
Automata Theory Computational Complexity

Computational Complexity:
 The complexity of computational problems can be discussed by choosing a specific

abstract machine as a model of computation and considering how much time and/or space
machine of that type require for the solution of that problem.
♦ A given problem can be solved by using more than one computational model i.e. there may

be more than one TM that solve the problem. It is thus necessary to measure the qualities of
alternative model to solve the same computational problem.

♦ The quality of an computational model is measured usually in terms of the resources needed
by the algorithm for its execution.

♦ The two important resources used for executing a given algorithm are (i) Time (ii)
memory , required to execute that algorithm.

♦ When estimating execution time(Time complexity) we are interested in growth rate and not
in absolute time.

♦ Similarly , we are interested in growth rate of memory need(space complexity) rather than
the absolute value of space.

♦ So the boundary time and boundary space for executing an algorithm are usually expressed in
terms of known mathematical functions.

Notation for comparing growth rate.
 The Big-Oh notation: Suppose f,g: N→ N are functions defined in a finite number of points,
we write,
 f(n) = O(g(n)) or simply f= O(g), if there are two positive constants c and n0 such that for
all n>n0 , f(n) c g(n), n>n≤ 0
i.e. g is upper bound of f. Also f is “Big-Oh” of g.

Example: f(n) = (n+1)2

 + n. g(n) = n2 then f(n) = O(g(n))
Proof: We can choose c and n0 to satisfy the requirement
f(n) ≤ c g(n) , n> n0
 i.e. (n+1)2 + n ≤ c n2 , n> n0
or n2 +3n +1 cn≤ 2

 , n> n0
Choose n0 = 1 and c = 6
Then n2 +3n +1≤6n2 , n >1
Which is trivially true. Hence f(n) = O(g(n)).

Big-Omega (Ω): A function f(n) is said to be “big-Omega of g(n)” and we write,
f(n) = (g(n)) , if there exist two positive constants c and nΩ 0 such that
 f(n) c g(n) , n>n≥ 0 i.e . g is lower bound of f.
Example: g(n)= 10n2+n , f(n) = n3 then f = Ω (g)
Proof: Choose c and n0 to satisfy the relation f(n) c g(n) , n> n≥ 0 as
 c = 1/20 and n0 = 1

i.e. n3 ≥
20
1 (10n2 + n) , n>1

or 20 n3 ≥ 10 n2 + n , n>1
Which is trivially true. Hence f(n) = Ω (g(n))

 -HGC 1

For more notes visit https://collegenote.pythonanywhere.com

Automata Theory Computational Complexity

Big Theta(Θ): Let f, g: N → N are functions defined over a finite number of points , we write
, f = (g) if f = O(g) and g = O(f). In other words the big-theta can be defined as Θ
 f= (g) if f= O(g) and f = (g) Θ Ω
Example: f(n) = n3 + 10n2 , g(n) = n3 then f = Θ (g)
Proof: n3 + 10n2 ≤ 2*10n3 , n >1 Choosing n0 =1 and c = 2*10.
 Or n3 + 10n2 ≤10n3 + 10n3 n >1 Which is trivially true
 ∴ f(n) = O(g(n))…………………(1)
Again, n3 ≤ 1. (n3 + 10n2) , n>1 choosing c =1, n0 =1
 Which is trivially true.
 Hence g(n) = O(f(n)) …………………..(2)
 From (1) and (2) it is concluded that
f(n) = (g(n)) Θ

Some commonly used functions in complexity analysis and their order of complexity
f(n) = c constant O(1)
f(n) = clogn logarithmic O(logn)
f(n) = cn linear O(n)
f(n) = cnlogn linearithmic O(nlogn)
f(n) = cn2 quadratic O(n2)
f(n) = cn3 cubic O(n3)
f(n) = cnk k polynomial in n O(nk)
f(n) = ckn exponential in k O(nk)
The order of complexity:
f(n) = c<logn<n < nlogn < n2 < n3 < …………<kn

f(n) =kn

f(n) =nk

f(n) =n3

f(n) =n2

f(n) =nlogn

f(n) =n

f(n) = c

f(n) =logn

f(n)

n →

 -HGC 2

For more notes visit https://collegenote.pythonanywhere.com

Automata Theory Computational Complexity

Time and Space Complexity of a Turing Machine:
The model of computation we have chosen is the TM when a Turing machine answers a

specific instance of a decision problem, we can measure time (the no of moves) and the space
(no. of tape squares) required by the computation. The most obvious measure of the size of any
instance is the length of the input string. The worst case is considered as the maximum time or
space that might be required by any string of that length.

The time and space complexity of a Turing machine (deterministic) can be defined as :
Let T be a Turing machine. The time complexity of T is the function Tτ defined on the

natural number as follows. For n ∈ N , Tτ (n) is the maximum number of moves T can make on
any input string of length n . If there is an input string |x| = n so that T loops forever on input x,

Tτ (n) is undefined.
 The space complexity function of T is defined as follows. Ts

For some input of length n, causes T to loop forever (n) is undefined. Ts
If no input string of length n causes T to use an infinite no of tape square, (n) is the

maximum number of tape squares used by T for any input string of length n.
Ts

If T is multi-tape TM, “no of tape squares” means the maximum of the no of individual
tapes.

For some input of length n, causes T to loop forever (n) Ts undefined.
 Time and space complexity of NTM :

Let T be a non-deterministic TM accepting a language time *∑⊆L . For an input x, we
define the computation time as follows.
● First xτ is undefined if it is possible for T to loop forever on input x.
● If , Lx∈ xτ is the minimum number of move required for T to accept input x.
● If , Lx∉ xτ is the minimum number of moves required for t to reject x.

The non-deterministic time complexity of T is the function Tτ (n) is the maximum value
of xτ over string x with |x| = n. Thus Tτ (n) is defined unless there is a string of length n on
which T loop for ever.

Similarly space is undefined if T loop forever on input x. Otherwise it is the

minimum no of tape squares required in accepting or rejecting x.
xs

 The non-deterministic space complexity of T is the function (n) is undefined if T can
loop forever on some input of length n, and otherwise (n) is the maximum of the numbers
for |x| = n.

Ts

xs xs

Reducibility
 Reducibility is a way of converging one problem into another problem in such a way that
a solution to the second problem can be used to solve first problem. Such "reducibilities" comes
up in our every day life.
 For example: Suppose we want to find a way around a new city. We know this would be
easy if we have a city map. Thus we can reduce the problem of finding our way around the city
to the problem of obtaining a map of the city.

 -HGC 3

For more notes visit https://collegenote.pythonanywhere.com

Automata Theory Computational Complexity

 Reduction doesn't mean to make smaller, but it means to transform or convert a problem
X to another problem Y that is at least as hard as X. Usually Y is at least as hard as X and so we
express a reduction from X to Y as X <= Y.

Reducibility is primary method for proving that a problem is computationally unsolvable.
Reducibility says nothing about solving X orY alone only about the solvability of X in the
presence of Y.
 For example :

♦ problem of measuring the area of a rectangle to the problem of increasing its height
and width .

♦ The problem of solving linear equation reduces to the problem of inverting matrices.

Intractability:
Intractability is technique for showing problems not to be solvable in polynomial time.

● The problems that can be solved by any computational model (TM) using no more time then
some slowly growing function size of the input are called “tractable ”, i.e. those problems
solvable within reasonable time and space constraints (polynomial time)

To introduce intractability theory; the classes P and NP of problems solvable in
polynomial time by deterministic and non-deterministic TM’s are essential. A solvable problem
is one that can be solved by a particular algorithm i.e. there is a certain algorithm to solve this
problem. But in practice algorithm may require a lot of space and time . When the space and
time required for implementing the steps of the particular algorithm are reasonable , we can say
that the problem is tractable, that is solvable in practice.

A decision problem is tractable if there is an algorithm to solve the given problem and
time required is expressed as a polynomial P(n) , n being the length of input. Problems are
intractable if the time required for any of the algorithm is at least f(n) , where f is an exponential
function of n.

We know that if a turing machine of any kind , either multiple tape, multi-track etc. halts
after polynomial number of steps , then there is an equivalent Turing machine of any other kind
which also halts in polynomial number of steps but only polynomials may be different.

Definition of the Class P: The class P is the set of problems that can be solved by a
deterministic TM in polynomial time.
 A Language L is in class P if there is some polynomial T(n) such that L=L (M) for some
deterministic TM M of time complexity T(n)
 Sorting , searching , shortest path problems are examples of problems in P
Example: Kruskal's Algorithm for MST
Idea: It selects initially n nodes as n-trees i.e a forest with n trees
• It combines two trees by connecting them by a lowest cast edge that does not form cycle.
Algorithm:

1. T= n nodes.
2. while T contains fewer than n-1 edges and φ≠E do
3. { - Chose an edge (v,w) from E of lowest cost
4. – delete (v,w) from E
5. – If adding edge (v,w) to T does not from cycle

 -HGC 4

For more notes visit https://collegenote.pythonanywhere.com

Automata Theory Computational Complexity

 then add edge (v,w) to T
 else discard (v,w).

 }
Complexity of kruskal's algorithm is |)|log|(| EEO
Complexity of Dijkstra's shertest path is)(2nO
These problems are in class P

The class NP : The class of decision problems for which there is a polynomially bounded non-
deterministic algorithm is, called class NP .
We can say, a Language L is in NP if there is a NTM M and a polynomial time complexity T(n)
such that L = L (M) and M is given an input of length n .

● Since every deterministic TM is a non-deterministic TM having no choice of moves,
. But NP contains many problems not in P .

NPP ⊆

 Traveling Salesman problem is class
TSP:- Input- A graph G(v,e) having weight in each edge Question asked is, whether the graph
has a :Hamilton circuit" of total weight as weight equal to MST of G.
Hamilton circuit is a set of edges that connect the nodes into a single cycle, with each node
appearing exactly once.
No of edges on Hamilton circuit must be equal to the no of nodes in the graph.

Although the definition of P and NP are seems similar, but there is a vast difference
between them. When L is in P, the number of moves to test whether any string of length n is less
then or equal to P (n) where P(n) is a polynomial function of n.

The Big question : Is P = NP ?
 No body has suggested answer to this question. This is an open question for computational
complexity research.

NP – Completess:
Let L be a problem in NP. We say that L is NP-complete if the following statements are true
about L:

a. L is in NP
b. For every language in NP there exist a polynomial time reduction of to L: 1L 1L

Once we have some NP-complete problem, we can prove a new problem to be NP-complete by
reducing some know NP-complete problem to it, using a polynomial-time reduction.

Now let us discuss some properties of NP-complete problems.
1. No polynomial time algorithm has been found fro any one of them.
2. It is not established that polynomial time algorithm fro these problems do not exist.
3. If a polynomial-time algorithm is found for one of them, there will be polynomial-time

algorithm for all of them.
4. If it can be proved that no polynomial time algorithm exists for any one of them, then it

will not exist for every one of them.

 -HGC 5

For more notes visit https://collegenote.pythonanywhere.com

Automata Theory Computational Complexity

There are several example of NP-complete problems such as traveling salesman problem,
zero-one programming problem, satisfiability problem and vertex-cover problem here we are
not discussing detail of these example.

 -HGC 6

For more notes visit https://collegenote.pythonanywhere.com

Automata Theory Computational Complexity

NP – Complete Problem:
 A problem Π is NP – complete if ∈Π NP and every other problems in NP is polynomially
reducible to Π .
 SAT is NP complete : [Cook’s Theorem]

CNF –Satisfiability :

♦ A logical variable is a variable that can take values “true” or “false” [1 or 0]
♦ A literal is a logical variable or it’s negation.
♦ A clause is a sequence of literals separated by Boolean OR() operators. e.g.

∨

)(321 aaa ∨∨
♦ A Conjunctive Normal Form (CNF) is a sequences of clauses separated by AND(∧)

operators. e.g.)(321 aaa ∨∨ ∧ 21(aa ∨

The CNF-SAT problem:
 Given : A logical expression E in CNF.
Question: Is there a truth assignment to the variables of E that make E true ?
Example:
)()()()()(1 qspsrrprqsqpE ¬∨¬∨¬∧∨¬∧∨¬∧∨¬∧∨∨=
if p=1, q=0, r=1,s=1 then
E1 = 1∧ 1 1 1 1 = 1 Which is satisfied. ∧ ∧ ∧

)()()()(2 babababaE ¬∨¬∧∨¬∧¬∨∧∨=
E2 is not satisfied for any truth assignment of variables.

♦ No polynomial time algorithm is known to solve SAT problem.

NP-Hard Problem: A problem is called NP -Hard if every problem in NP is
polynomially reducible to Π .

Π

Hamiltonian cycle, Graph coloring etc are NP -Hard.

 -HGC 7

For more notes visit https://collegenote.pythonanywhere.com

