
Automata Theory:                                                 Turing Machine  

Introduction to Turing Machine
     A Turing machine is an abstract machine, introduced  by the English 
mathematician  Alan Turing – 1936.This is a model of computation which provides much 
of the theoretical foundation for the modern computer. 
     Turing began by considering a human computer i.e. a human solving a problem with 
pencil and paper. The method of solving could be assumed to operate under these three 
rules 

1. The only things written in paper are symbols from some fixed finite set – 
Alphabet 

2. Each step taken by the computer depends only on the symbol he is currently 
examined – state of mind  

3. His state of mind might change as a result of symbols he has seen or computation 
he has made, 

Turing then set out to build an abstract machine that obeys these rules and can 
duplicate what he took to be the primitive steps carried out by a human computer during 
computation; 
1. Examining individual symbol on the paper 
2. Erasing a symbol or replacing it by another. 
3. Transferring attention from one part of the paper to another  
 

A Turing Machine will have  
• finite alphabet of symbols (two alphabets – an input alphabet and a possibly larger 

alphabet for use during computation), 
• A finite set of states, corresponding to the possible “state of mind” of human 

computer. 
• A linear “tape” which is potentially infinite to both end. 
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Control 

  
 

The tape is marked off into squares, each of which can hold one symbol from the 
alphabet. If square has no symbol in it, then it contains blank. We think, reading and 
writing as being done by a tape head. A single move of TM is determined by the current 
state and current tape symbol and consist of three things. 

1. Replacing the symbol in the current square by another, possibly different symbol. 
2. Moving the tape head one square right or left  or leaving it where it is. 
3. Moving from the current state to another, possibly different state. 
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The tape serves. 
- The input device ( Input is simply the string assumed to finite ) 
- The memory available for use during computation 
- The output device (output is the string of symbols left on the tape at the 

end of computation) 
The most significant difference between the Turing machine and the simpler 

machine (FA or PDA) is that- In a Turing machine processing a string is no longer 
restricted to a single left- to- right pass through the input. The tape head can move in both 
directions and erase or modify any symbol it encounters. The machine can examine part 
of the input , modify it , take time to execute some computation in a different area of the 
tape, return to re- examine the input , repeat any of these actions and perhaps stop the 
processing before it has looked at all the input. 
 
Formal Definition of Turing Machine
    A Turing Machine (TM) is a 7- tuple  
    ),,,,,,( 0 FBqQM δΓ∑=   where. 
     Q : The finite set of states of the finite control / states 
      ∑: The finite set of input symbols 
      Γ  : The complete set of tape symbols; ∑ is always subset of Γ  
       δ : The transition function . defined by 
        where R, L, S is the direction of movement of head – left 
or right or stationary 

),,( SLRQQ ×Γ×→Γ×

i.e.    ),,(),( DYPxq δδ =  means TM in state q and current tape symbol X, moves to next 
state p replacing tape symbol X with Y and move the head either direction or remains 
same cell of input tape. 

0q :The start state , a member of Q 
B : The blank symbol. This symbol B ∑∉Γ∈ B,  
F :  The set of final or accepting states , F⊆  Q. 
 
Instantaneous Descriptions for TM:  
  The configuration of a TM is described by Instantaneous Description (ID) of TM like 
PDA. A string X1 X2...Xi-1  q Xi Xi+1…..Xn  represents the ID of TM in which 

1. q is the state of TM  
2.  The tape head scanning the ith symbol from the left  
3.  X1 X2…..Xn  is the portion of tape between the leftmost and rightmost non-blank. 

If the head is to the left of leftmost nonblank or to the right of right most non-
blank then some prefix or suffix of X1 X2….Xn will be blank and i will be 1 or  n 
respectively. 

 
Moves of TM :  The moves of TM, ),,,,,,( 0 FBqQM δΓ∑=  is 
described by notation ├ for single move and ├* for Zero or more move as in PDA. 
(a) For ),,(),( LYPXq i =δ  i.e next move is leftward  then  
     ├    niii XXqXXXX

N
........... 1121 +− niii XYXpXXXX ........... 11221 +−−
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reflects the change of state from q to p and the symbol Xi is replaces with Y then tape 
head is positional at i-1(next scan is Xi-1) 
 

1. if i =1 , M moves to the blank to the left of X1 i.e.  
niii XXqXXXX

n
....... 1121 +−  ├   nXpBYX .....2

 or ├  niii XXXXXqX
n
....... 1121 +− nXpBYX .....2

 
2.  If i =n, Y=B, then M moves to the state p and the symbol B written over Xn joins 

the infinite sequence of trailing blanks which does not appear in next ID as 

  ├  nn qXXXX 121 .... − 1221 .... −− nn pXXXX
(b)  if ),,(),( RYpXq i =δ  i.e next move is rightward . then  

niii XXqXXXX
n
....... 1121 +− ├  which reflects that symbol Xnii XYpXXXX ........ 1121 +− i is 

replaced with Y and the  head has moved to cell i+1 .  
1. If i = n, then i+1 cell holds blank which is not part of previous ID  

nn pXXXX 121 .... −  ├  YpBXXX n 121 .... −

2. If i =1, Y=B, then the symbol B written over Xi joins the infinite sequence of  
leading blanks and does not appear in next ID ├  nXXqX ....21 nXXpX ....32

 
Equivalently ID can be written as :  (q, x y) where q is a state. x and y are strings on 

 and underlined symbol represents the tape head position  
−
a

Γ∈Γ a,
 
An Example :  A TM accepting language   }1|10{ ≥nnn

• Given finite sequence of 0’s and 1’s on its tape preceded and followed by 
blanks.  

• Alternatively, TM will change 0 to an X and then a 1 to a Y, until all 0’s & 
1’s are matched .  

• Starting at left end of the input, it repeatedly changes a 0 to an X and 
moves to the right over whatever 0’s and Y’s it sees until comes to a 1. 

• It changes 1 to a Y , and moves left, over Y’s and 0’s until it finds X. At 
that point  it looks for a 0 immediately to the right . If finds one 0 then 
changes it to X and repeats the process changing a matching  1 to Y.  

 
Now TM will have  
M= ({ }){,,,},,,,1,0{},1,0{},,,,, 4043210 qBqBYXqqqqq δ  
The transition rule for the move of M is described by following transition table .  

State  0 1 X Y B 
q0 (q1, X,R) – – (q3, Y, R) - 
q1 (q1, 0,R) (q2, Y,L) – (q1, Y, R) – 
q2 (q2, 0, L) – (q0, X, R) (q2, Y, L) – 
q3 – – – (q3, Y, R) (q4, B, R)
q4 – – – –  
Acceptance of 0011 by M is described by following sequence of moves  
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q00011├   Xq1 011   ├     X0q111 ├ Xq20Y1 ├   q2X0Y1 
 
                      ├  Xq0 0Y1   ├       XXq1Y1  ├ XXYq11├   XXq2YY 
  
                        ├ Xq2XYY    ├    XXq0YY  ├   XXYq3Y 
 
      ├ XXYYq3B├   XXYYBq4B  ( Halt and Accept ) 
For string 0110 
q00110  ├  Xq2110 ├  q2XY10 ├  Xq0Y10 ├  XYq310   (Halt and reject) 
 

Since state q3 has no move on symbol 1 .  
 
Transition diagram :  A transition diagram of TM consists of  

• Set of nodes representing states of TM.  
• An arc from state q to p is labeled by the item(s) of the form X/ YD where X and 

Y are tape symbol and D is direction. L or R. In diagram direction is represented 
by L or R( or ←(left arrow) or → right arrow.) 

 
The transition diagram for the above TM is  
 0/Y→  

0/0  → 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

q0
0/X→

q1

q3 Y/Y→

X/X→

q4 

q2
0/Y←

Y/Y←  
0/0←  

Y/Y→

B/B→

 
The Language of Turing Machine: If ),,,,,,( 0 FBqQT δΓΣ=  is a Turing machine and 

  then language accepted by T , *Σ∈w andwwTL *|{)( Σ∈= wq0 ├* βαp  } for some 
p∈F and any tape strings α and β. 
 
 The set of languages  that can be accepted using TM are called recursively 
enumerable Languages or RE languages. 
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The Turing Machines are designed to perform at least the following three roles. 

1. As a language recognizer: TM can be used for accepting a language like Finite 
Automata and pushdown automata(PDA). 
 

2. As a computer of functions: A Turing machine represents a particular function. 
Initial input is treated as representing an argument of the function. And the final 
string on the tape when the TM enters the Halt state  treated as representative of 
the value obtained by an application of the function to the argument represented 
by the initial string. 

 
3. As an enumerator of strings of a Language, that outputs the strings of a 

language, one at a time in some systematic order that is as a list. 
 
 
Turing Machine for computing a Function 
 
A Turing Machine can be used to compute functions. For such TM we adopt the 
following policy to input any string to a Turing Machine which is a input of the 
computable function. 
 
 The string w is presented in to the form BwB, where B is a blank symbol, and 
placed on to the tape, the head of Turing Machine is positioned at a blank symbol which 
immediately follows  by the string w. 
 

We can show by underlining  that symbol to show current position of machine 
head in the tape as (q,BwB) . Or we can represent it by ID of TM in  another format as  
BwqB. Turing machine  is said to halt on input w if we can reach to halting state after 
performing some operations , that is if  

 
TM = }){,,,,,,( 0 aqBqQ δΓ∑  is a Turing Machine them TM is said to halt to on 

input w iff  BwqB Yields to Bα qaB for some string Γ∈ *α  or equivalently we say  
(q,BwB) ├ (qa, Bα B).  
 

 
Definition: 
 
 A function   is said to be computable by a TM  yxf =)( }){,,,,,,( 0 aqBqQ δΓ∑  if 
(q0 ,BxB) ├* (qa, ByB) where x may be in some alphabet 1∑

* and y may be in some 
alphabet 2∑ 1

*  and ∑ ,  . It means that if we give input x to the Turing Machine 
TM , it gives output as a string if it computes the function 

2∑ ∑⊆
yxf =)( . 
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Example: Design a TM which compute the function  f(x) = x +1 for each x that 
belongs to the set of natural numbers. 
 
Solution: Given function f(x) = x + 1. Here we represent input x on the tape by a number 
of  1's  on the tape.  
 
For example x = 1, input will be B1B, 

   for x = 2 , input will be B11B, 
   for x = 3, input will be B111B and so on. 
 

Similarly output can be seen by the number of 1s on the tape when machine halts. 
 
Let TM = }){,,,,,,( 0 aqBqQ δΓ∑  where Q = {q0,qa} Γ  ={1,B} and halt state qa . The 
transition function is defined as  
 

Q B 1 
q0 (q0,1,N) (qa,1,R)
qa - - 

 
 Let input x = 4, that is input tape contains input as B1111B 
So (q0,B1111B) ├(q0,B11111)  ├  (qa,B11111B)   Which means output is 5. 
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Introduction of Turing Machine -2 
 

Storage in the state: In Turing machine, any state represents the position in the computation . 
But a state can also be used to hold a finite amount of data. The finite control of machine consists 
of a state q and some data portion. In this case a state is considered as a tuple – (state,data). 
 Following Figure illustrates the model. 
                                                 
 
 
 
 
 
                               X 

Finite 
Control 
A      B 

 
δ  is defined by: 

),],,([)],,([ 1 RYXqXAq =δ  means q is the state and data portion of q is A. The symbol scanned 
on the tape is copied into the second component of the state and moves right entering state q1 and 
replacing tape symbol by Y. 
 

Turing Machine with Multiple Tracks: 
 The tape of Turing machine can be considered  as having multiple tracks. Each track can 
hold one symbol and the tape alphabet of TM consists of tuples with one component for each 
track. Following figure illustrates multiple track TM. 
 
 
 
 
 
 
Track 1                                         X                                     
Track 2                                         Y 
Track 3                                         Z 

Finite 
Control 
       

 
 A TM with a tape with multiple tracks. 
Tape alphabet  is a set consisting of tuples like Γ
Γ ={(X,Y,Z),……………. } 
 The tape head moves up and down scanning symbols in the tape at one position. 
            
 
Subroutine: A Complex Turing machine can be thought as built from a collection of interacting 
components like a general program. Such components of Turing machine are called subroutines. 
A Turing Machine subroutine is a set of states that performs some useful processes and can be 
called in to another machine for the part of that computation. 
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Extension of TM: 
 Modern computing devices are based on the foundation of TM computation models. 
To simulate the real computers  a TM can be viewed as multi-tape machine in which there are 
more than one tape. Adding extra tape adds no power to the computational model only the ability 
to accept the language is concerned. 
 

1. Multi-tape  Turing Machine: 
• A multi-tape  Turing machine  consists of finite control and finite number of tapes. 

Each tape is divided into cells and each cell can hold any symbol of finite tape 
alphabets. 

• TM has separate R/W head for each tape. 
• The set of tape symbols includes a blank symbol( B) as in single tape machine. 
• The tape symbol has a subset called input symbols i.e. we can say . Γ⊆Σ
 

 
 
 
 
Tape 1                    …..                                                                                   …. 

Finite 
Control

 
Tape 2 
 
Tape 3  
 
     A multi-tape TM 
In Multi-tape TM, Initially, 
 

1. Input (Finite sequence of input symbols) w is placed on the first tape. 
2. All other cell of the tapes hold blanks 
3. TM is in the initial state – q0 
4. The head of the first tape is at the left end of the input. 
5. All other tape heads are at some arbitrary cell since all other tape except first tape 

consists completely blank. 
 

A move of multi-tape TM depends on the state and the symbol scanned by each of the tape head. 
In one move the multi-tape TM does the following. 
 

1. The control enters in a new state, which may be same previous state. 
2. On each tape, a new symbol is written on the cell scanned, these symbol may be same as 

the symbol previously there. 
3. Each of the tape head make a move either left or right or remains stationary. Different 

head may move different direction independently i.e. if head of first tape moves leftward 
,at the same time other head can move another directions or remains stationary. 

  
The formal notation of multi-tape TM is the generalization of one-tape TM. The initial 
configuration(initial ID) of multi-tape TM with n-tapes is represented  as: 
 (q0 ,ax, B,B,……..,B) – n+1 tuple. Where w = ax is an input string and head of first 
tape is scanning first symbol of w. 
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The notation of configuration at any instant of TM can be generalized as: (n+1) tuple for n-
tape TM. 
 (q, x1a1y1 , x2a2y2 , ……………………., xnanyn)    Where each xis are the portion of string on 
tapes before current head position, each ais are the symbol currently scanning in each tapes 
and each yis  are the portion of string in tapes just rightward the current head position. q  is 
the control state 

 
Equivalence of One-tape and Multi-tape Turing Machine 

 

Any recursively enumerable languages that are accepted by one-tape TMs are also accepted by 
multi-tape TM. Any n-tape TM for n 2,  are at least as powerful as 1-tape TMs. ≥
 
 Let n≥2 and ),,,,,,( 111111 FBqQT δΓΣ=  be an n-tape TM, then there is a 1-tape 
TM  ),,, 2q,,,( 22222 FBQT δΓΣ=  with 21 Γ⊆Γ  which satisfies following conditions. 
 

1. L(T1) = L(T2 ) i.e. for any input *Σ∈w , T2 accepts iff T1 accepts. 
2. For any  , if  (q*Σ∈w 1,Bw, B,B,……..,B)├* (qa, x1a1y1 , x2a2y2 , ……………………., xnanyn)   for 

some ai  and x1Γ∈ i,yi ∈   then, (q*1Γ 2, Bw) ├*(qa, yaz) for some a 2Γ∈  and y ,z *2Γ∈    
 
 
Simulating Multi-tape Turing Machine with 1-tape Turing Machine 
 

  
 
 
 
 
Proof:   

o Let  L is a language accepted by a n-tape TM ),,,,,,( 111111 FBqQT δΓΣ= . We simulate 
T1  with one-tape Turing Machine ),,,,,,( 222222 FBqQT δΓΣ=  considering there are 2n 
tracks in the tape of T2. 

o Let us assume that n = 2 then for n>2 is generalization of this case.  
o Now total no of tracks in T2 will be 2*2 = 4.The second and fourth tracks of T2 hold the 

contents of first and second tapes of T1 and track 1 holds the head position of tape 1 and 
track 3 holds the head position of tape 2 of T1 as in figure below. 

 
 
 
 
 
 
 
 

Track 1                                       X 
 

Track 2 A1    A2                    ……..           Ai     ….       Aj      …… 
 

Track 3                                                                      X 
Track 4            B1        B2         ………..                Bi       ….      Bj       …. 

Finite 
Control 

 
Finite Data

Theorem: Every Language accepted by a  Multi-tape TM is recursively enumerable. 
                                                                               Or 
Any languages that accepted by a Multi-tape Turing Machine are accepted by one-tape TM. 
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o To simulate a move of T1, 

 T2’s head must visit the n-head markers so that it must remember how many head 
markers are to its left at all times, that count is stored as a component of T2’s 
finite control. 

 After visiting  each head marker and storing the scanned symbol in a component 
of its finite control, T2 knows what tape symbols are being scanned by each of 
T1’s heads. 

 T2 also knows the state of T1 and stores its own finite control. i.e. T2 knows what 
move T1 will make. 

o T2 now revisits each of head markers on its tape, changes the symbol in the track 
representing corresponding tapes of T1  and moves the head marker left or right. 

o Finally , T2 changes the state of T1 as recorded in its own finite control. Hence T2 has 
simulated one move of T1. 

o We select T2’s accepting states all those states that record T1’s state as one of the 
accepting state of T1. Hence whatever T1 accepts T2 also accepts. 

         □ 
 
2. Non-deterministic Turing Machine: 
 A non- deterministic TM(NTM)  ),,,,,,( 0 FBqQT δΓΣ=  is defined exactly the 
same as an ordinary TM, except the value of transition function δ  .   In NTM , the values of the 
transition function δ  are subsets,  rather than a single element of  the set },,{ SLRQ ×Γ×  
  
 The notation for a TM configuration is unchanged. 

♦ xqay ├ wpbz , means , beginning in configuration xqay , there is at least one move that will take 
TM in configuration wpbz. 

 

♦ xqay ├* wpbz means there is at least one sequence of zero or more moves that take NTM from 
first configuration to second. 

 
♦ The addition of non-determinism to Turing machines does not alter the definition of 

Turing-computable. 
 

 
 
Turing Enumerable languages:                    

 A language is enumerable if there is an algorithm for enumerating it. To 
enumerate a set means to list the elements one at a time. Any languages that can be enumerated 
by a TM  are Turing Enumerable Languages. 
 

Definition: Let T be a k-tape Turing machine(k 1)  and ≥ *Σ⊆L . We say T enumerates L if it 
operates so that the following conditions are satisfied. 
 
1. The tape head on the first tape never moves to the left and no non-blank symbol printed on tape 1 is 

subsequently modified or erased. 
 

2. For every , there is some point in the operation of T when Tape 1 has contents Lx∈
 x1Bx2Bx3B……….BxnB 

for some n≥0, where the strings x1, x2, …………. Xn  are distinct elements of L. If L is  finite, 
then  nothing is printed after the B following the last element of L. 
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 Unrestricted Grammars: An  unrestricted Grammar (also called phrase-structure 
Grammar) is a 4-tuple G = (V,T,P,S) where V and T are disjoint sets of variables and terminals 
respectively,  S∈V is start symbol and P is a set of productions of the form βα →  
Where   *)(, TV ∪∈βα  and α  contatains at least one variable. 
 

  The productions are of the form. 
  αγββα →A  or  γβα →A  
An unrestricted Grammar are used to describe the languages that are not context-free. In fact the 
languages described by unrestricted grammar can be accepted by a TM. Hence they are 
recursively enumerable. 
 
 An unrestricted grammar generating {anbncn | n≥1 } 
S → FS1

S1 →ABCS1 

S → ABC 
BA → AB 
CA → AC 
CB → BC 
FA → a 
aA → aa 
aB → ab 
bB → bb 
bC → bc 
cC → cc 
 
The string aabbcc  can be derived as 
 S ⇒ FS1 ⇒ FABCS1 ⇒ FABCABC ⇒ FABACBC  

    ⇒ FAABCBC ⇒ FAABBCC ⇒ aABBCC 

    ⇒ aaBBCC ⇒ aabBCC ⇒ aabbCC 

    ⇒ aabbcC  ⇒ aabbcc 
  
TM comuting a Function: 
 Let T= (Q,∑, )T ,,,,,,( 0 FBqQ δΓΣ=  be a Turing Machine , let f be a partial function 
on ∑* with values in *  We say that T computes f if for every xΓ ∈∑* at which f is defined  
 (q0,Bx)├* (qa ,Bf(x)) 
and no other x∈  ∑* is accepted by T. 
 A partial function f is Turing computable or simply computable if there is a Turing 
machine computing f. 
 
Partial Recursive Function: 
 A Partial Recursive Function is one which is allowed to have an infinite loop   for some 
input values.  
 A Recursive Function is  called a Total  Recursive Function that always returns a value 
for all possible   input values. 
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Church- Turing Thesis 
It is a mathematically un-provable hypothesis abut the computability. This hypothesis 

simplify states that – "Any algorithmic procedure that can be carried out at all (by human, a team 
of human or a computer ) can be carried out by a TM." 

 
 This statement was first formulated by Alonzo Church a logician, in 1930s and it is 
referred to as Church Thesis or Church-Turing thesis. It is not a mathematically precise 
statement so un-provable . Later the invention of Turing Machine has accumulated enough 
evidence to accept this hypothesis. Following are the some of evidences. 
 

1. In nature, a human normally works with 2D paper sheet, not 1D tape. The transfer of 
attention is not adjacent block like TM. However transferring attention from one place to 
another during computation can be simulated by Turing Machine as one human step by 
multiple stapes. 

2. Various extensions of Turing Machine Model has been suggested to make computation 
efficient like doubly infinite tape, a tape with multiple tracks, multi-tape , non-
determinism etc. In  each case the computational power reserved. 

3. Other theoretical model have been suggested that are closer to modern computers in their 
operation.( e.g. simple programming type language, grammars and others) 

4. Since the introduction of the TM , no one has suggested any type of computation that 
ought to be included in the category of "Algorithmic Procedure". 

 
After adopting Church-Turing  Thesis, we are giving a precise meaning of the term: 
 An algorithm is a procedure that can be executed on a Turing Machine. 
 
 Another use of Church-Thesis is that- When we want to describe a solution to a problem, we 
will often satisfied with a verbal description of the algorithm, translating it into detailed 
Turing Machine implementations. 
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Universal Turing Machine: 
 
 A Turing machine is created to execute a specific  algorithm. If we have a Turing 
machine for computing  one function , then for computing different function or doing some other 
calculation, a different TM will be required. Originally electronic computers were limited in a 
similar way , and changing the computation to be  performed , requires rewriting the machine. 
 
 A Turing machine can, simulate a computer that had been loaded with an arbitrary 
program . I.e. A – TM can be used as a “stored program computer ” taking its program as well as 
data from one or more tapes on which it is placed . 
            Modern computer are completely flexible in which the task it performs is to execute the 
instructions stored in its memory , and can represent an algorithm for computation . Turing 
describes a “Universal Computing Machine ” that can be defined as: 
   Definition  :  A Universal Turing machine Tu is a TM whose input consist of program and a 
data set for the program to process. The program takes the from of a string specifying some other 
(special – purpose) TM T1 and the data set is second string w interpreted as input to T1. Tu then 
simulates the processing of w by T1. 
 
 Encoding of TM: 
      For the representation of any arbitrary TM T1, and an input string w over an arbitrary alphabet 
as strings e(T1) , e(w) over some fixed alphabet , a notational system should be formulated . 
Encoding the TM T1 and input string w in to e (T1) and e (w) , it must not destroy any 
information , for the encoding of TM , we use the alphabet {0,1} although the TM may have a 
much larger alphabet . 
     For encoding , we start by assigning positive integers to each state , each tape symbol and 
each of three directions S,L and R in the TM we want to encode. We assume two fixed infinite 
sets Q = { q1,q2,…………} and S = { a1, a2, ………} so that for any TM 

),,,,,,( 011 FBqQT δΓΣ=  , we have  and QQ ⊆1 S⊆Γ .  
Hence once we have a subscript attached to every possible state and tape symbols, we can 

represent a state or a symbol by a string of 0’s of the appropriate length. 1’s are used as 
separators. 

The Encoding Function e 
First, associate to each tape symbol, to each state and to each of the three directions , a string of 
0’s. Let 
s(B) = 0 
s(ai) = 0i+1  for each ai∈  S 
s(qi) = 0i+2  for each qi ∈  S 
s(S) = 0 
s(L) = 00 
s(R) = 000 
 Then each move of TM , described by formula 

),,(),( Dbpaq =δ  is encoded as 
e(m) =s(q)1s(a)1s(p)1s(b)1s(D)1 

and for any TM T, with initial state q, T is encoded as: 
  1)(1...................1)(1)(1)()( 21 kmememeqsTe =
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Where  are the distinct moves of T arranged in some arbitrary order. kmmm ,........., 21

 Finally, any string  , for each wkwwwww ............321= k ∈S is encoded as: 
  1)(1...................1)(1)(1)( 21 kwswswswe =

♦ -The 1 at beginning of  e(w) included so that a composite string of the form e(T)e(w), 
there is no doubt for the stoppage of e(T) since separated by three 1’s. Since no valid 
code for  TM contains three 1’s in a row, we can be sure that the first occurrence of 111 
separates the code for TM T1and input w. 

♦ Also encoding of s(a) of a symbol a∈S is different from the encoding e(a) of the one 
character string a. 

♦ There may be any possible codes for a TM T1. The codes for the TM for n transitions 
may be listed in any of n! orders. 

 
An Example: Let TM T is given as: 

),,,},,,{},,{},,,({ 1321 FBqBbabaqqqT δ=  
 where δ  is defined by the following moves. 

),,(),( 311 Raqbqm == δ  
 

),,(),( 132 Rbqaqm == δ  
 

),,(),( 233 Raqbqm == δ  
 

),,(),( 334 LbqBqm == δ  
 
Encoding : 

000)( 1 =qs  
   

0000)( 2 =qs  
 

00000)( 3 =qs  
 

00)( 1 =as                  considering a1 = a and a2 = b 
 

000)( 2 =as  
 

0)( =Bs  
 

0)( =Ss  
 

00)( =Ls  
 

000)( =Rs  
 
Now 1000100100000010001001)(1)(1)(1)(1)()( 311 == Rsasqsbsqsme  
 
 1001000100000000100101)(1)(1)(1)(1)()( 132 == Rsbsqsasqsme  
 
 01000010010000000100011)(1)(1)(1)(1)()( 233 == Rsasqsbsqsme  
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 1000100010000000101001)(1)(1)(1)(1)()( 334 == LsbsqsBsqsme  
   
Now The code for T will be: 
 

  1)(1)(1)(1)(1)()( 43211 memememeqsTe =
 
=0001000100010000010010001100000100100010001000110000010001000010010001100
00010100000100010011 
for this machine the input (T,w) where w= ab , the code will be, 
 
e(w) = 1s(a)1s(b)1 = 10010001 
 
Code for (T,W) is: 
000100010001000001001000110000010010001000100011000001000100001001000110000
01010000010001001110010001 

Universal Languages: 
 The universal language Lu is the set of binary strings that encode a pair (M,w) 
where M is a TM with binary input alphabet, and w is a string in (0+1)*, such that w 
is in L(M). 

In other words, the languages that is accepted by universal TM is called universal 
Languages. 

A universal TM U can be described as a multi-tape Turing machine in which the 
transitions of M are stored  initially on the first tape along with string w. The second 
tape holds the simulated tape  of M in the format same as the code of M. Third tape of 
U holds the state of M, with suitable encoding as in figure below. 

 
 
 
 
 
 
 
 M   w 
 
 
Tape of M             001000010010001………………….  
 
 
State of M  000….. 
 
 
Scratch 
 
  A Sketch of Universal TM 

 
Finite Control 
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The Operation of Universal Turing Machine U can be described as: 

1. Examine the input to make sure that the code for M is valid code for some TM. If 
not, U halts without accepting. Any invalid codes represents TM with no moves. 

2. Initialize the second tape to contain the input w in encoded form ( simulated tape 
of M) 

3. Place code of q1 (the start state of M) on the third tape and move the head of U’s 
second tape to the first simulated cell. 

4. To simulate a move of M , U searches on its first tape for a transition 
0i10j10k10l10m1 such that 0i is the state on tape 3, 0j is the tape symbol of M that 
begins at the position on tape 2 scanned by U. This transition is the one move of 
M. 

 U should: 
a. Change the contents of tape 3 to 0k, i.e. simulate the state change of M 
b. Replace 0j on tape 2 by 0l i.e. change the tape symbol of M. If more or less 

space is needed( j≠ l)  use scratch tape and shifting over technique as: 
i) Copy onto a scratch tape the entire nonblank tape to the right of where 

new value goes 
ii) Write the new value using the correct amount of space for that value. 
iii)  Recopy the scratch tape onto tape 2 , immediately to the right  of new 

value. 
c. Move head on tape 2 to the position of the next 1 to the left or right or 

stationary. If m=1 (stationary), if m=2 (move left ) and if m=3(move right) .  
Thus U simulates the one move of M. 

5. If M has no transition that matches the simulated state and tape symbol, no 
transition found . So M halts  hence U halts likewise. 

6. If M enters its accepting state, then U accepts. 
 
The Halting Problem:  
   The halting problem for a TM  M ,  H( M ) is defined as the set of input w such that M halts 
given input w, regardless of  whether or not M accepts w . so, the halting problem is the set of 
pairs ( M, w) such that w is in H( M ). 
    The halting problem is related to the membership problem of RE languages . For a given TM  
M  and given string w, instead of asking M accepts w, it asks whether M halts on input w. We 
abbreviate the problem Halts as : 
                  Halts : Given a TM  M  and a string w, does M halt on input w ?  
The domain of this problem is to be taken as the set of all Turing machines and all w; that is, we  
are looking for a single Turing machine that , given the description of and arbitrary TM and w, 
will predict whether or not the computation of TM applied to w halt. We can not find the answer 
by simulating the action of TM on w, say by performing it on universal Turing machine, because 
there is no limit on the length of computation. If TM enters an infinite loop, then no matter how 
long we wait, we can never be sure that TM is in fact in a loop. It may be simple case of very 
long computation .  
 

  -HGC 4

For more notes visit https://collegenote.pythonanywhere.com


