is as follows.

The customer table The account table The depositor table

a. Find all customer names.
 SELECT customer_name FROM customer;

b. Find the different customer address (location).
SELECT DISTINCT customer_address FROM customer;

c. Find all address of customer.
SELECT ALL customer_address FROM customer;

d. Find customer_id and its corresponding customer name.
SELECT customer_id, customer_name FROM customer;

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 7

e. Find customer detail.
SELECT *FROM customer (* indicates all attributes)

f. List name and address of customer who stay in “KATHMANDU”.
SELECT customer_name, customer_address, FROM customer
 WHERE customer_address = “KATHMANDU”;

g. List all customer whose name should be “smith” and address should be
“Kathmandu”.
SELECT customer_name FROM customer
 WHERE customer_name = ‘smith’
 OR customer_ address = ‘Kathmandu’

h. What would be the output if statement like
SELECT customer_name FROM customer
 WHERE customer_name FROM customer
 OR customer_ address = ‘Kathmandu’

i. List account no, balance whose balance is between 200 to 700.
 SELECT account_no, balance FROM account
 WHERE balance BETWEEN 200 AND 700;

j. What happen if we execute the statement?
 SELECT account_no, balance FROM account
 WHERE balance NOT BETWEEN 200 AND 700;

k. Write SQL statement for (i) using only AND logical connectives and
comparison operatives.
 SELECT account_no, balance FROM account
 WHERE balance <= 700 AND balance >= 200;

Note: We can retrieve the information from multiple tables; there should be a
common attribute between two tables. i.e., table should be related and we require to
join condition.

l. List the customer_id, account_id and balance whose balance is more than
300.

SELECT depositor. customer_id, depositor. account_no, account. balance
 FROM depositor, account
 WHERE depositor.account_no = account.account_no
 AND account.balance > 300;

m. List all customers and corresponding balance.

SELECT c.customer_name, a.balance
 FROM customer c, account a, depositor d
 WHERE d.account_no =a.account_no
 AND d.customer_id =c.customer_id;

Renaming attribute and relations:
• In previous example relations customer, account, depositor are renamed

respectively c, a and d.

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 8

• We can also rename attributes, it is required when we are taking attribute from
multiple column or we need arithmetic operations in the statement or when we
need to give appropriate name for (column name) attribute name.

• To rename attribute SQL provides as clause or we can simply rename attribute
or relation without as clause.

Examples:

a. SELECT account_no as account number FROM account;
 OR
SELECT account_no “Account number” FROM account;

b. SELECT account_no, balance, balance+ (balance*0.05) as Account

Number, Balance,
 Increase salary FROM account;

 OR
 SELECT account_no “Account number”, balance “Balance:,
 Balance+(balance*0.05) “Increased salary” FROM account;

c. SELECT c. customer_name, a. balance
 FROM customer c, account a, depositor d
 WHERE d. account_no = a. account_no

 AND d.customer_id = c.customer_id;
 OR
 SELECT c. customer_name, a. balance
 FROM customer as c, account as a, depositor as d
 WHERE d.account_no = a.account_no
 AND d.customer_id = c.customer_id;

String operations:
String pattern matching operation on SQL can be performed by `like’ operator and
we can describe the patterns by two spherical character.

1. Percent (%) : matches any substrings.
2. underscore (_): matches any characters.

Example:
 `I%’ matches any string beginning with I.
 IVAN -> valid / match.
 INDIA -> valid / match
 NEPALI -> invalid / does not match.

` % VAN% match any string containing `VAN’ as substring.
IVAN, Mr IVAN, DEVAN, DEVANGAR are all valid.
`---‘ matches any strings of exactly three character.
`---%’ matches any string of atleast three character.

Moreover,

Like `ab\%cd%’ matches all string beginning with “ab%cd”.
Like `ab\\cd%’ matches all string beginning with “ab\cd”.

Problems:

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 9

List those customers whose name begin with character `S’

SELECT customer_name FROM customer.
 WHERE customer_name LIKE `S%’;
Note:

customer_name like `S%H’

• List all customer name whose name begin with `S’ and end with `H’
customer_name like`----‘%N’

• List all customer name whose name must contain at least five
character and end with character `N’

Ascending and descending records in SQL:

• ORDER BY clause used for ascending or descending records(or list
items).

• To specify sort order we may specify desc for descending order or asc
ascending orders. By default order by clause list item in ascending
order.

• Moreover, ordering can be performed on multiple attributes.

Example: 1

SELECT distinct customer_name FROM customer ORDER BY customer_name;

• Lists name of customer in alphabetic order by customer name.

Example: 2

SELECT DISTINCT customer_name FROM customer ORDER BY customer_name
DESC;

• Lists name of customer in descending alphabetic order.

Note: select from customer order by 2;

Here 2 indicates second column in table “customer”. This SQL statement is
equivalent to first example’s SQL statement.

Example: 3
Suppose want list account information in descending order by balance but if say
some balance are same and in such case if we want to order account information by
order_no in ascending order then we have order record by performing ordering on
multiple attributes. The SQL statement likes,
 SELECT *FROM account
 ORDER BY balance DESC, account ASC;

Set operation

• basic set operation are union(u), intersection(n) and difference(_). These
operation also can be performed by using union, intersection and minus
(except) clause respectively.

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 10

The union operation
• the union operation can be perform by using union clause.

 Example: consider two reactions

 The table client The table supplier
List the id and name of the client and supplier who stay in city ‘Kathmandu’.

Select supplier_id “ID”, name “Name” from supplier
 where city = ‘Kathmandu’
UNION
SELECT client_id “ID”, name “Name” from client
 where city = ‘Kathmandu’

- Proceed as follow:

Output from 1st SQL statement

ID Name
S001 Ashok
S002 Manoj

Output from 2nd SQL statement

ID Name
C001 Ammit
C002 Ammit

Hence, the resulting output is

ID Name
C001 Ammit
C002 Ammit
C003 Ashok
C004 Manoj

Note: if we retrieve only one column say name without duplicate name then

corresponding statement like
 Select name from supplier where city = ‘Kathmandu’
 UNION
 Select name from client where city = ‘Kathmandu’;

o this is unlike select clause, union operation automatically eliminates

duplicates. If we want to retain all duplicates, we must replace union
all.

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 11

Example:
 select name from supplier where city = ‘Kathmandu’.

The output would be
 Name

Ammit
Ammit
Ashok
Manoj

The intersection operation
- the intersection operation can be performed by using INTERSECT clause
- consider relation as follow:

 SALESMAN

salesman_id name city
S001 Manish Kathmandu
S002 Manoj Lalitpur
S003 Ammit Bhaktapur
S004 Rabin Kathmandu

order_no Order_date salesman_id
0001 10-JAN-98 S001
0002 12-FEB-98 S002
0003 13-FEB-98 S001
0004 18-MAR-98 S001
0005 19-MAR-98 S002

 The salesman table The
sales_order table

Retrieve salesman name who stay in Kathmandu and who must sales at least order.
 SELECT salesman_id, name

salesman_id name
S001 Manish
S004 Rabin

 from salesman
 where city = ‘Kathmandu’

 INTERSECT

salesman_id name
S001 Manish
S002 Manoj
S001 Manish
S002 Manoj

 SELECT salesman. salesman_id
 from salesman, sales_order
 Where salesman_id =
sales_order. salesman_id;

The resulting output is

salesman_id name
S001 Manish

• The INTERSECT operation also automatically eliminates duplicates. So, here

only one record is delayed in output. If we want to retain all duplicates we
must replace INTERSECT by INTERSECT ALL.

 SELECT salesman_id, name from SELECT salesman
 where city = ‘Kathmandu’
 INTERSECT ALL
 SELECT salesman. salesman_id, salesman name
 from salesman, sales_order
 WHERE salesman. salesman_id = sales_order salesman_id;

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 12

The difference operation

The difference operation can be perform in SQL by using except or minus clause.

 Example: in previous example, find the salesman_id, name who stay in Kathmandu
but they do not sales any order.

 SELECT salesman_id, name from salesman
 where city = ‘Kathmandu’
 EXCEPT
 SELECT salesman. salesman_id, salesman name
 from salesman, sales_order
 Where salesman. salesman_id = sales_order. salesman_id;
 OR
 SELECT salesman_id, name from salesman
 where city = ‘Kathmandu’
 MINUS
 SELECT salesman. salesman_id, salesman name
 FROM salesman, sales_order
 Where salesman salesman_id = sales_order salesman_id;

 The output is

salesman_id name
S004 Rabin

NOTE: Except operation also automatically eliminates duplicates so it want to return
all duplicates, we must write EXCEPT ALL instead of EXCEPT.

Problem: consider a relation schema as follow

branch(#branch_name, branch_city, assets)
account(#account_number, branch_name, balance)
customer(#customer_name, customer_street, customer_city)
depositor(customer_name, account_number)
loan(#loan_number, branch_name, amount)
brrower(customer_name, loan_number)

 1. Find all customer who have a loan, account or both at the bank .
 SELECT customer nameFrom depositor
 UNION
 SELECT customer name From borrower;

2. Find all customers who have both loan and account at the bank.
 SELECT DISTINCT customer name from depositor
 INTERSECT
 SELECT DISTINCT customer name from borrower;

3. Find all customers who have account but no loan at the bank.

 SELECT DISTINCT customer name from depositor
 EXCEPT
 SELECT customer name from borrower;

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 13

Aggregate Function

Aggregate functions are those functions that take a set of values as input and return
a single value. SQL consist many built in aggregate function. Some are:

 1. AVERGE: AVG
 2. MAXIMUM: MAX
 3. MINIMUM: MIN
 4. TOTAL: SUM
 5. COUNT: COUNT

The input to AVG and SUM must be a set of numbers and other aggregate function
can be operate by non numeric data types, it may be strings, not necessary
numbers.

AVG:

 Syntax: AVG (<DISTINCT\ALL>; n)

• returns average of n, ignoring null values.

Example: find the average balance in Kathmandu branch.
 SELECT AVG (balance) From account
 WHERE branch_name = ‘KATHMANDU’;

There would be a situation that we may have to use aggregate function not only a
single set of tuples we may have to use with group of set of tuples, we can specify
this by using GROUP BY clause in SQL. That is, group by clause specifies group rows
based on distinct values that exist in specified column when we use GROUP BY
clause we can not use WHERE clause to specify condition, we must have to use
HAVING clause to specify the condition. That is, GROUP BY and HAVING clause. But
GROUP BY or HAVING clause act on record sets rather than individual records.

Example: find the average account balance at each branch
 SELECT branch_name , avg (balance)
 FROM account
 GROUP BY branch_name;

MIN:
 Syntax: MIN (<DISTINCT\ALL>; n)

• returns minimum value of n.

Example: find the minimum balance of each branch.
 SELECT branch_name, min (balance) “Minimum Balance”
 FROM account
 GROUP BY branch_name;

MAX:
 Syntax: MAX (<DISTINCT ALL>; n)

• returns maximum value of n

Example: find the maximum balance in each branch.
 SELECT branch_name, max (balance) “Maximum Balance”
 FROM account

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 14

 GROUP BY branch_name;

COUNT:
 Syntax: COUNT (<DISTINCT ALL>; n)

• returns numbers of rows where n is not null.

NOTE: COUNT (*)

• returns numbers of rows in the table, including duplicates and those with
nulls.

Example: find the numbers of depositor for each branch.

NOTE: each depositor may have numbers of account so we must count depositor
only once thus we write query as below:

SELECT branch_name, count (DISTINCT Customer_name)
 From depositor, account
 WHERE depositor account number = account. Account_number
 GROUP BY branch_name;

NOTE: if we need to specify the condition (predicates) after GROUP BY clause, we
need having clause.

PROBLEM: find only those branches where the average account balance is more
than 1200.
 SELECT branch_name, AVG (balance) FROM account
 GROUP BY branch_name having AVG (balance) > 1200;

PROBLEM: find the no. of customer in customer table.
 SELECT COUNT (*) FROM Customer;

NOTE: If a WHERE clause and HAVING clause both appears in the same query, SQL
executes predicate in the WHERE clause first and if it satisfied the only it executes
predicate of GROUP BY clause.

PROBLEM: Find the average balance for each customer who lives in KATHMANDU
and has at least three accounts.

 SELECT depositor customer_name, AVG (balance)
 FROM depositor, account , customer
 WHERE depositor account_number = account account_number
 Depositor customer_name = customer customer_name
 Customer_city = ‘KATHMANDU’
 GROUP BY depositor, customer_name
 HAVING COUNT (DISTINCT depositor account_number) > = 3;

 SUM
 Syntax: SUM ([DICTINCT/ ALL] n)

• return sum of value of n

 Example: find total loan amount for each branch
 SELECT branch_name, SUM (amount)
 FROM loan
 GROUP BY branch_name;

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 15

NULL VALUES

• In SQL, NULL values all to indicate absence of information for the value of
attribute.

• SQL provides special key word NULL in a predicate to test for NULL values.
Not NULL in predicate use to test absence of NULL values.

Example: find the balance of each branch whose balance is not empty.

 SELECT branch_name, balance
 FROM account
 WHERE balance is NOT NULL;

Example: List the account number, branch name and balance whose balance is
empty.

 SELECT *FROM account
 WHERE balance is NULL;

• The feature of SQL that handles NULL values has important application but
some time it gives unpredictable result. For example, an arithmetic
expression involving (+. _ , * or /), if any of the input values is NULL value
(except IS NULL Q IS NOT NULL).

• If NULL values exist in the processing of aggregate operation, it makes
process complicated.

 Example: SELECT AVG (amount) FROM loan;
• This query calculates the average loan amount that is not empty so if there

exist empty amount then calculated average amount is not valid. Except
COUNT(*) function all aggregate function ignores NULL values in input.

• The COUNT () function return if count value is empty and all other aggregate
function returns NULL if it found empty value.

Example: consider a table ‘emp’ as below:

Empno Sal Comm
10 100
20 200 50
30 300 20

Suppose the SQL statement are as below
a. SELECT COUNT (*) FROM emp;

returns count is equal to 3
 That is count(*)

 3

b. SELECT COUNT (comm.) FROM emp WHERE empno = 10;
returns count(comm.)

 0
c. SELECT SUM(COMM) FROM emp WHERE empno = 10;

return sum(comm.)

 (nothing)

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 16

d. SELECT SAL+COMM FROM emp WHERE empno = 10;
return sal+comm.

 (nothing)

• here the result is unpredictable. In this case result should be 100. To handle such
unpredictable situation SQL provides NVL () function

 Example: SELECT sal+nvl(comm,0)/100

• nvl function returns 0 when comm is found empty. If user do not specify the
value for any column (attribute) SQL place null values in these columns. The null
value is different from zero. That is null value is not equivalent to value zero.

• A NULL value will evaluate to NULL in any expression.
 Example: NULL multiply by 10 is NULL.
• If the column has a NULL value, SQL ignores the unique Foreign key, check

constraints that are attached to the column.
• If any field define as NOT NULL, it does not allow to ignore this field, user must

insert value, that is NOT NULL is itself a constraint while it specify in table.

Nested Subqueries

• SQL provides sub_query facility. A sub_query is a SQL statement that
appears inside another SQL statement. It is also called nested sub_queries or
simply nested query.

• Sub_query use to perform tests for set membership, make set comparisons
and determine set cardinality.

• Sub_query can be used with SELECT, INSERT, UPDATE and DELETE
statement.

Example: find all branch name where depositor account number is ‘A005’ .
 SELECT branch name FROM account
 WHERE account account_number = (SELECT account_number FROM
depositor
 WHERE account number
= ‘A005’);
• When sub_query return more than one values the we required to test whether

value written by first query is match/exist or not within values return by
sub_query.

• IN and NOT IN connectives are useful to test in such condition. That is IN
connectives use to test for set membership and NOT IN connectives use to test
for absence of set membership.

Example: find those customers who are borrowers from the bank and who are also
account holder.
 SELECT DICTINCT customer_name FROM borrower
 WHERE customer_name IN (SELECT customer_name FROM
depositor);

Example: find all customer who do have loan at the bank but do not have an amount
at the bank.
 SELECT DISTINCT customer_name FROM borrower
 WHERE customer_name NOT IN (SELECT customer_name FROM
depositor);

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 17

Example: list the name of customers who have a loan at the bank and whose name
neither SMITH nor JONE
 SELECT DISTINCT Customer_name FROM borrower
 WHERE customer_name NOT IN (‘SMITH’, ‘JONE’);

Example: find all customers who have both an account and loan at Kathmandu
branch.
 SELECT DISTINCT Customer_name FROM borrower, loan
 WHERE borrower loan number = loan loan_number and
branch_name = ‘KATHMANDU’
 AND (branch_name, customer_name) IN (SELECT
branch_name, customer_name
 FROM depositor account
 WHERE depositor account_number = account
account_name);
SET COMPARISION
 Nested sub_query have an ability to compare set.

Example: Find the names of all branches that have assets greater than those of at
least one branch located
 in ‘Kathmandu’.

The simple SQL statement is
 SELECT DISTINCT B1 branch_name FROM branch B1. branch B2
 WHERE B1 assets>B2 assets
 AND B2.branch_city = ‘Kathmandu’.

The same query can be written by using subquery as
 SELECT branch_name FROM branch
 WHERE assets > some (select assets FROM branch
 WHERE branch_city = ‘Kathmandu’);

- here, >some comparison in the where clause of the outer value return by

sub_query.
- SQL also allow <some, >=some, =some and < > some comparison
- Not that = some is identical to IN. but < > some is not same as NOT IN.

Example: Find the names of all branches that have an assets value greater than that
of each branch in ‘KATHMANDU’.

NOTE: The construct > all corresponds to the phase ‘greater than all’

SELECT branch_name FROM branch
 WHERE assets > all (SELECT assets FROM branch
 WHERE branch city = ‘KATHMANDU’)

NOTE: SQL also allow <all, <=all, >=all, =all and < >all comparison.

Example: find the branch that has the highest average balance.

NOTE that we can not use MAX {AVG (balance)}, since aggregate function can not
be composed in SQL. So we first need to find all average balances and need to nest

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 18

it as subquery of another query that finds those branches for which average balance
is greater than or equal to all average balances.
 SELECT branch_name FROM account
 GROUP BY branch_name
 HAVING AVG (balance) >=all (SELECT AVG (balance) FROM account
 GROUP BY
branch_name);

TEST EMPTY RELATIONHIP
SQL has a feature for testing whether a subquery return any value or not. The exists
construct returns true if subquery returns values.

Example: find all customers who have both an account and loan at the bank.

 SELECT customer_name FROM borrower

 WHERE exists (SELECT *FROM depositor
 WHERE depositor customer_name = borrower
customer_name);

We can test non existence of values (tuples) in sub_query by using not exists
construct.

Example: find all customers who have an account at all branches located in
‘KATHMANDU’.

 SELECT DISTINCT d1.customer_name
 FROM depositor as d1
 WHERE not exists {(SELECT branch_name FROM branch
 WHERE branch_city = ‘KATHMANDU’)
 Except
 (SELECT d2. branch_name FROM depositor as d2, account as a
 WHERE d2. Account–no. = a. Account_no.
 AND d1. Customer_name = d2.
Customer_name)};

Test for the absence of Duplicate Tuples

SQL has a feature for testing whether the subquery has any duplicate Tuples in its
results.
The UNIQUE construct true if a subquery contains no duplicate Tuples.

Example: find all customers who have at most one account at the KATHMANDU
branch.

SELECT d.customer_name FROM depositor d1
 WHERE UNIQUE (SELECT d2. customer_name FROM account depositor d2
 WHERE d1. customer_name = d2. customer_name
 AND d2. account_no. = account. Account_no.
 AND account. Branch_name = ‘KATHMANDU’);

NOTE: using NOT UNIQUE construct, we can test the existence of duplicate tuples.

Example: find all customers who have at least two account at the KATHMANDU
branch.

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 19

 SELECT DISTINCT d1.customer_name FROM depositor as d1
 WHERE UNIQUE (SELECT d2. customer_name FROM account depositor d2
 WHERE d1. customer_name = d2. customer_name
 AND d2. account_no. = account. Account_no.
 AND account. Branch_name = ‘KATHMANDU’);
 Complex Queries
There are several way of composing query: derived relation and the with clause are
ways of composing complex queries.

 Derived Relation
- SQL have a feature that it allow sub_query expression to used in the FROM

clause.
- If we use such expression then we must give result relation name and we can

remove the attributes.

Example: find the average account of those branches where the average account
balance is greater than 1200.
 SELECT branch_name, avg_balance
 FROM {SELECT branch_name, avg (balance) FROM account GROUP BY
branch_name}
 AS branch_avg (branch_name, avg_balance)
 WHERE avg_balance > 1200;
The with clause

- The with clause introduced in SQL: 1999 and is currently supported by only
some database.

- The with clause makes query logic clear.

Example: find all branches where the total account deposit is less than the average
deposits at all branches.
 WITH branch_total (branch_name, value) as
 SELECT branch_name, SUM (balance) FROM account
 GROUP BY branch_name
 WITH branch_total_avg (value) as
 SELECT avg (value) FROM branch_total
 SELECT branch_name FROM branch_total, brnch_total_avg
 WHERE branch_total.value >= branch_total_avg.value;

UPDATE STATEMENT

- The UPDATE statement is used to modify one or more records in specified

relation. The records to be modify are specified by a predicate in the WHERE
clause and new value of the column (s) to be modified is specified by a SET
clause.

The syntax is
 UPDATE <relation>
 SET <attribute with new value>
 [WHERE <predicate>];

Example: increase the balance of all branches by 5%
 UPDATE account

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 20

 SET balance = balance * 1.05;
 OR
 UPDATE account
 SET balance = (balance) + (balance * 0.05);

Example: increase balance of those branches whose current balance is less than or
equal to 1000 by 5%
 UPDATE account
 SET balance = balance * 1.05
 WHERE balance <= 1000;

 Example: decrease the balance by 5% on accounts whose balance is greater than
average.
 UPDATE account
 SET balance = balance_ (balance * 0.05)
 WHERE balance > {SELECT average (balance) FROM account};

 NOTE: SQL provides case construct, which can be perform multiple updates with a
single UPDATE statements
 The syntax is:

 Case
 When predicate 1 then result 1
 When predicate 2 then result 2
 When predicate n then result n
 Else result
 END

Example: UPDATE account
 SET balance = case
 When balance <= 1000then balance *1.05
 else balance *1.06
 end;

 DELETE STATEMENT

The DELETE statement use to delete one or more records from relations. The records
to be deleted are specified by the predicate in the WHERE clause.

The Syntax is:
 DELETE <relation> [WHERE <Predicate>]

Note: Delete statement can operate only one relation. It can not delete records of
multiple relation.

Example: Delete all records from loan relation.
 DELETE FROM loan;

Example: Delete all records from account relation whose branch is located in
Kathmandu.
 DELETE FROM account
 WHERE branch_name = ‘KATHMANDU;

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 21

Example: Delete all loan with loan amount between 1000 and11500;
DELETE FROM account
WHERE branch_name IN (SELECT branch_name FROM branch)
 WHERE branch_city = ‘KATHMANDU’);

Example: Delete all records of account with balance below the average
 DELETE FROM account
 WHERE balance <(SELECT avg (balance) FROM account);

INSERT STATEMENT
 The

INSERT INTO <relation>

 INSERT statement used to insert a new records into a specified relation
 Syntax:

 VALUES (<values list>)

 Another form:
 INSERT INTO <relation> (<target columns>)
 VALUES (<values list>)

 The attributes values that are going to insert must be match order by corresponding
attributes and also must be matched data type of value and corresponding attribute
data type.

Example: insert one record in account relation.
 INSERT INTO account
 VALUES (‘A_0009’, ‘LALITPUR’, 1500);
 OR
 INSERT INTO account (account_no., branch_name, balance)
 VALUES (‘A_0009’, ‘LALITPUR’, 1500);

we can also insert records on the basis of query

Example: INSERT INTO account
 SELECT loan_number = ‘KATHMANDU’;
 It inserts the records in account relation taking account_number, brancg_name
from loan relation whose branch is located in Kathmandu and for all records balance
is constant 500.

Example: INSERT INTO depositor
 SELECT customer_name, loan_number FROM borrower, loan
 WHERE borrower . loan_number = loan . loan_number
 AND branch_name = ‘KATHMANDU’;

Insert Tuple (customer_name, loan_number) into the depositor relation for each
customer who has a loan in Kathmandu branch with loan number.

Example: INSERT INTO account
 SELECT *FROM account;
 Insert infinite number of Tuples.

Joined Relations
- one of the most powerful feature of SQL is its capability to gather and

manipulate data from several relations.

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 22

- If SQL does not provides this feature we must have to store all the data
elements in a single relations for each application. We have to store same data
in several relations.

- The join statements of SQL enables to design smaller, more specific relations
that are easier to maintain than larger relations.

- There are several methods for joining relations. Some methods are not useful for
application and some are very useful.

1. Cross Join
 Joins two or more tables without relation between them or without condition
in the where clause. The results is the Cartesian product of two or more table’s
attributes
 Examples: consider two relations

Table 1:
 row remarks Table 2: row remarks

 1. Table 1 1. Table 2
 2. Table 1 2. Table 2

The cross join statement is
 SELECT *FROM Table 1,Table 2;

 Output is:
 row remarks row remarks
 1 Table 1 1 Table 2
 1 Table 1 2 Table 2
 2 Table 1 1 Table 2
 2 Table 1 2 Table 2

- cross join is normally not useful but it illustrates the basic combining property of

all join types.

 Equi Join (natural inner join)
Equi joins methods joins relations based on the equality. It has very important
application in commercial database application.

Example: consider
 Relation : dept

#empno E name job sal comm Dept. no
E001 SMITH Manager 7000 500 10
E002 JONE Engineer 6000 3000 20
E003 MICLE Engineer 5000 2000 20
E004 JACK Accountant 3000 500 40

relation: emp

#dept. no Depo. name Loc
10 Management Kathmandu
20 Technical Kathmandu
30 Marketing Bhaktapur
40 Account Lalitpur

Example: list all employee name, department name and salary

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 23

 SELECT e. ename, d. dname FROM emp e, dept d
 WHERE e. deptno = d. deptno;
 Output:
 ename Dname

SMITH MANAGEMENT
JONE TECHNICAL
MICLE TECHNICAL
JACK ACCOUNT

We can further qualify this query by adding more condition on where clause.

Example: SELECT e.ename, d.dname
 FROM emp e , dept d
 WHERE e.deptno = d.deptno
 AND e.sal >5000 ORDER By e.ename;

Example: consider relations

Loan_number Depo. name Loc
L_170 Management Kathmandu
L_230 Technical Kathmandu
L_260 Marketing Bhaktapur

Customer_name Loan_nuber
JONE L_170
SMITH L_230
MICLE L_155

 Relation: loan relation: borrower

SELECT *FROM loan, borrower
 WHERE loan. Loan_number = borrower.loan_number;

Non – Equi join (Outer join)

SQL also supports non equi_join. That is, this method joins tables (relations) based
on non equality. But equi_join is far more common than non equi_join

e.g. Select e.ename, d.dname, d.dname d.deptno
 FROM emp e, dept d
 WHERE e.deptno > d.deptno;
Output:
 Ename dname dept no
 JONE MANAGEMENT 10
 MICLE MANAGEMENT 10
 JACK MANAGEMENT 10
 JACK TECHNICAL 20
 JACK MARKETING 30
Here, this information is not so useful.

How from the output? Lets look

 Case 1: equi_join
 SELECT e.ename, d.dname, e.deptno “emp deptno”, d.deptno “deptno”
 FROM emp e, dept d
 WHERE e.deptno;

OUTPUT: ename dname emp deptno deptno
 SMITH MANAGER 10 10

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 24

 JONE TECHNICAL 20 20
 MICLE TECHNCAL 20 20
 JACK ACCOUNT 40 40

REMARKS: output is selected from the Cartesian product of two relations
 Emp (e.ename, e.deptno)
 Dept (d.dname, d.deptno)
 such that both department no is equal only.

Case 2: (Non equi join)

SELECT e.ename, d.dname, e.deptno “emp deptno”, d.deptno “dept deptno”
 FROM emp e, dept
 WHERE e. dept> d.dept no;

Output: ename dname empdeptno detno
 JOHN Management 20 10
 MICHAEL Management 20 10
 JACK Management 40 10
 JACK Technical 40 20
 JACK Markeing 40 30
..
Remarks:
Output is seleted from the Cartesian product of two relations

emp (e.ename, e.dept no)
Dept (d.dname, d.deptno)

Such that emp tanle of department no is greater than department table of
department no.

Case 3 (Non equi join)
SELECT e.ename , d.dname e.dept no “emp deptno”
 FROM emp e , dept d
WHERE e. deptno> 10;

Output:

 ename dname Emp deptno
JONE MANAGEMENT 20 >10
MICLE MANAGEMENT 20 >10
JACK MANAGEMENT 40 >10
JONE TECHNICAL 20 >10

REMARKS: output is selested from the Cartesian product of two relation
 Emp (e.ename, e.deptno)
 Dept (e.ename, e.deptno)
Such that emp table of deptno is always greater than 10.

Three types of outer join

1. Left outer join
2. Right outer join
3. Full outer join

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 25

Consider two relations

 Loan Borrower

Loan_no. Branch_name amount
L-170 KATHMANDU 3000
L-230 BHAKTAPUR 4000
L-260 LALITPUR 1700

Customer_name Loan_number
JONE L-170
SMITH L-230
MICLE L-155

a. SELECT loan . loan_number, loan . branch_name, loan . amount, borrower .
loan_number loan

Left outer join borrower on loan . loan_number = borrower . loan_number

Loan_no. Branch_name amount Customer_name
L-170 KATHMANDU 3000 JONE
L-230 BHAKTAPUR 4000 SMITH
L-260 LALITPUR 1700 null

Remarks: Tuple from the left hand side relation that do not math any Tuple in the
right side relation are padded with null.
SELECT loan. loan_number, loan . brach_name, loan.amount, borrower.
Customer_name loan
 right outer join borrower on loan.loan_number = borrower. Loan_number;

Loan_no. Branch_name amount Loan_no. Customer_name
L-170 KATHMANDU 3000 L-170 JONE
L-230 BHAKTAPUR 4000 L-230 SMITH
L-155 null null null MICLE

Remarks: Tuples from the right hand-side that do not match any Tuple in the left
hand side relation are padded with nulls.

SELECT loan. loan_number, loan. branch_name, loan. amount, borrower
customer_name loan
Full outer join burrower on loan.loan_number = borrower. Loan_number;

 loan number branch name amount customer name

 L - 170 Kathmandu 3000 JONES
 L - 230 Bhaktapur 4000 SMITH
 L - 260 Lalitpur 1700 NULL
 L -150 NULL NULL MICHALE
Self join
- In some situation, we may need necessary to join a table to itself as we are

joining two separate tables, this is known as self-join
- In a self join two rows from the same table combine to form a result row.
- Example: Consider a relation `employee’ as below.
 Empno name manager no
 E001 Smith E002
 E002 Michale E005
 E003 John E004
 E004 Ivan
 E005 Scott

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 26

 Retrieve the names of employees and the names of their respective manager

from the employee relation.

SELECT emp name , mgr name “Manager”
 FROM employee emp, employee mgr
 WHERE emp. Manager no = mgr. emp_no;

Output:

Name Manager
Smith Michael
Michael Scott
John Ivan

Process:
 EMP MGR
Emp no name manager no emp no name manager no
E001 Smith E002 E001 Michael E002
E002 Michael E005 E002 Scott E005
E003 John E04 E003 Ivan E004

 Name Manager
 Smith Michael
 Michael Scott
 John Ivan
Data definition Language in SQL

• In SQL, DDL specifies set of relations (tables) in a database.
• SQL DDL also allows to specify

o Integrity constraints.
o Index on relations
o Security and authorization for each relation
o Physical storage structure of each relation

• Basic statement in Data Definition Language are CREATE, DROP, ALTER

Some Domain types in SQL (Data type in SQL)
CHAR(n): fixed length character string with user specified length n.
VARCHAR2(n) : A variable length character string with user specified length n. Full

form is character
 varying and to indicate version of the domain.
NUMBER(n): holds fixed number specified length n.
NUMBER(P,S): holds fixed or floating point numbers
 P determines the maximum length of data, and S
 Determines the number of places to the right of decimal.
 If S is not specified then default is zero ; in such case or specified 0,

it can not hold floating point number.

INT : An integer , small int
FLOAT(n) : A floating point number , with precision of at least n digits.
DATE : Represents date and time. The standard format is DD-MM-YY
LONG: Used to store variable length character strings containing up to 2 GB.
 RAN/ LONG RAW : Used to store binary data such as digitized picture or

image. It can contain up to 2 GB.

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 27

Schema Definition in SQL

- CREATE TABLE command is usedto create relation
Syntax :
 CREATE TABLE <relation name>
 (A1D1 , A2D2, ……… , AnDn ,
 [< integrity constraint 1>]
 [< integrity constraint K>]
);
- Here, Ai is the name of attributes.
- Di is the domain type (or data type)
And integrity constraint includes:

PRIMARY KEY :

Primary key is an attribute or combination of multiple attributes that uniquely
identifies records.

If a primary key is a combination of multiple attributes called composite
primary key. A primary

 key attributes are required NOT NULL AND UNIQUE. That is primary key
attribute cannot be

left null and it cannot contain duplicate values.

NOT NULL / UNIQUE: Attribute can be specified NOT NULL attribute or unique
attribute.

FOREIGN KEY: Any column (attribute) of table (relation) can be specified as a

foreign key if it is a
 common attribute between relations where we are going to

establish a relationship.

• In one relation (master table) it should be primary key and in
another table (detail table) some attribute should be foreign key.

• Primary key and foreign key together used to establish the
relationship between the two relations.

• The concept of primary key and foreign key is very important in
RDBMS.

CHECK(P) : Check clause specifies the predicate P that must satisfy specified
condition.

Example: SQL data definition for the simple banking database.

CREATE TABLE customer
 Customer_ name VARCHAR2(20) NOT NULL,
 Customer location VARCHAR2 (20)
 Constraint PK_Cname Primary key (Customer name));

CREATE TABLE branch
 (
 branch_name VARCHAR 2(15),
 branch_city VARCHAR2(30) DEFAULT “ KATHMANDU” ,
 assets NUMBER (5) ,
 CONSTRAINT PK_branch_name PRIMARY KEY (branch_name),
 CONSTRAINT ch_accbal CHECK (balance >=0)
);

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 28

CREATE TABLE depositor
 (
 customer_name VARCHAR2(20),
 account no CHAR(10)
 CONSTRAINT fk_depositor_cname
 FOREIGN KEY(customer_name) REFERENCES customer,
 CONSTRAINT PK_cname_accno PRIMARY KEY (custome_name, account no)
);

CREATE TABLE loan
 (
 loan_no CHAR(10) PRIMARY KEY ,
 branch_name VARCHAR2(15) NOT NULL,
 amount NUMBER (5),
 CONSTRAINT fk_loan_branch_name
 FOREIGN KEY (branch_name) REFERENCES branch,
 CHECK (amount>=0)
);
CREATE TABLE borrower
(
 customer_name VARCHAR2(20),
 loan_no CHAR(10),
 CONSTRAINT fk_ cname FOREIGN KEY (customer_name) REFERENCES customer
);
.
Example of using UNIQUE key and DEFAULT value

 e.g. CREATE TABLE student
 (
 student_id NUMBER (3) PRIMARY KEY,
 name CHAR (20) UNIQUE,
 degree CHAR (15) DEFAULT ` Master’ ,
 CHECK (degree IN (`Bachelors’ , `Master’ , `Doctorate’))
);

Drop statement

• Drop table statement used to drop the relation.

Syntax:
 DROP TABLE <relation name>;

DROP user statement

• DROP USER statement is used to drop the user.
Syntax:
 DROP USER <user name> [USER CASCADE];

ALTER TABLE statement

• Alter Table command is used to add or modify attributes to the existing
relation.

Syntax:
 ALTER TABLE <relation> ADD (attribute domain type);

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 29

 ALTER TABLE <relation> MODIFY (attribute domain type);
 ALTER TABLE <relation> DROP CONSTRAINT <constraint_name>;
 ALTER TABLE <relation> DROP COLOUMN <coloumn_name>;
Examples:
 ALTER TABLE customer ADD PRIMARY KEY (customer_name);
 ALTER TABLE customer ADD (customer_adds VARCHAR2(23));
 ALTER TABLE customer MODIFY (customer_adds VARCHAR2(32) NOT NULL);
 ALTER TABLE customer DROP PRIMARY KEY;
 ALTER TABLE customer DROP CONSTRAINT fk_cname;
 ALTER TABLE customer DROP COLOUMN customer_adds
View

• View is a virtual table, it does not contain actual data it is map to the base
table/s.

• When tables are created or populated with data, we may require to prevent
all user from accessing all columns of table. So for the data security reasons
view are created.

• One alternative solution is to create several table having appropriate no of
columns and assigned each user to each table. This provides well data
security but it keeps redundant data in tables. So it is not useful practically.
So, views are generally created instead of it . It reduces redundant data.

• View can be created from a single table hiding some coloumn/s or from the
multiple tables mapping all or some of the columns of the base tables. View is
the simple and effective way of hiding columns of tables for security reason.

• When view is referenced then only it holds data, so it reduces redundant data.
• When view is used to manipulate table , the underlying base e table/s are

completely invisible. This adds level of data security.
• Since view can be created from multiple tables so it makes easy to query

multiple tables because we can simply query views instead of query multiple
tables.

• View may be read only or updateable view. Read only view only allow to read
data from view. Updatable view allow insert, update and delete on view.

• If view is created from multiple tables it won’t be updateable.
• If view is created without primary key and null columns then value/record can

be inserted in view.
• The general syntax for view is

 CREATE VIEW <view name> AS < query expression> ;

Example: creating view from single table.
 CREATE VIEW vw_emp AS
 SELECT empno, ename, job FROM emp;
 View coloumn can be renamed as below:
 CREATE VIEW vw_emp AS
 SELECT empno “Employee no”, ename “ Employee name”
 Job “work” FROM emp;
- Creating view from multiple tables.
 CREATE VIEW vw_emp_info AS
 SELECT e.empno, e.ename, e.ejob, d.dname
 FROM emp e, dept d
 WHERE e.empno = d.dept no AND e.sal>1000;
Common restrictions on view

• We cannot use delete statement on multiple table view.
• We cannot use insert statement unless all NOT NULL columns On underlying

table are included.
• View must be created from single table to allow insert or update on view.

For more notes visit https://collegenote.pythonanywhere.com

4.0 Structure Query Language (SQL)

© T. Paneru 30

• If we use DISTINCT clause to create views, we cannot update or insert
records within that view.

Common application of views
• Provides user security functions.
• Simplifies the constructions of complex queries.
• Summarize data from multiple tables.

Common restrictions on updatable views

• For the views to be updateable, the view definitions must not include.
• Aggregate function.
• DISTINCT, GROUP BY or HAVING clause.
• Sub – queries.
• Constraints, strin or value expression like bal*1.05
• UNION, INTERSECT, OR MINUS/EXCEPT clause.
• View can be destroyed by using DROP VIEW command.

 Syntax:
 DROP VIEW <view name>;
 e.g. DROP view vw_emp;
Transactions:

• A transaction consists of sequence of query / or updateable statements.
• SQL standard specifies, the transaction begins implicitly when SQL statement

is executed and one of the following SQL statement must end with transaction
commands.

 COMMIT:
It commits (save) the current transaction changes on database / table/s by
update statements. After the transaction is committed, a new transaction is
automatically started.

 ROLLBACK:
It rollback (undo) the current transaction. That is, it undo all the update
performed by SQL statements. Thus database state is restored to what it was
before the first statements of the transaction were executed.

• If program terminates without executing either of the commands commit or
rollback. The updates or changes to database are either committed or
rollback. This depends upon SQL implementation.

• In many SQL implementations, if transactions are continued and at the same
moment if the system is restarted or fails then transaction is rollback.

For more notes visit https://collegenote.pythonanywhere.com

	4.0 Structure Query Language (SQL)
	4.1 Basic Term and Terminology
	4.2 Database Languages
	4.3 Different parts of SQL Language
	4.4 General overview of SQL:

