
Automata Theory    Computational Complexity 

Computational Complexity: 
 The complexity of computational problems can be discussed by choosing a specific 

abstract machine as a model of computation and considering how much time and/or space 
machine of that type require for the solution of that problem. 
♦ A given problem can be solved by using more than one computational model i.e. there may 

be more than one TM that solve the problem. It is thus necessary to measure the qualities of 
alternative model to solve the same computational problem. 

♦ The quality of an computational model is measured usually in terms of  the resources needed 
by the algorithm for its execution. 

♦ The two important resources used for executing a given algorithm are (i) Time        (ii) 
memory , required to execute that algorithm. 

♦ When estimating execution time(Time complexity) we are interested in growth rate and not 
in absolute time. 

♦ Similarly , we are interested in growth rate of memory need( space complexity) rather than 
the absolute value of space. 

♦ So the boundary time and boundary space for executing an algorithm are usually expressed in 
terms of known mathematical functions. 

 

Notation for comparing growth rate. 
 The Big-Oh notation: Suppose f,g: N→ N are functions defined in a finite number of points, 
we write, 
 f(n) = O(g(n)) or simply f= O(g), if there are two positive constants c and n0 such that for 
all n>n0  , f(n)  c g(n), n>n≤ 0
i.e. g is upper bound of f. Also f  is “Big-Oh” of g. 
 
Example:  f(n) = (n+1)2

  + n.  g(n) = n2 then f(n) = O(g(n)) 
Proof: We can choose c and n0 to satisfy the requirement 
f(n) ≤  c g(n) , n> n0
 i.e.  (n+1)2 + n ≤  c n2  , n> n0
or n2 +3n +1  cn≤ 2

  , n> n0
Choose n0 = 1 and  c = 6 
Then   n2 +3n +1≤6n2 , n >1 
Which is trivially true. Hence f(n) = O(g(n)). 
 
Big-Omega (Ω ): A function  f(n) is said to be “big-Omega of g(n)” and we write, 
f(n) =  (g(n)) , if there exist two positive constants c and nΩ 0 such that  
   f(n)  c g(n) , n>n≥ 0  i.e . g is lower bound of f. 
Example: g(n)= 10n2+n , f(n) = n3  then f = Ω (g) 
Proof: Choose  c and n0 to satisfy the relation  f(n)  c g(n) , n> n≥ 0 as 
 c = 1/20 and n0 = 1 

i.e. n3  ≥
20
1 (10n2 + n) , n>1 

or 20 n3 ≥  10 n2 + n  , n>1 
Which is trivially true. Hence f(n) = Ω (g(n)) 
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Big Theta(Θ ): Let f, g: N → N are functions defined over a finite number of points , we write  
, f = (g)  if  f = O(g)  and g = O(f).  In other words the big-theta can be defined as Θ
 f= (g) if f= O(g)  and f = (g) Θ Ω
Example: f(n) = n3 + 10n2 ,   g(n) = n3   then f = Θ (g) 
Proof:  n3 + 10n2 ≤  2*10n3 , n >1  Choosing n0 =1 and c = 2*10. 
 Or n3 + 10n2 ≤10n3 + 10n3  n >1 Which is trivially true  
 ∴  f(n) = O(g(n))…………………(1) 
Again, n3 ≤  1. (n3 + 10n2) , n>1    choosing c =1, n0 =1  
          Which is trivially true. 
 Hence  g(n) = O(f(n)) …………………..(2) 
 From (1) and (2)  it is concluded that 
f(n) = (g(n)) Θ
 
Some commonly used functions in complexity analysis and their order of complexity 
f(n) = c constant O(1) 
f(n) = clogn logarithmic O(logn) 
f(n) =  cn linear  O(n) 
f(n) = cnlogn linearithmic  O(nlogn) 
f(n) = cn2  quadratic O(n2) 
f(n) = cn3 cubic  O(n3) 
f(n) = cnk k polynomial in n O(nk) 
f(n) = ckn exponential in k    O(nk)  
The order of complexity: 
f(n) = c<logn<n < nlogn < n2 < n3 < …………<kn

f(n) =kn 

f(n) =nk

f(n) =n3

f(n) =n2

f(n) =nlogn 

f(n) =n 

f(n) = c 

f(n) =logn 

f(n) 

n → 
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Time and Space Complexity of  a Turing Machine: 
The model of computation we have chosen is the TM when a Turing machine answers a 

specific instance of a decision problem, we can measure time ( the no of moves ) and the space   
( no. of tape squares ) required by the computation. The most obvious measure of the size of any 
instance is the length of the input string. The worst case is considered as the maximum time or 
space that might be required by any string of that length. 

 

The time and space complexity of a Turing machine ( deterministic ) can be defined as : 
Let T be a Turing machine. The time complexity of T is the function Tτ  defined on the 

natural number as follows. For n ∈ N ,  Tτ (n) is the maximum number of moves T can make on 
any input string of length n . If there is an input string |x|  = n so that T loops forever on input x,  

Tτ (n) is undefined. 
  The space complexity function  of T is defined as follows.  Ts

For some input of length n, causes T to loop forever (n) is undefined. Ts
If no input string of length n causes T to use an infinite no of  tape square, (n) is the 

maximum number of tape squares used by T for any input string of length n. 
Ts

If T is multi-tape TM, “no of tape squares” means the maximum of the no of individual 
tapes.   

For some input of length n, causes T to loop forever  (n) Ts  undefined. 
       Time and space complexity of NTM :   

Let T be a non-deterministic TM accepting a language time *∑⊆L  . For an input x, we 
define the computation time as follows. 
●  First   xτ   is undefined if it is possible for T to loop forever on input x. 
●  If  , Lx∈ xτ   is the minimum number of move required for T to accept input x. 
●  If  , Lx∉ xτ    is the minimum number of moves required for t to reject x. 

The non-deterministic time complexity of T is the function Tτ  (n) is the maximum value 
of xτ  over string x with |x| = n. Thus  Tτ (n) is defined unless there is a string of length n on 
which T loop for ever. 

 
Similarly space   is undefined if T loop forever on input x. Otherwise it is the 

minimum no of tape squares required in accepting or rejecting x. 
xs

  The non-deterministic space complexity of T is the function    (n) is undefined if T can 
loop forever on some input of length n, and otherwise (n) is the maximum of the numbers  
for |x| = n. 

Ts

xs xs

 
Reducibility 
 Reducibility is a way of converging one problem into another problem in such a way that  
a solution to the second problem can be used to solve first problem. Such "reducibilities" comes 
up in our every day life. 
 For example: Suppose we want to find a way around a new city. We know this would be 
easy if we have a city map. Thus we can reduce the problem of finding  our way around the city 
to the problem of obtaining  a map of the city. 
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 Reduction doesn't mean to make smaller, but it means to transform or convert  a problem 
X to another  problem Y that is at least as hard as X. Usually Y is at least as hard as X and so we 
express a reduction from X to Y as X <= Y. 
 

Reducibility is primary method for proving that a  problem is computationally unsolvable. 
Reducibility says nothing about solving X orY alone  only about the solvability of X in the 
presence of Y. 
 For example :  

♦ problem of measuring the area of a rectangle to the problem of increasing its height 
and width .  

♦ The problem of solving linear equation reduces to the problem of inverting matrices. 
 

 

Intractability:   
Intractability  is technique for showing problems not to be solvable in polynomial time. 

● The problems that can be solved by any computational model (TM) using no more time then 
some slowly growing function size of the input are called “tractable ”, i.e. those problems 
solvable within reasonable time and space constraints ( polynomial time ) 
 

To  introduce intractability theory;  the classes P and NP of problems solvable in 
polynomial time by deterministic and non-deterministic TM’s are essential. A solvable problem 
is one that can be solved by a particular algorithm i.e. there is a certain algorithm to solve  this 
problem. But in practice algorithm may require a lot of space and time . When  the space and 
time required for implementing the steps of the particular algorithm are reasonable , we can say 
that the problem is tractable,  that is solvable in practice. 

A decision problem is tractable if there is an algorithm to solve the given problem and 
time required is expressed  as a polynomial  P(n) , n being the length of input. Problems are 
intractable  if the time required for any of the algorithm is at least  f(n) , where f is an exponential 
function of n. 

We know that if a turing machine of any kind , either  multiple tape, multi-track etc. halts 
after polynomial number of steps , then there is an equivalent Turing machine of any other kind 
which also halts in polynomial number of steps but only polynomials may be different.  

 
 
Definition of the Class P:   The class P is the set of problems that can be solved by a 
deterministic TM in polynomial time. 
   A Language L is in class P if there is some polynomial T(n) such that L=L (M) for some 
deterministic TM  M of time complexity T(n) 
   Sorting , searching , shortest path problems are examples of problems in  P  
Example: Kruskal's Algorithm for MST  
Idea: It selects initially n nodes as n-trees i.e a forest with n trees 
• It combines two trees by connecting them by a lowest cast edge that does not form cycle.  
Algorithm: 

1. T= n nodes. 
2. while T contains fewer than n-1 edges and φ≠E  do  
3. { - Chose an edge (v,w) from E of lowest cost 
4.    – delete (v,w) from E 
5.    – If adding edge (v,w) to T does not from cycle  
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   then add edge (v,w) to T 
   else discard (v,w). 

 }  
Complexity of kruskal's algorithm is  |)|log|(| EEO
Complexity of Dijkstra's shertest path is   )( 2nO
These problems are in class P  
 
 
 
 

The class NP :  The class of decision problems for which there is a polynomially bounded non-
deterministic algorithm is, called class NP . 
We can say, a Language L is in NP if there is a NTM  M and a polynomial time complexity T(n) 
such that L = L (M) and M is given an input of length n .  
 

●  Since every deterministic TM is a non-deterministic TM having no choice of moves,  
. But NP contains many problems not in P . 

NPP ⊆

   Traveling Salesman problem is  class 
TSP:-  Input- A graph G(v,e) having weight in each edge Question asked is, whether the graph 
has a :Hamilton circuit" of total weight as weight equal to MST of G. 
Hamilton circuit is a set of edges that connect the nodes into a single cycle, with each node 
appearing exactly once.  
No of edges on Hamilton circuit must be equal to the no of nodes in the graph.  
   

Although the definition of P and NP are seems similar, but there is a vast difference 
between them. When L is in P, the number of moves to test whether any string of length n is less 
then or equal to P (n) where P(n) is a polynomial function of n.  

The Big question :  Is  P = NP ? 
 No body has suggested answer to this question. This is an open question for computational 
complexity research. 
 
NP – Completess: 
Let L be a problem in NP. We say that L is NP-complete if the following statements are true 
about L: 

a. L is in NP 
b. For every language  in NP there exist a polynomial time reduction of  to L: 1L 1L

Once we have some NP-complete problem, we can prove a new problem to be NP-complete by 
reducing some know NP-complete problem to it, using a polynomial-time reduction. 

Now let us discuss some properties of NP-complete problems. 
1. No polynomial time algorithm has been found fro any one of them. 
2. It is not established that polynomial time algorithm fro these problems do not exist.  
3. If a polynomial-time algorithm is found for one of them, there will be polynomial-time 

algorithm for all of them. 
4. If it can be proved that no polynomial time algorithm exists for any one of them, then it 

will not exist for every one of them. 
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There are several example of NP-complete problems such as traveling salesman problem, 
zero-one programming problem, satisfiability problem and vertex-cover problem here we are 
not discussing detail of these example. 
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NP – Complete Problem: 
  A problem Π  is NP – complete if ∈Π  NP  and every other problems in NP is polynomially 
reducible to Π  . 
   SAT is NP  complete : [Cook’s Theorem]  
 
CNF –Satisfiability : 

♦ A logical variable is a variable that can take values “true” or “false” [1 or 0] 
♦ A literal is a logical variable or it’s negation. 
♦ A clause is a sequence of literals separated by Boolean OR(  ) operators. e.g. 

 
∨

)( 321 aaa ∨∨
♦ A Conjunctive Normal Form (CNF) is a sequences of clauses separated by AND(∧ ) 

operators. e.g. )( 321 aaa ∨∨ ∧ 21( aa ∨  
 

The CNF-SAT problem: 
 Given : A logical expression E in CNF. 
Question: Is there a truth assignment to the variables of E that make E  true ?  
Example: 
 )()()()()(1 qspsrrprqsqpE ¬∨¬∨¬∧∨¬∧∨¬∧∨¬∧∨∨=
if p=1, q=0, r=1,s=1 then 
E1 = 1∧ 1 1 1 1 = 1 Which is satisfied. ∧ ∧ ∧
 

)()()()(2 babababaE ¬∨¬∧∨¬∧¬∨∧∨=    
E2 is not satisfied for any truth assignment of variables. 

♦ No polynomial time algorithm is known to solve SAT problem. 
 

NP-Hard Problem: A problem  is called  NP -Hard if every problem in NP is 
polynomially reducible to Π .  

Π

Hamiltonian cycle, Graph coloring etc  are NP -Hard. 
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