

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

38 Computer Graphics (Reference Note) BSc.CSIT

Unit 3

Two-Dimensional Geometric Transformations

Changing co-ordinate description of an object is called transformation.

Types:

- Rigid body transformation (transformation without change in shape.)

- Non rigid body transformation (transformation with change in shape.)

 When a transformation takes place on a 2D plane, it is called 2D transformation.

 The three basic transformations are

 Translation

 Rotation

 Scaling

Other transformation includes reflection and shear.

 2D Translation

Repositioning of object along a straight-line path from one coordinate location to another is

called translation.

Translation is performed on a point by adding offset to its coordinate so as to generate a new

coordinate position.

Let p(x, y) be translated to 𝑝′(𝑥′, 𝑦′) by using offset 𝑡𝑥 and 𝑡𝑦 in x & y direction. Then,

𝑥′=𝑥 + 𝑡𝑥
𝑦′=𝑦 + 𝑡𝑦

In matrix form,

i.e. 𝑃′ = 𝑃 + 𝑇 where T is transformation matrix.

 2D Rotation

- Changing the co-ordinate position along a circular path is called rotation.

2D rotation is applied to re-position the object along a circular path in XY-plane. Rotation is

generated by specifying rotation angle (𝜃) and pivot point (rotation point).

 The positive 𝜃 rotates object in anti-clockwise direction and the negative value of 𝜃

rotates the object in clockwise direction.

Let 𝑝(𝑥, 𝑦) be a point rotated by 𝜃 about origin to new point 𝑝′(𝑥′, 𝑦′).

Here,

𝑥′ = 𝑟𝑐𝑜𝑠(∅ + 𝜃)

 = 𝑟𝑐𝑜𝑠∅𝑐𝑜𝑠𝜃 − 𝑟𝑠𝑖𝑛∅𝑠𝑖𝑛𝜃

But 𝑥 = 𝑟𝑐𝑜𝑠∅ & 𝑦 = 𝑟𝑠𝑖𝑛∅

∴ 𝒙′ = 𝒙𝒄𝒐𝒔𝜽 − 𝒚𝒔𝒊𝒏𝜽 ………. (i)

Similarly,

∴ 𝒚′ = 𝒙𝒔𝒊𝒏𝜽 + 𝒚𝒄𝒐𝒔𝜽 ……….. (ii)

𝑝′(𝑥′, 𝑦′)

𝑇

∅

𝜃
𝑝(𝑥, 𝑦)

𝑝′(𝑥′, 𝑦′)

r

y

x

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

39 Computer Graphics (Reference Note) BSc.CSIT

Which are equation for rotation of (x, y) with angle 𝜃 and taking pivot as origin.

In matrix form

𝑃′ = 𝑅. 𝑃

[
𝑥′

𝑦′] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑥
𝑦]

If the pivot point is at(𝒙𝒓, 𝒚𝒓).

Here,

cos(∅ + 𝜃) = (𝑥′ − 𝑥𝑟)/𝑟

or, 𝑟 cos(∅ + 𝜃) =(𝑥′ − 𝑥𝑟)

or, (𝑥′ − 𝑥𝑟) = 𝑟𝑐𝑜𝑠∅𝑐𝑜𝑠𝜃 − 𝑟𝑠𝑖𝑛∅𝑠𝑖𝑛𝜃

Since, 𝑟𝑐𝑜𝑠∅ = (𝑥 − 𝑥𝑟), 𝑟𝑠𝑖𝑛∅ = (𝑦 − 𝑦𝑟)

∴ 𝒙′ = 𝒙𝒓 + (𝒙 − 𝒙𝒓)𝒄𝒐𝒔𝜽 − (𝒚 − 𝒚𝒓)𝒔𝒊𝒏𝜽 ……… (i)

Similarly,

sin(∅ + 𝜃) = (𝑦′ − 𝑦𝑟)/𝑟

or, 𝑟 s 𝑖𝑛(∅ + 𝜃) = (𝑦′ − 𝑦𝑟)

or, (𝑦′ − 𝑦𝑟) = 𝑟𝑠𝑖𝑛∅𝑐𝑜𝑠𝜃 + 𝑟𝑐𝑜𝑠∅𝑠𝑖𝑛𝜃

Since, 𝑟𝑐𝑜𝑠∅ = (𝑥 − 𝑥𝑟), 𝑟𝑠𝑖𝑛∅ = (𝑦 − 𝑦𝑟)

∴ 𝒚′ = 𝒚𝒓 + (𝒙 − 𝒙𝒓)𝒔𝒊𝒏𝜽 + (𝒚 − 𝒚𝒓)𝒄𝒐𝒔𝜽 ……… (ii)

These equations (i) and (ii) are the equations for rotation of a point (x, y) with angle 𝜃 taking

pivot point(xr, yr).

 2D Scaling

Scaling transformation alters the size of object. A simple two dimensional scaling operation

is performed by multiplying object position (x, y) with scaling factors 𝑠𝑥 & 𝑠𝑦 along x & y

direction to produce (𝑥′, 𝑦′).

𝑥′ = 𝑥. 𝑠𝑥 & 𝑦′ = 𝑦. 𝑠𝑦

In matrix form,

𝑃′ = 𝑆. 𝑃

𝑥 𝑥′′

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

40 Computer Graphics (Reference Note) BSc.CSIT

[
𝑥′

𝑦′] = [
𝑠𝑥 0
0 𝑠𝑦

] [
𝑥
𝑦]

If the scaling factor is less than 1, the size of object is decreased and if it is greater than 1 the

size of object is increased. The scaling factor = 1 for both direction does not change the size

of the object.

 If both scaling factors have same value then the scaling is known as uniform scaling.

 If the value of 𝑠𝑥 and 𝑠𝑦 are different, then the scaling is known as differential scaling.

The differential scaling is mostly used in the graphical package to change the shape of

the object.

 If fixed point is (𝑥𝑓, 𝑦𝑓) about which rotation is made, then

𝑥′ = 𝑥. 𝑠𝑥 + 𝑥𝑓(1 − 𝑠𝑥)

𝑦′ = 𝑦. 𝑠𝑦 + 𝑦𝑓(1 − 𝑠𝑦)

 Matrix representation & Homogenous coordinate

The homogeneous co-ordinate system provides a uniform framework for handling different

geometric transformations, simply as multiplication of matrices.

To perform more than one transformation at a time, homogeneous coordinates are used.

They reduce unwanted calculations, intermediate steps, saves time and memory and produce

a sequence of transformations.

We represent each Cartesian coordinate position (x, y) with the homogeneous coordinate

triple(𝑥ℎ , 𝑦ℎ , ℎ), where, 𝑥 = 𝑥ℎ/ℎ, 𝑦 = 𝑦ℎ/ℎ. (h is 1 usually for 2D case).

Therefore, (x, y) in Cartesian system is represented as (x, y, 1) in homogeneous co-ordinate

system.

For Translation: 𝑻(𝒕𝒙, 𝒕𝒚)

𝑃′ = 𝑇.𝑃

Where, 𝑃′ = [
𝑥′

𝑦′

1

], 𝑇 = [
1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

] & 𝑃 = [
𝑥
𝑦
1
]

By which we can get,

𝑥′=𝑥 + 𝑡𝑥
𝑦′=𝑦 + 𝑡𝑦

For Rotation: R(𝜽)

𝑃′ = 𝑅. 𝑃

Where, 𝑃′ = [
𝑥′

𝑦′

1

], 𝑅 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] & 𝑃 = [

𝑥
𝑦
1
]

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

41 Computer Graphics (Reference Note) BSc.CSIT

 For Scaling with scaling factors (𝒔𝒙, 𝒔𝒚)

𝑃′ = 𝑆. 𝑃

Where, 𝑃′ = [
𝑥′

𝑦′

1

], 𝑆 = [
𝒔𝒙 0 0
0 𝑠𝑦 0

0 0 1

] & 𝑃 = [
𝑥
𝑦
1
]

This gives the equations,

𝑥′ = 𝑥. 𝑠𝑥 & 𝑦′ = 𝑦. 𝑠𝑦

 Composite 2D translation

If two successive translation vector (tx1, ty1) & (tx2, ty2) is applied on position 𝑝(𝑥, 𝑦), then

translated point is given by,

𝑃′ = 𝑇(tx2,ty2). 𝑇(tx1,ty1). 𝑃

∴ [
𝑥′

𝑦′

1

] = [
1 0 𝑡𝑥2

0 1 𝑡𝑦2

0 0 1

] . [
1 0 𝑡𝑥1

0 1 𝑡𝑦1

0 0 1

] . [
𝑥
𝑦
1
]

Which gives,

𝑥′=𝑥 + 𝑡𝑥1 + 𝑡𝑥2
𝑦′=𝑦 + 𝑡𝑦1 + 𝑡𝑦2

 2D composite rotation

𝑃′ = (𝑅(𝜃2)). (𝑅(𝜃1)). 𝑃

 = R (𝜃1 + 𝜃2). 𝑃

 2D composite Scaling

𝑃′ = 𝑆(𝑆𝑥2,𝑆𝑦2). 𝑆(𝑆𝑥1 ,𝑆𝑦1). 𝑃

𝑃′ = [
𝒔𝒙𝟐 0 0
0 𝑠𝑦2 0

0 0 1

] . [
𝒔𝒙𝟏 0 0
0 𝑠𝑦1 0

0 0 1

] . [
𝑥
𝑦
1
]

#Q. Prove that two successive translations are additive.

Proof:

If two successive translation vector (tx1, ty1) & (tx2, ty2) is applied to coordinate position

P, the final transformed location P’ is calculated with the following composite

transformation as,

𝑇 = 𝑇(tx2,ty2). 𝑇(tx1,ty1)

=[
1 0 𝑡𝑥2

0 1 𝑡𝑦2

0 0 1

] . [
1 0 𝑡𝑥1

0 1 𝑡𝑦1

0 0 1

] = [
1 0 𝑡𝑥1 + 𝑡𝑥2

0 1 𝑡𝑦1 + 𝑡𝑦2

0 0 1

]

Hence, 𝑇(tx2,ty2). 𝑇(tx1,ty1) = 𝑇(tx1+tx2,ty1+ty2) which demonstrates that two successive

translations are additive.

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

42 Computer Graphics (Reference Note) BSc.CSIT

#Q. Prove that two successive rotation are additive.

Proof:

Let P be the point anticlockwise rotated by angle 𝜃1 to point P’ and again let P’ be rotated

by angle 𝜃2 to point P”, then the combined transformation can be calculated with the

following composite matrix as:

𝑇 = 𝑅(𝜃2). 𝑅(𝜃1)

 = [
𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝜃2 0
𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2 0

0 0 1

]. = [
𝑐𝑜𝑠𝜃1 −𝑠𝑖𝑛𝜃1 0
𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃1 0

0 0 1

]

 = [
𝑐𝑜𝑠𝜃2 ∗ 𝑐𝑜𝑠𝜃1 − 𝑠𝑖𝑛𝜃2 ∗ 𝑠𝑖𝑛𝜃1 −𝑐𝑜𝑠𝜃2 ∗ 𝑠𝑖𝑛𝜃1 − 𝑠𝑖𝑛𝜃2 ∗ 𝑐𝑜𝑠𝜃1 0
𝑠𝑖𝑛𝜃2 ∗ 𝑐𝑜𝑠𝜃1 + 𝑐𝑜𝑠𝜃2 ∗ 𝑠𝑖𝑛𝜃1 −𝑠𝑖𝑛𝜃2 ∗ 𝑠𝑖𝑛𝜃1 + 𝑐𝑜𝑠𝜃2 ∗ 𝑐𝑜𝑠𝜃1 0

0 0 1

]

 = [
cos (𝜃1 + 𝜃2) −𝑠𝑖𝑛(𝜃1 + 𝜃2) 0
𝑠𝑖𝑛(𝜃1 + 𝜃2) 𝑐𝑜𝑠(𝜃1 + 𝜃2) 0

0 0 1

]

i.e. 𝑅(𝜃2). 𝑅(𝜃1) = 𝑅 (𝜃1 + 𝜃2) which demonstrates that two successive rotations are

additive.

#Q. Prove that two successive scaling are multiplicative.

Proof:

Let point P is first scaled with scaling factors 𝑠𝑥1, 𝑠𝑦1 to P’ and again let P’ be scaled by

scaling factors 𝑠𝑥2, 𝑠𝑦2 to point P”, then the combined transformation can be calculated

with the following composite matrix

𝑇 = 𝑆(𝑆𝑥2 ,𝑆𝑦2). 𝑆(𝑆𝑥1 ,𝑆𝑦1)

 = [
𝒔𝒙𝟐 0 0
0 𝑠𝑦2 0

0 0 1

] . [
𝒔𝒙𝟏 0 0
0 𝑠𝑦1 0

0 0 1

]

 =[
𝒔𝒙𝟏𝒔𝒙𝟐 0 0

0 𝑠𝑦1𝑠𝑦2 0

0 0 1

]

i.e. 𝑆(𝑆𝑥2 ,𝑆𝑦2). 𝑆(𝑆𝑥1 ,𝑆𝑦1) = 𝑆(𝑆𝑥1𝑆𝑥2,𝑆𝑦1𝑆𝑦2) which demonstrates that two successive scaling are

multiplicative.

 General 2D pivot rotation

- Suppose the pivot point is located at (𝑥𝑟 , 𝑦𝑟).
- To rotate about arbitrary point, we have to perform the following transformation:

a) Translate the object so that pivot point position is moved to coordinate origin.

b) Rotate the object about coordinate origin.

c) Translate the object so that pivot point is returned to original position.

Matrix representation:

[
1 0 𝑥𝑟

0 1 𝑦𝑟

0 0 1

] . [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] . [
1 0 −𝑥𝑟

0 1 −𝑦𝑟

0 0 1

]

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

43 Computer Graphics (Reference Note) BSc.CSIT

= [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑥𝑟(1 − 𝑐𝑜𝑠𝜃) + 𝑦𝑟𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑦𝑟(1 − 𝑐𝑜𝑠𝜃) − 𝑥𝑟𝑠𝑖𝑛𝜃
0 0 1

]

 General 2D fixed point scaling

- Suppose the fixed point is located at (𝑥𝑓, 𝑦𝑓).

- To scale about arbitrary fixed point, we have to perform the following transformation:

d) Translate the object so that fixed point coincide with the coordinate origin.

e) Scale the object with respect to coordinate origin.

f) Translate the object to its original position.

Matrix representation:

[

1 0 𝑥𝑓

0 1 𝑦𝑓

0 0 1

] . [
𝒔𝒙 0 0
0 𝑠𝑦 0

0 0 1

] . [

1 0 −𝑥𝑓

0 1 −𝑦𝑓

0 0 1

]

= [

𝒔𝒙 0 𝑥𝑓(1 − 𝒔𝒙)

0 𝑠𝑦 𝑦𝑓(1 − 𝒔𝒚)

0 0 1

]

Q. Find the scaled triangle with vertices A(0, 0), B(1, 1) & C(5, 2) after it has been

magnified twice its size.

Solution:

Here, 𝑠𝑥 = 2 & 𝑠𝑦 = 2

Now,

𝐴′ = 𝑆. 𝐴

 = [
𝟐 0 0
0 2 0
0 0 1

] [
0
0
1
] = [

0
0
1
] = (0,0)

𝐵′ = 𝑆. 𝐵

 = [
𝟐 0 0
0 2 0
0 0 1

] [
1
1
1
] = [

2
2
1
] = (2,2)

𝐶′ = 𝑆. 𝐶

 = [
𝟐 0 0
0 2 0
0 0 1

] [
5
2
1

] = [
10
4
1

] = (10,4)

Hence the final coordinate points are 𝐴′(0,0), 𝐵′(2,2), 𝐶′(10,4).

Q. Rotate a triangle A(0, 0), B(2, 2), C(4, 2) about the origin by the angle of 45 degree.

Solution:

The given triangle ABC can be represented by a matrix formed from homogenous

coordinates of vertices.

[
0 2 4
0 2 2
1 1 1

]

Also, we have

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

44 Computer Graphics (Reference Note) BSc.CSIT

𝑅450 = [
𝑐𝑜𝑠450 −𝑠𝑖𝑛450 0
𝑠𝑖𝑛450 𝑐𝑜𝑠450 0

0 0 1

]

 = [

1

√2
−

1

√2
0

1

√2

1

√2
0

0 0 1

]

So the coordinates of the rotated triangle ABC are

𝑅450[𝐴𝐵𝐶] =

[

1

√2
−

1

√2
0

1

√2

1

√2
0

0 0 1]

[
𝟎 2 4
0 2 2
1 1 1

] = [
𝟎 0 √2

0 2√2 3√2
1 1 1

]

Hence the final coordinate points are 𝐴′(0,0), 𝐵′(0,2√2), 𝐶′(√2, 3√2).

Q. Rotate a triangle (5, 5), (7, 3), (3, 3) about fixed point (5, 4) in counter clockwise by 90

degree.

Solution:

The required steps are:

1. Translate the fixed point to origin.

2. Rotate about the origin by 90 degree.

3. Reverse the translation as performed earlier.

Thus, the composite matrix is given by

𝑀 = 𝑇(𝑥𝑓,𝑦𝑓)𝑅𝜃𝑇(−𝑥𝑓,−𝑦𝑓)

 = [
1 0 5
0 1 4
0 0 1

] [
𝑐𝑜𝑠90 −𝑠𝑖𝑛90 0
𝑠𝑖𝑛90 𝑐𝑜𝑠90 0

0 0 1
] [

1 0 −5
0 1 −4
0 0 1

]

 = [
1 0 5
0 1 4
0 0 1

] [
0 −1 0
1 0 0
0 0 1

] [
1 0 −5
0 1 −4
0 0 1

]

 = [
1 0 5
0 1 4
0 0 1

] [
0 −1 4
1 0 −5
0 0 1

]

 = [
0 −1 9
1 0 −1
0 0 1

]

Hence the required coordinate can be calculated as:

𝑃′ = 𝑀 ∗ 𝑃

 = [
0 −1 9
1 0 −1
0 0 1

] [
5 7 3
5 3 3
1 1 1

]

 = [
4 6 6
4 6 2
1 1 1

]

Hence, the new required coordinates are (4, 4), (6, 6), (6, 2).

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

45 Computer Graphics (Reference Note) BSc.CSIT

Q. Rotate a triangle A(7, 15), B(5, 8) & C(10, 10) by 45 degree clockwise about origin and

scale it by (2, 3) about origin.

Solution:

The steps required are:

1. Rotate by 45 clockwise

2. Scale by 𝑠𝑥 = 2 & 𝑠𝑦 = 3.

Thus the composite matrix is given by;

𝑀 = 𝑆(2,3). 𝑅45

 =[
2 0 0
0 3 0
0 0 1

] [
cos (−45) −sin (−45) 0
sin (−45) cos (−45) 0

0 0 1

]

 =[
2 0 0
0 3 0
0 0 1

] [−

1

√2

1

√2
0

1

√2

1

√2
0

0 0 1

]

 = [

2

√2

2

√2
0

−
3

√2

3

√2
0

0 0 1

]

The transformation points are

 𝐴′ = 𝑀. 𝐴

 =[

2

√2

2

√2
0

−
3

√2

3

√2
0

0 0 1

] [
7
15
1

] =

𝐵′ = 𝑀.𝐵

 =[

2

√2

2

√2
0

−
3

√2

3

√2
0

0 0 1

] [
5
8
1

] =

𝐶′ = 𝑀. 𝐶

 =[

2

√2

2

√2
0

−
3

√2

3

√2
0

0 0 1

] [
10
10
1

] =

Q. A square with vertices A(0, 0), B(2, 0), C(2, 2) & D(0, 2) is scaled 2 units in x & y

direction about the fixed point (1, 1). Find the coordinates of the vertices of new square.

Solution:

Here,

𝑠𝑥 = 2 & 𝑠𝑦 = 2

𝑥𝑓 = 1 & 𝑦𝑓 = 1

Composite matrix is,

𝑀 = 𝑇(𝑥𝑓,𝑦𝑓). 𝑆. 𝑇(−𝑥𝑓,−𝑦𝑓)

 = [
1 0 1
0 1 1
0 0 1

] [
2 0 0
0 2 0
0 0 1

] [
1 0 −1
0 1 −1
0 0 1

]

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

46 Computer Graphics (Reference Note) BSc.CSIT

 = [
1 0 1
0 1 1
0 0 1

] [
2 0 −2
0 2 −2
0 0 1

]

 =[
2 0 −1
0 2 −1
0 0 1

]

Now, the transformation points are

 𝐴′ = 𝑀. 𝐴

 =[
2 0 −1
0 2 −1
0 0 1

] [
0
0
1
]=[

−1
−1
1

]= (-1, -1)

𝐵′ = 𝑀.𝐵

 =[
2 0 −1
0 2 −1
0 0 1

] [
2
0
1
]=[

3
−1
1

]= (3, -1)

𝐶′ = 𝑀. 𝐶

 =[
2 0 −1
0 2 −1
0 0 1

] [
2
2
1
]=[

3
3
1
]= (3, 3)

𝐷′ = 𝑀.𝐷

 =[
2 0 −1
0 2 −1
0 0 1

] [
0
2
1
]=[

−1
3
1

]= (-1, 3)

Q. A triangle having vertices A(3, 3), B(8, 5) & C(5, 8) is first translated by 2 units about

fixed point (5, 6) & finally rotated 90 degree anticlockwise about pivot point (2, 5). Find the

final position of triangle.

Solution:

𝑇 = [
1 0 2
0 1 2
0 0 1

]

𝑆 = [
1 0 5
0 1 6
0 0 1

] [
2 0 0
0 2 0
0 0 1

] [
1 0 −5
0 1 −6
0 0 1

]=[
2 0 −5
0 2 −6
0 0 1

]

𝑅 = [
1 0 2
0 1 5
0 0 1

] [
0 −1 0
1 0 0
0 0 1

] [
1 0 −2
0 1 −5
0 0 1

]=[
0 −1 7
1 0 3
0 0 1

]

Composite matrix,

𝑀 = 𝑅. 𝑆. 𝑇

 = [
0 −1 7
1 0 3
0 0 1

] [
2 0 −5
0 2 −6
0 0 1

] [
1 0 2
0 1 2
0 0 1

]

 = [
0 −2 13
2 0 2
0 0 1

]

Now, the transformation points are;

𝐴′ = 𝑀.𝐴

 =[
0 −2 13
2 0 2
0 0 1

] [
3
3
1
]=[

7
8
1
]= (7, 8)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

47 Computer Graphics (Reference Note) BSc.CSIT

𝐵′ = 𝑀.𝐵

 =[
0 −2 13
2 0 2
0 0 1

] [
8
5
1
]=[

3
18
1

]= (3, 18)

𝐶′ = 𝑀. 𝐶

 =[
0 −2 13
2 0 2
0 0 1

] [
5
8
1

]=[
−3
12
1

]= (-3, 12)

Q. Rotate the △ABC by 90° anti-clock wise about (5, 8) and scale it by (2, 2) about (10, 10).

 Solution:

Step 1:

 T(-5, -8)

Step 2:

 R(90°)

Step 3:

 T(5, 8)

Step 4:

 T(-10, -10)

Step 5:

 S(2, 2)

Step 6:

 T(10, 10)

The composite matrix is given by

 M= T(10,10).S(2,2).T(-10,-10).T(5,8).R(90) .T(-5,-8)

Complete urself.

 Reflection

Providing a mirror image about an axis of an object is called reflection.

Reflection about x-axis (y=0)
The reflection of a point P(x, y) on x-axis, changes the y-coordinate sign i.e. P(x, y) changes

to P'(x, -y).

In matrix form,

[
𝑥′

𝑦′

1

] = [
1 0 0
0 −1 0
0 0 1

] [
𝑥
𝑦
1
]

𝑃′ = 𝑅𝑓𝑥 . 𝑃

𝑅𝑓𝑥= Reflection matrix about x-axis.

A(7, 15)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

48 Computer Graphics (Reference Note) BSc.CSIT

Reflection about y-axis (x=0)

The reflection of a point P(x, y) on y-axis changes the sign of x-coordinate i.e. P(x, y)

changes to P'(-x, y).

In matrix form,

[
𝑥′

𝑦′

1

] = [
−1 0 0
0 1 0
0 0 1

] [
𝑥
𝑦
1
]

𝑃′ = 𝑅𝑓𝑦 . 𝑃

𝑅𝑓𝑦= Reflection matrix about y-axis.

Reflection about origin

Filp both x & y coordintae of a point.

[
𝑥′

𝑦′

1

] = [
−1 0 0
0 −1 0
0 0 1

] [
𝑥
𝑦
1
]

Reflection about y=mx+c

Perform the following transformation:

a) Translate the line so that it passes through origin.

b) Rotate the line so that it coincides with any coordinate axis.

c) Reflect object about that axis.

d) Perform reverse rotation.

e) Perform reverse translation so that line is placed to its original position.

Q. What is the basic purpose of composite transformation?

 The basic purpose of composing transformation is to gain efficiency by applying a

single composed transformation to a point, rather than applying a series of transformation,

one after another.

Q. A triangle having vertices A(2, 3), B(6, 3) & C(4,8) is reflected about y=3x+4. Find the

final position of triangle.

Solution:

Here,

y=3x+4

m=3, c=4

(𝑡𝑥 , 𝑡𝑦) = (0, 𝑐) = (0, 4)

(0, 4)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

49 Computer Graphics (Reference Note) BSc.CSIT

𝜃 = 𝑡𝑎𝑛−1(𝑚) = 𝑡𝑎𝑛−1(3) = 71.56
Now,

𝑇(−𝑡𝑥 , −𝑡𝑦) = [
1 0 0
0 1 −4
0 0 1

]

𝑅(−𝜃) = [
cos (−71.56) −sin (−71.56) 0
sin (−71.56) cos (−71.56) 0

0 0 1

] = [
0.32 0.95 0

−0.95 0.32 0
0 0 1

]

𝑅𝑓𝑥 = [
1 0 0
0 −1 0
0 0 1

]

𝑅(𝜃) = [
cos (71.56) −sin (71.56) 0
sin (71.56) cos (71.56) 0

0 0 1

] = [
0.32 −0.95 0
0.95 0.32 0
0 0 1

]

𝑇(𝑡𝑥 , 𝑡𝑦) = [
1 0 0
0 1 −4
0 0 1

]

Now, composite transformation matrix is;

𝑀 = 𝑇(𝑡𝑥 , 𝑡𝑦). 𝑅(𝜃). 𝑅𝑓𝑥 . 𝑅(−𝜃) . 𝑇(−𝑡𝑥 , −𝑡𝑦)

 = [
1 0 0
0 1 4
0 0 1

] [
0.32 −0.95 0
0.95 0.32 0
0 0 1

] [
1 0 0
0 −1 0
0 0 1

] [
0.32 0.95 0

−0.95 0.32 0
0 0 1

] [
1 0 0
0 1 −4
0 0 1

]

 = [
1 0 0
0 1 4
0 0 1

] [
0.32 −0.95 0
0.95 0.32 0
0 0 1

] [
1 0 0
0 −1 0
0 0 1

] [
0.32 0.95 −3.8

−0.95 0.32 −1.28
0 0 1

]

 = [
1 0 0
0 1 4
0 0 1

] [
0.32 −0.95 0
0.95 0.32 0
0 0 1

] [
0.32 0.95 −3.8
0.95 −0.32 1.28
0 0 1

]

 = [
1 0 0
0 1 4
0 0 1

] [
−0.8001 0.608 −2.432
0.608 0.8001 −3.2

0 0 1
]

 =[
−0.8001 0.608 −2.432
0.608 0.8001 0.7996

0 0 1
]

Now, the transformation points are;

𝐴′ = 𝑀.𝐴

 =[
−0.8001 0.608 −2.432
0.608 0.8001 0.7996

0 0 1
] [

2
3
1
]=[

−2.21
4.42
1

]= (-2.21, 4.42)

𝐵′ = 𝑀.𝐵

 =[
−0.8001 0.608 −2.432
0.608 0.8001 0.7996

0 0 1
] [

6
3
1
]=[

−5.41
6.85
1

]= (-5.41, 6.85)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

50 Computer Graphics (Reference Note) BSc.CSIT

𝐶′ = 𝑀. 𝐶

 =[
−0.8001 0.608 −2.432
0.608 0.8001 0.7996

0 0 1
] [

4
8
1
]=[

−0.77
9.63
1

]= (-0.77, 9.63)

Q. Derive the composite matrix for reflecting an object about any arbitary line y=mx+c.

Solution:

In order to reflect an object about any line y=mx+c, we need to perform

Composite transformation as below

𝑇 = 𝑇(0,𝑐). 𝑅(𝜃). 𝑅𝑓𝑥 . 𝑅(−𝜃). 𝑇(0,−𝑐)

And

 Slope m=𝑡𝑎𝑛𝜃

Also we have,

𝑐𝑜𝑠2𝜃 =
1

𝑡𝑎𝑛2𝜃+1
=

1

𝑚2+1

∴ 𝑐𝑜𝑠𝜃 =
1

√𝑚2+1

Also we have,

𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃 = 1

𝑠𝑖𝑛2𝜃 = 1 − 𝑐𝑜𝑠2𝜃 = 1 −
1

𝑚2+1
=

𝑚2

𝑚2+1

∴ 𝑠𝑖𝑛𝜃 =
𝑚

√𝑚2+1

So,

𝑇 = 𝑇(0,𝑐). 𝑅(𝜃). 𝑅𝑓𝑥 . 𝑅(−𝜃). 𝑇(0,−𝑐)

= [
1 0 0
0 1 𝑐
0 0 1

] [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] [

1 0 0
0 −1 0
0 0 1

] [−
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] [

1 0 0
0 1 −𝑐
0 0 1

]

= [
1 0 0
0 1 𝑐
0 0 1

] [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] [

1 0 0
0 −1 0
0 0 1

] [−
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 −𝑐𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 −𝑐𝑐𝑜𝑠𝜃

0 0 1
]

= [
1 0 0
0 1 𝑐
0 0 1

] [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
] [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 −𝑐𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 −𝑐𝑜𝑠𝜃 𝑐𝑐𝑜𝑠𝜃

0 0 1
]

= [
1 0 0
0 1 𝑐
0 0 1

] [

1

√𝑚2+1

−𝑚

√𝑚2+1
0

𝑚

√𝑚2+1

1

√𝑚2+1
0

0 0 1

] [

1

√𝑚2+1

𝑚

√𝑚2+1

−𝑐𝑚

√𝑚2+1
𝑚

√𝑚2+1

−1

√𝑚2+1

𝑐

√𝑚2+1

0 0 1

]

𝜃

y
-a

x
is

(0, c)

x-axis

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

51 Computer Graphics (Reference Note) BSc.CSIT

= [
1 0 0
0 1 𝑐
0 0 1

]

[

1−𝑚2

𝑚2+1

2𝑚

𝑚2+1

−2𝑐𝑚

𝑚2+1

2𝑚

𝑚2+1

𝑚2−1

𝑚2+1

𝑐−𝑐𝑚2

𝑚2+1

0 0 1]

=

[

1−𝑚2

𝑚2+1

2𝑚

𝑚2+1

−2𝑚𝑐

𝑚2+1

2𝑚

𝑚2+1

𝑚2−1

𝑚2+1

2𝑐

𝑚2+1

0 0 1]

 Shearing

A transformation that distorts the shape of an object such that the transformed shape appears

as if the object is composed of internal layers and these layers are caused to slide over is

shearing.

X-direction Shear:

 An X-direction shear relative to x-axis is produced with transformation matrix equation.

[
𝑥′

𝑦′

1

] = [
1 𝑠ℎ𝑥 0
0 1 0
0 0 1

] [
𝑥
𝑦
1
]

Which transforms,

𝑥′ = 𝑥 + 𝑠ℎ𝑥 . 𝑦

𝑦′ = 𝑦

Y-direction shear:
 A Y-direction shear relative to y-axis is produced by following transformation equations.

[
𝑥′

𝑦′

1

] = [
1 0 0

𝑠ℎ𝑦 1 0

0 0 1

] [
𝑥
𝑦
1
]

Which transforms,

𝑥′ = 𝑥

𝑦′ = 𝑥. 𝑠ℎ𝑦 + 𝑦

X-direction shear relative to 𝒚 = 𝒚𝒓𝒆𝒇

[
𝑥′

𝑦′

1

] = [
1 𝑠ℎ𝑥 −𝑠ℎ𝑥 . 𝑦𝑟𝑒𝑓

0 1 0
0 0 1

] [
𝑥
𝑦
1
]

𝑥′ = 𝑥 + 𝑠ℎ𝑥(𝑦 − 𝑦𝑟𝑒𝑓)

𝑦′ = 𝑦

Y-direction shear relative to 𝒙 = 𝒙𝒓𝒆𝒇

[
𝑥′

𝑦′

1

] = [
1 0 0

𝑠ℎ𝑦 1 −𝑠ℎ𝑦 . 𝑥𝑟𝑒𝑓

0 0 1

] [
𝑥
𝑦
1
]

𝑥′ = 𝑥

𝑦′ = 𝑦+𝑠ℎ𝑦(𝑥 − 𝑥𝑟𝑒𝑓)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

52 Computer Graphics (Reference Note) BSc.CSIT

 2D Viewing

The process of mapping the world coordinate scene to device coordinate is called viewing

transformation or windows to view port transformation.

- A world co-ordinate area selected for display is called a window and an area on the

display device to which a window is mapped is called a view port.

- The window defines what is to be viewed and the viewport defines where it is to be

displayed.

- Window deals with object space whereas viewport deals with image space.

Transformations from world to device coordinate involves translation, rotation and scaling

operations, as well as procedure for deleting those parts of the picture that are outside the

limits of selected display area i.e. clipping.

To make the viewing process independent of the requirements of any output device, graphics

systems convert object description to normalized coordinates.

Applications

- By changing the position of the view port, we can view objects at different positions on

the display area of an output device.

- By varying the size of view ports, we can change size of displayed objects.

- Zooming effects can be obtained by successively mapping different-sized windows on a

fixed-sized view port.

- Panning effects (Horizontal scrolling) are produced by moving a fixed-sized window

across the various objects in a scene.

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

53 Computer Graphics (Reference Note) BSc.CSIT

Windows to Viewport Transformation

It is the mechanism for displaying view of a picture on an output device. The world co-

ordinate selected for display is called window. The area on the display device to which

window is mapped is called viewport. So, window defines what is to be viewed and viewport

defines where it is to be displayed. The mapping of part of world co-ordinate scene to device

co-ordinate is called viewing transformation or window-to-viewport transformation.

To maintain the same relative placement in the viewport as in the window, we require that:
𝑥𝑣 − 𝑥𝑣𝑚𝑖𝑛

𝑥𝑣𝑚𝑎𝑥 − 𝑥𝑣𝑚𝑖𝑛
=

𝑥𝑤 − 𝑥𝑤𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥 − 𝑥𝑤𝑚𝑖𝑛

𝑦𝑣 − 𝑦𝑣𝑚𝑖𝑛

𝑦𝑣𝑚𝑎𝑥 − 𝑦𝑣𝑚𝑖𝑛
=

𝑦𝑤 − 𝑦𝑤𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥 − 𝑦𝑤𝑚𝑖𝑛

By solving these equations for the unknown viewport position (𝑥𝑣, 𝑦𝑣) the following

becomes true:

𝑥𝑣 = 𝑠𝑥𝑥𝑤 + 𝑡𝑥

𝑦𝑣 = 𝑠𝑦𝑦𝑤 + 𝑡𝑦

The scale factors (𝑠𝑥 , 𝑠𝑦) would be,

𝑠𝑥 =
𝑥𝑣𝑚𝑎𝑥 − 𝑥𝑣𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥 − 𝑥𝑤𝑚𝑖𝑛

𝑠𝑦 =
𝑦𝑣𝑚𝑎𝑥 − 𝑦𝑣𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥 − 𝑦𝑤𝑚𝑖𝑛

And the translation factors (𝑡𝑥 , 𝑡𝑦) would be,

𝑡𝑥 =
𝑥𝑤𝑚𝑎𝑥 . 𝑥𝑣𝑚𝑖𝑛 − 𝑥𝑤𝑚𝑖𝑛 . 𝑥𝑣𝑚𝑎𝑥

𝑥𝑤𝑚𝑎𝑥 − 𝑥𝑤𝑚𝑖𝑛

𝑡𝑦 =
𝑦𝑤𝑚𝑎𝑥 . 𝑦𝑣𝑚𝑖𝑛 − 𝑦𝑤𝑚𝑖𝑛 . 𝑦𝑣𝑚𝑎𝑥

𝑦𝑤𝑚𝑎𝑥 − 𝑦𝑤𝑚𝑖𝑛

Transforming world coordinate to view coordinate can be obtained with the following

sequence:

a) Scale (S) the clipping window to the size of viewport using fixed point position of

(𝑥𝑤𝑚𝑖𝑛 , 𝑦𝑤𝑚𝑖𝑛).

b) Translate (T) (𝑥𝑤𝑚𝑖𝑛 , 𝑦𝑤𝑚𝑖𝑛) to (𝑥𝑣𝑚𝑖𝑛 , 𝑦𝑣𝑚𝑖𝑛).

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

54 Computer Graphics (Reference Note) BSc.CSIT

Here,

𝑆 = [
𝑠𝑥 0 𝑥𝑤𝑚𝑖𝑛(1 − 𝑠𝑥)
0 𝑠𝑦 𝑦𝑤𝑚𝑖𝑛(1 − 𝑠𝑦)

0 0 1

]

𝑇 = [
1 0 𝑥𝑣𝑚𝑖𝑛 − 𝑥𝑤𝑚𝑖𝑛

0 1 𝑦𝑣𝑚𝑖𝑛 − 𝑦𝑤𝑚𝑖𝑛

0 0 1

]

Now, window- to – viewport transformation matrix is;

𝑻𝒘𝒗 = 𝑻. 𝑺 = [
𝒔𝒙 𝟎 𝒕𝒙

𝟎 𝒔𝒚 𝒕𝒚

𝟎 𝟎 𝟏

]

Examples:

Q. Window port is given by (100, 100, 300, 300) and viewport is given by (50, 50, 150, 150).

Convert the window port coordinate (200, 200) to the view port coordinate.

Solution:

Here,

(𝑥𝑤𝑚𝑖𝑛 , 𝑦𝑤𝑚𝑖𝑛) = (100,100)

(𝑥𝑤𝑚𝑎𝑥 , 𝑦𝑤𝑚𝑎𝑥) = (300,300)

(𝑥𝑣𝑚𝑖𝑛 , 𝑦𝑣𝑚𝑖𝑛) = (50,50)

(𝑥𝑣𝑚𝑎𝑥 , 𝑦𝑣𝑚𝑎𝑥) = (150,150)
(𝑥𝑤, 𝑦𝑤) = (200,200)

Then we have

𝑠𝑥 =
𝑥𝑣𝑚𝑎𝑥−𝑥𝑣𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥−𝑥𝑤𝑚𝑖𝑛
=

150−50

300−100
= 0.5

𝑠𝑦 =
𝑦𝑣𝑚𝑎𝑥−𝑦𝑣𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥−𝑦𝑤𝑚𝑖𝑛
=

150−50

300−100
= 0.5

𝑡𝑥 =
𝑥𝑤𝑚𝑎𝑥.𝑥𝑣𝑚𝑖𝑛−𝑥𝑤𝑚𝑖𝑛.𝑥𝑣𝑚𝑎𝑥

𝑥𝑤𝑚𝑎𝑥−𝑥𝑤𝑚𝑖𝑛
=

300×50−100×150

300−100
= 0

𝑡𝑦 =
𝑦𝑤𝑚𝑎𝑥.𝑦𝑣𝑚𝑖𝑛−𝑦𝑤𝑚𝑖𝑛 .𝑦𝑣𝑚𝑎𝑥

𝑦𝑤𝑚𝑎𝑥−𝑦𝑤𝑚𝑖𝑛
=

300×50−100×150

300−100
= 0

The equation for mapping window coordinate to view port coordinate is given by,

𝑥𝑣 = 𝑠𝑥𝑥𝑤 + 𝑡𝑥

𝑦𝑣 = 𝑠𝑦𝑦𝑤 + 𝑡𝑦

Hence,

𝑥𝑣 = 0.5 × 200 + 0 = 100

𝑦𝑣 = 0.5 × 200 + 0 = 100

The transformed viewport coordinate is (100, 100).

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

55 Computer Graphics (Reference Note) BSc.CSIT

Q. Find the normalization transformation matrix for window to viewport which uses the

rectangle whose lower left corner is at (2, 2) and upper right corner is at (6, 10) as a

window and the viewport that has lower left corner at (0, 0) and upper right corner at (1,

1).

Solution:

We have

𝑠𝑥 =
𝑥𝑣𝑚𝑎𝑥−𝑥𝑣𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥−𝑥𝑤𝑚𝑖𝑛
=

1−0

6−2
= 0.25

𝑠𝑦 =
𝑦𝑣𝑚𝑎𝑥−𝑦𝑣𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥−𝑦𝑤𝑚𝑖𝑛
=

1−0

10−2
= 0.125

𝑡𝑥 =
𝑥𝑤𝑚𝑎𝑥.𝑥𝑣𝑚𝑖𝑛−𝑥𝑤𝑚𝑖𝑛.𝑥𝑣𝑚𝑎𝑥

𝑥𝑤𝑚𝑎𝑥−𝑥𝑤𝑚𝑖𝑛
=

6×0−2×1

6−2
= −0.5

𝑡𝑦 =
𝑦𝑤𝑚𝑎𝑥.𝑦𝑣𝑚𝑖𝑛−𝑦𝑤𝑚𝑖𝑛 .𝑦𝑣𝑚𝑎𝑥

𝑦𝑤𝑚𝑎𝑥−𝑦𝑤𝑚𝑖𝑛
=

10×0−2×1

10−2
= −0.25

The composite transformation matrix for transforming the window coordinate to viewport

coordinate is given as

𝑇 = 𝑇(𝑡𝑥,𝑡𝑦)𝑆(𝑠𝑥,𝑠𝑦)

 = [
𝑠𝑥 0 𝑡𝑥
0 𝑠𝑦 𝑡𝑦
0 0 1

]

 = [
0.25 0 −0.5
0 0.125 −0.25
0 0 1

]

Q. A world coordinate & viewport have the following geometry:

 Window (left, right, bottom, top) = (200, 600, 100, 400)

 Viewport (left, bottom, width, height) = (0, 0, 800, 600)

The following vertices are drawn in the world:- P1: (356, 125), P2: (200, 354), P3: (230,

400), P4: (564, 200). What coordinate will each occupy in viewport.

Solution:

Here,

(𝑥𝑤𝑚𝑖𝑛 , 𝑦𝑤𝑚𝑖𝑛) = (200,100)

(𝑥𝑤𝑚𝑎𝑥 , 𝑦𝑤𝑚𝑎𝑥) = (600,400)

(𝑥𝑣𝑚𝑖𝑛 , 𝑦𝑣𝑚𝑖𝑛) = (0, 0)

(𝑥𝑣𝑚𝑎𝑥 , 𝑦𝑣𝑚𝑎𝑥) = (800,600)

Then we have

𝑠𝑥 =
𝑥𝑣𝑚𝑎𝑥−𝑥𝑣𝑚𝑖𝑛

𝑥𝑤𝑚𝑎𝑥−𝑥𝑤𝑚𝑖𝑛
=

800−0

600−200
= 2

𝑠𝑦 =
𝑦𝑣𝑚𝑎𝑥−𝑦𝑣𝑚𝑖𝑛

𝑦𝑤𝑚𝑎𝑥−𝑦𝑤𝑚𝑖𝑛
=

600−0

400−100
= 2

𝑡𝑥 =
𝑥𝑤𝑚𝑎𝑥.𝑥𝑣𝑚𝑖𝑛−𝑥𝑤𝑚𝑖𝑛.𝑥𝑣𝑚𝑎𝑥

𝑥𝑤𝑚𝑎𝑥−𝑥𝑤𝑚𝑖𝑛
=

600×0−200×800

600−200
= −400

𝑡𝑦 =
𝑦𝑤𝑚𝑎𝑥.𝑦𝑣𝑚𝑖𝑛−𝑦𝑤𝑚𝑖𝑛 .𝑦𝑣𝑚𝑎𝑥

𝑦𝑤𝑚𝑎𝑥−𝑦𝑤𝑚𝑖𝑛
=

400×0−100×600

400−100
= −200

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

56 Computer Graphics (Reference Note) BSc.CSIT

The composite transformation matrix for transforming the window coordinate to viewport

coordinate is given as

𝑀 = 𝑇(𝑡𝑥,𝑡𝑦)𝑆(𝑠𝑥,𝑠𝑦)

 = [
𝑠𝑥 0 𝑡𝑥
0 𝑠𝑦 𝑡𝑦
0 0 1

]

 = [
2 0 −400
0 2 −200
0 0 1

]

Now,

𝑃1′ = 𝑀. 𝑃1 = [
2 0 −400
0 2 −200
0 0 1

] [
356
125
1

] = [
312
50
1

] = (312,50)

𝑃2′ = 𝑀. 𝑃2 = [
2 0 −400
0 2 −200
0 0 1

] [
200
354
1

] = [
0

508
1

] = (0, 508)

𝑃3′ = 𝑀. 𝑃3 = [
2 0 −400
0 2 −200
0 0 1

] [
230
400
1

] = [
60
600
1

] = (60, 600)

𝑃4′ = 𝑀. 𝑃4 = [
2 0 −400
0 2 −200
0 0 1

] [
564
200
1

] = [
728
200
1

] = (728,200)

 Clipping

The process of discarding those parts of a picture which are outside of a specified region or

window is called clipping. The procedure using which we can identify whether the portions

of the graphics object is within or outside a specified region or space is called clipping

algorithm.

The region or space which is used to see the object is called window and the region on which

the object is shown is called view port.

Clipping is necessary to remove those portions of the object which are not necessary for

further operations. It excludes unwanted graphics from the screen. So, there are three cases:

1. The object may be completely outside the viewing area defined by the window port.

2. The object may be seen partially in the window port.

3. The object may be seen completely in the window port.

For case 1 & 2, clipping operation is necessary but not for case 3.

Applications of clipping:

- Extracting part of a defined scene for viewing

- Identifying visible surfaces in three-dimensional views

- Antialiasing line segments or object boundaries

- Creating objects using solid-modeling procedures

- Displaying a multi-window environment

- Drawing and painting operations that allow parts of a picture to be selected for copying,

moving, erasing, or duplicating.

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

57 Computer Graphics (Reference Note) BSc.CSIT

 Point Clipping

Assuming that the clip window is a rectangle in standard position, we save a point P=(x, y)

for display if the following inequalities are satisfied:

𝑥𝑤𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑤𝑚𝑎𝑥

𝑦𝑤𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑤𝑚𝑎𝑥

Where the edges of the clip window (𝑥𝑤𝑚𝑖𝑛 , 𝑥𝑤𝑚𝑎𝑥 , 𝑦𝑤𝑚𝑖𝑛 , 𝑦𝑤𝑚𝑎𝑥) can be either the world-

coordinate window boundaries or viewport boundaries. If any one of these four inequalities is

not satisfied, the point is clipped.

Algorithm:

1. Get the minimum and maximum coordinates of the viewing plane.

2. Get the coordinates for a point.

3. Check whether given input lies between minimum and maximum coordinates of viewing

plane.

4. If yes display the point which lies inside the region otherwise discard it.

 Line Clipping

In line clipping, a line or part of line is clipped if it is outside the window port. There are

three possibilities for the line:

a. Line can be completely inside the window (This line should be accepted).

b. Line can be completely outside of the window (This line will be completely removed

from the region).

c. Line can be partially inside the window (We will find intersection point and draw only

that portion of line that is inside region).

Cohen-Sutherland Line Clipping Algorithm

1. Assign the four digit binary value called region code to each end point of a line.

𝑃3

𝑃4

𝑃1

𝑃2

𝑃7

𝑃8

𝑃1

𝑃2

𝑃5
′

𝑃6
′

𝑃5

𝑃6

Clipping window

Clipping window

Before clipping After clipping

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

58 Computer Graphics (Reference Note) BSc.CSIT

- A region code is represented as TBRL with 0000 inside clipping window.

- To calculate region code, perform following steps:

a) Calculate the difference between endpoint coordinates and clipping boundary

i.e. 𝑥 – 𝑥𝑤𝑚𝑖𝑛 , 𝑥𝑤𝑚𝑎𝑥 – 𝑥, 𝑦 – 𝑦𝑤𝑚𝑖𝑛 & 𝑦𝑤𝑚𝑎𝑥 – 𝑦.

b) Use ‘1’ when resultant sign is – 𝑣𝑒 otherwise use ‘0’.

2. Determine which lines are completely inside the clipping window & which lines are

completely outside.

- Perform OR operation on line endpoint region code, if we get 0000, the line is

completely inside clipping window & save these points.

- Perform AND operation on line endpoint region code, if we get value not equal to 0000,

the line is completely outside & discard these points.

3. If condition 2 fails, the line crosses the clipping window boundary & find the point of

intersection.

- Windows edges are processed in left, right, top and bottom. Here, the region code for

point 𝑃1 is 0100 & 𝑃2 is 1001.

- To decide which boundary edges the line crosses, check for the bit position in line

endpoint.

- Line crosses these window boundary edges for which bit position value are opposite.

Here,

 T B R L

P1: 0 1 0 0

P2: 1 0 0 1

1001 1000 1010

0001

0101 0100 0110

0000 0010

Top (T)

Right (R) Left (L)

Bottom (B)

(𝑥𝑤𝑚𝑖𝑛 , 𝑦𝑤𝑚𝑖𝑛)

𝑥𝑤𝑚𝑎𝑥

𝑦𝑤𝑚𝑎𝑥

𝑃2

𝑃2

′

𝑃1
′

𝑃1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

59 Computer Graphics (Reference Note) BSc.CSIT

Since, the value at T, B & L are opposite, the line P1P2 crosses the clipping window

at top, bottom & left edge.

- Now find the point of intersection with the clipping window edge.

- For calculation of intersection point, first find the slope,

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

For bottom edge intersection point; 𝑦 = 𝑦𝑤𝑚𝑖𝑛

 𝑥 = 𝑥1 +
𝑦 − 𝑦1

𝑚

For top edge intersection point; 𝑦 = 𝑦𝑤𝑚𝑎𝑥

 𝑥 = 𝑥1 +
𝑦−𝑦1

𝑚

For left edge intersection point; 𝑥 = 𝑥𝑤𝑚𝑖𝑛

 𝑦 = 𝑦1 + 𝑚(𝑥 − 𝑥1)

For right edge intersection point; 𝑥 = 𝑥𝑤𝑚𝑎𝑥

 𝑦 = 𝑦1 + 𝑚(𝑥 − 𝑥1)

Examples:

Q. Consider a rectangle clipping window with A(20, 20), B(90, 20), C(90, 70) & D(20, 70).

Clip the line P1P2 with P1(10, 30) & P2(80, 90) using Cohen-Sutherland line clipping

algorithm.

Solution:

Here,

𝑥𝑤𝑚𝑖𝑛 = 20, 𝑥𝑤𝑚𝑎𝑥 = 90

𝑦𝑤𝑚𝑖𝑛 = 20, 𝑦𝑤𝑚𝑎𝑥 = 70

Region code for 𝑃1(10, 30):

𝑥 − 𝑥𝑤𝑚𝑖𝑛 = 10 − 20 = −10 1 L

𝑥𝑤𝑚𝑎𝑥 − 𝑥 = 90 − 10 = 80 0 R

𝑦 − 𝑦𝑤𝑚𝑖𝑛 = 30 − 20 = 10 0 B

𝑦𝑤𝑚𝑎𝑥 − 𝑦 = 70 − 30 = 40 0 T

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

60 Computer Graphics (Reference Note) BSc.CSIT

Region code for 𝑃2(80, 90):

𝑥 − 𝑥𝑤𝑚𝑖𝑛 = 80 − 20 = 60 0 L

𝑥𝑤𝑚𝑎𝑥 − 𝑥 = 90 − 80 = 10 0 R

𝑦 − 𝑦𝑤𝑚𝑖𝑛 = 90 − 20 = 70 0 B

𝑦𝑤𝑚𝑎𝑥 − 𝑦 = 70 − 90 = −20 0 T

∴ Region code for P1= 1000

∴ Region code for P2= 0001

- Check if line P1P2 is completely inside or outside.

Take OR of 0001 & 1000

0001
1000

1001
 Which is not equal to 0000 i.e. line P1P1 is not completely inside.

Take AND

0001
1000

0000
 Which means P1P2 is not completely outside.

i.e. line P1P2 crosses the clipping window.

Now,

T B R L

P1: 0 0 0 1

P2: 1 0 0 0

The line crosses the top and left edge of the clipping window.

Now find 𝑃1
′ & 𝑃2

′.

Slope 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
=

90−30

80−10
=

6

7

So for 𝑃1
′

𝑥 = 20

 𝑦 = 30 +
6

7
(20 − 10) = 38.5

∴ 𝑃1
′ = (20,38.5)

𝑃1

𝑃1
′

𝑃2

 𝑃2
′

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

61 Computer Graphics (Reference Note) BSc.CSIT

So for 𝑃2
′

𝑦 = 70

 𝑥 = 10(90 − 60) ×
7

6
= 45

∴ 𝑃2
′ = (45, 70)

Thus the intersection point 𝑃1
′ = (20, 38.5) & 𝑃2

′ = (45, 70). So discarding the line segment

that lie outside the boundary i.e. 𝑃1𝑃1
′ & 𝑃2𝑃2

′ , we get new line 𝑃1
′𝑃2

′ with coordinate 𝑃1
′ =

(20, 38.5) & 𝑃2
′ = (45, 70).

Q. Use the Cohen-Sutherland algorithm to clip the line P1(70, 20) and P2(100, 10) against

a window lower left hand corner (50, 10) and upper right hand corner (80, 40).

Solution:

Assign 4 bit binary code to the two end point

P1=0000

P2=0010

Finding bitwise OR:

P1|P2=0000|0010=0010

Since P1|P2 !=0000, hence the two point doesn’t lie completely inside the window.

Finding bitwise AND:

P1&P2=0000 & 0010=0000

Since P1&P2=0000, hence line is partially visible.

Now, finding the intersection of P1 and P2 with the boundary of window.

𝑝1(𝑥1, 𝑦1) = (70, 20)

𝑝2(𝑥2, 𝑦2) = (100, 10)

Slope 𝑚 = (10 − 20)/(100 − 70) = −1/3

We have to find the intersection with right edge of window.

Here,

𝑥 = 80

(50, 40) (80, 40)

(50, 10) (80, 10)

P2(100, 10)

P3

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

62 Computer Graphics (Reference Note) BSc.CSIT

𝑦 = 𝑦2 + 𝑚(𝑥 − 𝑥2) = 10 + (−1/3) (80 − 100) = 10 + 6.67 = 16.67

Thus the intersection point P3 = (80, 16.67). So, discarding the line segment that lie outside

the boundary i.e. P3P2, we get new line P1P3 with coordinate P1(70, 20) and P3(80, 16.67).

Liang-Barsky Line Clipping Algorithm

This algorithm is considered to be the faster parametric line-clipping algorithm. The

following concepts are used in this clipping:

1. The parametric equation of the line.

2. The inequalities describing the range of the clipping window which is used to determine

the intersection between the line and the clip window.

The parametric equation of a line can be given by,

𝑥 = 𝑥1 + 𝑢∆𝑥

𝑦 = 𝑦1 + 𝑢∆𝑦, 0 ≤ 𝑢 ≤ 1

Where, ∆𝑥 = 𝑥2 − 𝑥1 & ∆𝑦 = 𝑦2 − 𝑦1

Then, writing the point-clipping conditions in the parametric form:

𝑥𝑤𝑚𝑖𝑛 ≤ 𝑥1 + 𝑢∆𝑥 ≤ 𝑥𝑤𝑚𝑎𝑥

𝑦𝑤𝑚𝑖𝑛 ≤ 𝑦1 + 𝑢∆𝑦 ≤ 𝑦𝑤𝑚𝑎𝑥

The above four inequalities can be expressed as,

𝑢𝑝𝑘 ≤ 𝑞𝑘

Where, k = 1, 2, 3, 4 (corresponds to the left, right, bottom, and top boundaries,

respectively).

The parameters p & q are defined as,

𝑝1 = −∆𝑥 , 𝑞1 = 𝑥1 − 𝑥𝑤𝑚𝑖𝑛 (Left Boundary)

𝑝2 = ∆𝑥 , 𝑞2 = 𝑥𝑤𝑚𝑎𝑥 − 𝑥1 (Right Boundary)

𝑝3 = −∆𝑦 , 𝑞3 = 𝑦1 − 𝑦𝑤𝑚𝑖𝑛 (Bottom Boundary)

𝑝4 = ∆𝑦 , 𝑞4 = 𝑦𝑤𝑚𝑎𝑥 − 𝑦1 (Top Boundary)

When the line is parallel to a view window boundary, the p value for the boundary is zero.

When 𝑝𝑘 < 0, as u increase line goes from the outside to inside (entering).

When 𝑝𝑘 > 0, line goes from the inside to outside (existing).

When 𝑝𝑘 = 0 & 𝑞𝑘 < 0 then line is trivially invisible because it is outside view window.

When 𝑝𝑘 = 0 & 𝑞𝑘 > 0 then line is inside the corresponding window boundary.

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

63 Computer Graphics (Reference Note) BSc.CSIT

Using the following conditions, the position of line can be determined:

Condition Position of line

𝑝𝑘 = 0 Parallel to the clipping boundaries.

𝑝𝑘 = 0 & 𝑞𝑘 < 0 Completely outside the boundary.

𝑝𝑘 = 0 & 𝑞𝑘 ≥ 0 Inside the parallel clipping boundary.

𝑝𝑘 < 0 Line proceeds from outside to inside.

𝑝𝑘 > 0 Line proceeds from inside to outside.

Parameters 𝑢1 & 𝑢2 can be calculated that define the part of line that lies within the clip

rectangle. When,

1. 𝑝𝑘 < 0, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(0,
𝑞𝑘

𝑝𝑘
) is taken.

2. 𝑝𝑘 > 0, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(0,
𝑞𝑘

𝑝𝑘
) is taken.

If 𝑢1 > 𝑢2, the line is completely outside the clip window and it can be rejected. Otherwise,

the endpoints of the clipped line are calculated from the two values of parameter u.

Algorithm:

1. Set 𝑢𝑚𝑖𝑛 = 0, 𝑢𝑚𝑎𝑥 = 1

2. Calculate the values of 𝑢 (𝑢𝑙𝑒𝑓𝑡 , 𝑢𝑟𝑖𝑔ℎ𝑡 , 𝑢𝑡𝑜𝑝, 𝑢𝑏𝑜𝑡𝑡𝑜𝑚)

i. If 𝑢 < 𝑢𝑚𝑖𝑛 or 𝑢 > 𝑢𝑚𝑎𝑥 ignore that and move to the next edge.

ii. Else separate the 𝑢 values as entering or existing values using the inner product.

iii. If 𝑢 is entering value, set 𝑢𝑚𝑖𝑛 = 𝑢; if 𝑢 is existing value, set 𝑢𝑚𝑎𝑥 = 𝑢.

3. If 𝑢𝑚𝑖𝑛 < 𝑢𝑚𝑎𝑥, draw a line from (𝑥1 + 𝑢𝑚𝑖𝑛(𝑥2 − 𝑥1), 𝑦1 + 𝑢𝑚𝑖𝑛(𝑦2 − 𝑦1)) to (𝑥1 +

𝑢𝑚𝑎𝑥(𝑥2 − 𝑥1), 𝑦1 + 𝑢𝑚𝑎𝑥(𝑦2 − 𝑦1)).

4. If the line crosses over the window, (𝑥1 + 𝑢𝑚𝑖𝑛(𝑥2 − 𝑥1), 𝑦1 + 𝑢𝑚𝑖𝑛(𝑦2 − 𝑦1)) and

(𝑥1 + 𝑢𝑚𝑎𝑥(𝑥2 − 𝑥1), 𝑦1 + 𝑢𝑚𝑎𝑥(𝑦2 − 𝑦1)) are the intersection point of line and edge.

Example

Q. Apply Liang Barsky Line Clipping algorithm to the line with coordinates (30, 60) and

(60, 25) against the window (𝒙𝒘𝒎𝒊𝒏 , 𝒚𝒘𝒎𝒊𝒏) = (𝟏𝟎, 𝟏𝟎) and (𝒙𝒘𝒎𝒂𝒙, 𝒚𝒘𝒎𝒂𝒙) = (𝟓𝟎, 𝟓𝟎).

Solution:

Given,

(𝑥𝑤𝑚𝑖𝑛 , 𝑦𝑤𝑚𝑖𝑛) = (10, 10) and

(𝑥𝑤𝑚𝑎𝑥 , 𝑦𝑤𝑚𝑎𝑥) = (50, 50)

Set 𝑢𝑚𝑖𝑛 = 0, 𝑢𝑚𝑎𝑥 = 1

𝑢𝑙𝑒𝑓𝑡 = 𝑞1/𝑝1

 = 𝑥1 − 𝑥𝑤𝑚𝑖𝑛/−∆𝑥

 = 30 −
10

−(60−30)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

64 Computer Graphics (Reference Note) BSc.CSIT

 = -0.67

𝑢𝑟𝑖𝑔ℎ𝑡 = 𝑞2/𝑝2

 = 𝑥𝑤𝑚𝑎𝑥 − 𝑥1/∆𝑥

 = 50-30/(60-30)

 = 0.67

𝑢𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑞3/𝑝3

 = 𝑦1 − 𝑦𝑤𝑚𝑖𝑛/−∆𝑦

 = 60 − 10/−(25 − 60)

 = 1.43

𝑢𝑡𝑜𝑝 = 𝑞4/𝑝4

 = 𝑦𝑤𝑚𝑎𝑥 − 𝑦1/∆𝑦

 = 50-60/(25-60)

 = 0.29

Since 𝑢𝑙𝑒𝑓𝑡 = −0.67 which is less than 𝑢𝑚𝑖𝑛. Therefore we ignore it.

Similarly, 𝑢𝑏𝑜𝑡𝑡𝑜𝑚 = 1.43 which is greater than 𝑢𝑚𝑎𝑥. So we ignore it,

𝑢𝑟𝑖𝑔ℎ𝑡 = 𝑢𝑚𝑖𝑛 = 0.67 (Entering)

𝑢𝑡𝑜𝑝 = 𝑢𝑚𝑎𝑥 = 0.29 (Exiting)

Since 𝑢𝑚𝑖𝑛 > 𝑢𝑚𝑎𝑥, there is no line segment to draw .

 Polygon Clipping

Sutherland-Hodgman Polygon Clipping Algorithm:

The Sutherland Hodgman algorithm is used for clipping polygons. In this algorithm, all the

vertices of the polygon are clipped against each edge of the clipping window.

First the polygon is clipped against the left edge of the clipping window to get new vertices

of the polygon. These new vertices are used to clip the polygon against right edge, top edge,

bottom edge, of the clipping window.

Clip

1

1’
1”

2’

3

2
2”

3”

3’

1’

2’

3’

1”

3”

2”

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

65 Computer Graphics (Reference Note) BSc.CSIT

To find new sequence of vertices four cases are considered.

Case I Case II

Movement: 𝑜𝑢𝑡 → 𝑖𝑛 Movement: 𝑖𝑛 → 𝑜𝑢𝑡

Output: intersection point, destination vertices i.e.𝑣1
′ , 𝑣2 Output: intersection point i.e. 𝑣1

′

Case III Case IV

Movement: 𝑖𝑛 → 𝑖𝑛 Movement: 𝑜𝑢𝑡 → 𝑜𝑢𝑡

Output: destination vertices i.e. 𝑣2 Output: none

Example:

Q. Clip polygon against clipping window PQRS. The coordinates of polygon are A(80,

200), B(220, 120), C(150, 100), D(100, 30), E(10, 120). Coordinates of clipping window

P(200, 50), Q(50, 150), R(200, 150) & S(50, 50).

Solution:

𝑣1

𝑣2
𝑣1

′

𝑣2

𝑣1
𝑣1

′

𝑣1

𝑣2
𝑣1

𝑣2
Inside Outside

A(80, 200)

D(100, 30)

B(220, 120)

R(200, 150)

S(50, 50) P(200, 50)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

66 Computer Graphics (Reference Note) BSc.CSIT

Left Clipping

vertex case O/P

AB 𝑖𝑛 → 𝑖𝑛 B

BC 𝑖𝑛 → 𝑖𝑛 C

CD 𝑖𝑛 → 𝑖𝑛 D

DE 𝑖𝑛 → 𝑜𝑢𝑡 D’

EA 𝑜𝑢𝑡 → 𝑖𝑛 E’, A

Right Clipping

vertex case O/P

AB 𝑖𝑛 → 𝑜𝑢𝑡 A’

BC 𝑜𝑢𝑡 → 𝑖𝑛 B’, C

CD 𝑖𝑛 → 𝑖𝑛 D

DD’ 𝑖𝑛 → 𝑖𝑛 D’

D’E’ 𝑖𝑛 → 𝑖𝑛 E’

E’A 𝑖𝑛 → 𝑖𝑛 A

Bottom Clipping

vertex case O/P

AA’ 𝑖𝑛 → 𝑖𝑛 A’

A’B’ 𝑖𝑛 → 𝑖𝑛 B’

B’C 𝑖𝑛 → 𝑖𝑛 C

CD 𝑖𝑛 → 𝑜𝑢𝑡 C’

DD’ 𝑜𝑢𝑡 → 𝑖𝑛 D”, D’

D’E’ 𝑖𝑛 → 𝑖𝑛 E’

E’A 𝑖𝑛 → 𝑖𝑛 A

Top Clipping

vertex case O/P

AA’ 𝑜𝑢𝑡 → 𝑖𝑛 A”, A

A’B’ 𝑖𝑛 → 𝑖𝑛 B’

B’C 𝑖𝑛 → 𝑖𝑛 C

CC’ 𝑖𝑛 → 𝑖𝑛 C’

C’D” 𝑖𝑛 → 𝑖𝑛 D”

D”D’ 𝑖𝑛 → 𝑖𝑛 D’

D’E’ 𝑖𝑛 → 𝑖𝑛 E’

E’A 𝑖𝑛 → 𝑜𝑢𝑡 E”

A

D

B

E’

D’ New

vertex

Left clipping

A

D

B

E’

D’

A’

B’

A

D

E’

D’

D”

A’

B’

Right clipping

 New

vertex

A

E’

D’

E”

A”

 A’

B’

C’

D”

C’

Bottom clipping

New

vertex

Top clipping

New

vertex

New

vertex

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

67 Computer Graphics (Reference Note) BSc.CSIT

Hence, final polygon after clipping:

References

- Donald Hearne and M.Pauline Baker, “Computer Graphics, C Versions.” Prentice

Hall

E’

D’

E” A”

 A’

B’

C’

D”

