
Design and Analysis of
Algorithms
(CSC-314)

B.Sc. CSIT

Course Description

Design and Analysis of Algorithms (CSC-314)

● This course introduces basic elements of the design and
analysis of computer algorithms.

● Topics include asymptotic notations and analysis, divide
and conquer strategy, greedy methods, dynamic
programming, basic graph algorithms,NP-completeness,
and approximation algorithms.

● For each topic, beside in-depth coverage, one or more
representative problems and their algorithms shall be
discussed

Objectives of the course

Design and Analysis of Algorithms (CSC-314)

● Analyze the asymptotic performance of algorithms.
● Demonstrate a familiarity with major algorithm design

techniques.
● Apply important algorithmic design paradigms and

methods of analysis.
● Solve simple to moderately difficult algorithmic

problems arising in applications.
● Able to demonstrate the hardness of simple NP-

complete problems.

Prerequisites

Design and Analysis of Algorithms (CSC-314)

● For learning this DAA, you should know the basic
programming and mathematics concepts and data
structure concepts.

● The basic knowledge of algorithms will also help you
learn and understand the DAA concepts easily and
quickly.

Text and Reference Books

Design and Analysis of Algorithms (CSC-314)

● Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest and Clifford Stein, “Introduction to algorithms”,
Third Edition.. The MIT Press, 2009.

● Ellis Horowitz, SartajSahni, SanguthevarRajasekiaran,
“Computer Algorithms”, Second Edition, Silicon Press,
2007.

● Kleinberg, Jon, and Eva Tardos, “ Algorithm Design” ,
Addison-Wesley, First Edition, 2005

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

● What are Algorithms?

● Why is the study of algorithms worthwhile?

● What is the role of algorithms relative to other
technologies used in computers?

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is an algorithm?
● Algorithm is a set of steps to complete a task.

For Example:
● Task: to make a cup of tea
● Algorithm:

– add water and milk to the kettle,
– boil it, add tea leaves,
– Add sugar, and then serve it in cup.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is an algorithm?

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is Algorithms?
● A set of steps to accomplish or complete a task

that is described precisely enough that a computer
can run it.

● Described precisely: very difficult for a machine to know
how much water, milk to be added etc. in the above
tea making algorithm.

● These algorithms run on computers or
computational devices. For example, GPS in our
smartphones, Google hangouts.

● GPS uses shortest path algorithm.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is Algorithms?
● An Algorithm is a set of well-defined instructions

designed to perform a specific set of tasks.

● Algorithms are used in Computer science to perform
calculations, automatic reasoning, data processing,
computations, and problem-solving.

● Designing an algorithm is important before writing the
program code as the algorithm explains the logic even
before the code is developed.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is Algorithms?
● Informally, an algorithm is any well-defined computational

procedure that takes some value, or set of values, as input
and produces some value, or set of values, as output.

● An algorithm is thus a sequence of computational steps
that transform the input into the output.

● We can also view an algorithm as a tool for solving a well-
specified computational problem.

● The statement of the problem specifies in general terms
the desired input/output relationship.

● The algorithm describes a specific computational
procedure for achieving that input/output relationship.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is Algorithms?
● For example, we might need to sort a sequence of numbers

into non decreasing order.

● This problem arises frequently in practice and provides
fertile ground for introducing many standard design
techniques and analysis tools.

● Here is how we formally define the sorting problem:

– Input: A sequence of n numbers (a1 , a2, …. , an)

– Output: A permutation (reordering) (a’
1 , a’

2 , … , a’
n) of

the input sequence such that (a’
1 ≤ a’

2 ≤ … ≤ a’
n)

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is Algorithms?
● For example, given the

– Input sequence (31, 41, 59, 26, 41, 58), a sorting
algorithm returns as output the sequence (26, 31,
41, 41, 58, 59)

● Such an input sequence is called an instance of the
sorting problem.

● In general, an instance of a problem consists of the
input needed to compute a solution to the problem.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is Algorithms?
● An algorithm is said to be correct if, for every input

instance, it halts with the correct output.

● We say that a correct algorithm solves the given
computational problem.

● An incorrect algorithm might not halt at all on some
input instances, or it might halt with an incorrect
answer.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Properties of Algorithms:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Properties of Algorithms:
● Input(s)/output(s): There must be some inputs from the

standard set of inputs and an algorithm’s execution must
produce outputs(s).

● Definiteness: Each step must be clear and unambiguous.
● Finiteness: Algorithms must terminate after finite time or

steps.
● Correctness: Correct set of output values must be

produced from the each set of inputs.
● Effectiveness: Each step must be carried out in finite

time.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Properties of Algorithms:
● Feasibility: It must be feasible to execute each

individual instructions.
● Efficient: Efficiency is always measured in terms of

time and space requires implementing the algorithm, so
efficient algorithm uses the minimal running time and
memory space as possible.

● Independent: Independent of language. Such that, an
algorithm should focus only on what are inputs, outputs
and how to derive output.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Need of Algorithms:

● To understand the basic idea of a problem.
● To find the best approach to solve the problem.
● To improve the efficiency of existing techniques.
● To understand the basic principles of designing the

algorithms.
● And so on…!!!

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Advantages of Algorithms:
● It is easy to understand.
● Algorithm is a step-wise representation of a solution to a given

problem.
● In Algorithm the problem is broken down into smaller pieces or

steps hence, it is easier for the programmer to convert it into
an actual program.

Disadvantages of Algorithms:
● Writing an algorithm takes a long time so it is time-consuming.
● Branching and Looping statements are difficult to show in

Algorithms.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

How to Design an Algorithm?

In order to write an algorithm, following things are needed as
a prerequisites:
– The problem that is to be solved by this algorithm.
– The constraints of the problem that must be

considered while solving the problem.
– The input to be taken to solve the problem.
– The output to be expected when the problem the is

solved.
– The solution to this problem, in the given constraints.

Then, the algorithm is written with the help of above
parameters such that it solves the problem.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Algorithm analysis
● It involves calculating the complexity of algorithms,

usually either the time-complexity or the space-
complexity.

● Two common tools used for algorithm analysis are:
– RAM model of computation and
– Asymptotic analysis of worst-case complexity

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

RAM Model:
● Before we can analyze an algorithm, we must have a

model of the implementation technology that we will
use, including a model for the resources of that
technology and their costs.

● The generic processor random-access machine (RAM)
model of computation as our implementation
technology and understand that our algorithms will be
implemented as computer programs.

● In the RAM model, instructions are executed one after
another, with no concurrent operations.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

RAM Model:
● The RAM (Random Access Machine) model of computation

measures the run time of an algorithm by summing up the number
of steps needed to execute the algorithm on a set of data.

● The RAM model contains instructions commonly found in real
computers: arithmetic (such as add, subtract, multiply, divide,
remainder), data movement (load, store, copy), and control
(conditional and unconditional branch, subroutine call and return).

● Each such instruction takes a constant amount of time.
● The data types in the RAM model are integer and floating point (for

storing real numbers).
● In the RAM model, we do not attempt to model the memory

hierarchy that is common in contemporary computers. That is, we
do not model caches or virtual memory.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

RAM Model:
● This model encapsulates the core functionality of computers but

does not mimic them completely.
● For example, an addition operation and a multiplication operation

are both worth a single time step, however, in reality it will take a
machine more operations to compute a product versus a sum.

● The reason the RAM model makes these assumptions is because
doing so allows a balance between simplicity and completely
imitating underlying machine, resulting in a tool that is useful in
practice.

● The exact analysis of algorithms is a difficult task. It is the nature of
algorithm analysis to be both machine and language independent.
For example, if your computer becomes twice as fast after a recent
update, the complexity of your algorithm still remains the same.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

RAM Model:
● This model encapsulates the core functionality of computers but

does not mimic them completely.
● For example, an addition operation and a multiplication operation

are both worth a single time step, however, in reality it will take a
machine more operations to compute a product versus a sum.

● The reason the RAM model makes these assumptions is because
doing so allows a balance between simplicity and completely
imitating underlying machine, resulting in a tool that is useful in
practice.

● The exact analysis of algorithms is a difficult task. It is the nature of
algorithm analysis to be both machine and language independent.
For example, if your computer becomes twice as fast after a recent
update, the complexity of your algorithm still remains the same.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Time and Space Complexity
● We measure an algorithm’s efficiency using the time and space (memory) it

takes for execution.
● Time is important because we need our programs to run as fast as possible to

deliver the results quickly.
● Space is important because machines have only a limited amount of space to

spare for programs.
● The best algorithm is the one that completes its execution in the least amount

of time using the least amount of space.
● But often, in reality, algorithms have to tradeoff between saving space or time.
● That’s why the best algorithm for a given task is not something that’s fixed in

stone. The best algorithm depends on our requirements.
● If we need our algorithm to run as fast as possible despite the memory usage,

we can pick the most time-efficient algorithm as the best algorithm and vice
versa.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Time and Space Complexity
● Time Complexity: The time complexity of an algorithm

quantifies the amount of time taken by an algorithm to
run as a function of the length of the input. Note that
the time to run is a function of the length of the input
and not the actual execution time of the machine on
which the algorithm is running on.

● Space Complexity: The space complexity of an
algorithm quantifies the amount of space taken by an
algorithm to run as a function of the length of the input.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

● Time and Space Complexity depends on lots of things
like machine hardware, operating system, etc.

● However, we do not consider any of these factor while
analyzing the algorithm. We will only consider the
execution time of an algorithm. The time complexity of
an algorithm is commonly expressed using asymptotic
notations as:
– Big O -O(n)
– Big Theta -ϴ(n)
– Big Omega -Ω(n)

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Best, Worst, and Average Cases

● Usually, in asymptotic analysis, we consider three
cases when analyzing an algorithm:
– best,
– worst, and
– average.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Best Case
● We consider the combination of inputs that allows the

algorithm to complete its execution in the minimum amount
of time as the best-case scenario in terms of time
complexity. The execution time in this case acts as a lower
bound to the time complexity of the algorithm.

● In linear search, the best-case scenario occurs when k is
stored at the 0th index of the list. In this case, the algorithm
can complete execution after only one iteration of the for
loop.
– nums = [1, 2, 3, 4, 5, 6]
– n = 6
– k = 1

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Worst case
● Worst case scenario occurs when the combination of

inputs that takes the maximum amount of time for
completion is passed to the algorithm. The execution
time of the worst case acts as an upper bound to the
time complexity of the algorithm.

● In linear search, the worst case occurs when k is not
present in the list. This takes the algorithm n+1
iterations to figure out that the number is not in the list.
– nums = [1, 2, 3, 4, 5, 6]
– n = 6
– k = 7

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Average Case

● To find the average case, we get the sum of running
times of the algorithm for every possible input
combination and take their average.

● In linear search, the number of iterations the algorithm
takes to complete execution follows this pattern.
– nums = [1, 2, 3, 4, 5, 6]
– n = 6

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Average Case

● So, we can calculate the average running time of the
algorithm this way.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Examples of Time complexity:

for(i=0; i<n; i++) -n+1 times

{

…..

statements; - n times

}
● Here, we are only concerned about the execution of

statements, so Time complexity here is O(n).

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Examples of Time complexity:

for(i=0; i<n; i--) -n+1 times

{

…..

statements; - n times

}
● Here, we are only concerned about the execution of

statements, so Time complexity here is O(n).

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Examples of Time complexity:

for(i=0; i<n; i+2)

{

…..

statements; - n/2 times

}
● Here, we are only concerned about the execution of

statements, so Time complexity here is O(n).

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Examples of Time complexity:

for(i=0; i<n; i++) - n+1

{

for(j=0; j<n; j++) -n(n+1)

{

…..

statements; - n*n times

}

}
● Here, we are only concerned about the execution of

statements, so Time complexity here is roughly O(n2).

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Examples of Time complexity:

for(i=0; i<n; i++)

{

for(j=0; j<i; j++)

{

…..

statements;

}

}
● T(n)= 0+1+2+3+…..+n

 i.e. n(n+1)/2
● Here, we are only concerned about the execution of statements, so

Time complexity here is roughly O(n2).

i j No of times

0 0* 0

1 0 1

1*

2 0
1
2*

2

3 0
1
2
3*

3

..

n n n

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Examples of Time complexity:

for(i=0; i<n; i*2)

{ …..

statements;

}

● Assuming stopping condition, i>=n
– Here, i= 2k

– i.e. 2k >= n
– So, 2k =n
– K= log2 n

● Here, we are only concerned about the execution of statements,
so Time complexity here is roughly O(log2 n).

Initially: i=1
 1*2=2
 2*2=22

 2*3=23

 ..

 ….

 2k

Initially: i=1
 1*2=2
 2*2=22

 2*3=23

 ..

 ….

 2k

Initially: i=1
 1*2=2
 2*2=22

 2*3=23

 ..

 ….

 2k

Initially: i=1
 1*2=2
 2*2=22

 2*3=23

 ..

 ….

 2k

Initially: i=1
 1*2=2
 2*2=22

 22*2=23

 ..

 ….

 2k

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Summary

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Example : Fibonacci Series

– Input: n

– Output: nth Fibonacci number.

– Algorithm: assume a as first(previous) and b as second(current) numbers

–

● Efficiency

– Time Complexity: The algorithm above iterates up to n-2 times, so time complexity is
O(n).

– Space Complexity: The space complexity is constant i.e. O(1).

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Types of Functions

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Comparison of Functions

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Asymptotic Notations:
● In mathematics, asymptotic analysis, also known as

asymptotics, is a method of describing the limiting behavior of a
function.

● In computing, asymptotic analysis of an algorithm refers to
defining the mathematical boundation of its run-time
performance based on the input size.

● For example, the running time of one operation is computed as
f(n), and maybe for another operation, it is computed as g(n2).

● This means the first operation running time will increase linearly
with the increase in n and the running time of the second
operation will increase exponentially when n increases.

● Similarly, the running time of both operations will be nearly the
same if n is small in value.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Asymptotic Notations:
● Complexity analysis of an algorithm is very hard if we try to

analyze exact.
● we know that the complexity (worst, best, or average) of an

algorithm is the mathematical function of the size of the input.
● So if we analyze the algorithm in terms of bound (upper and

lower) then it would be easier.
● For this purpose we need the concept of asymptotic

notations.
– Best Case (Omega Notation)
– Average Case (Theta Notation)
– Worst Case (O Notation)

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-O Notations:
● The Big-O notation describes the worst-case running

time of a program.
● We compute the Big-O of an algorithm by counting how

many iterations an algorithm will take in the worst-case
scenario with an input of N.

● We typically consult the Big-O because we must always
plan for the worst case.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-O Notations:
● When we have only asymptotic upper bound then we use

O notation.
● A function f(x)=O(g(x)) (read as f(x) is big oh of g(x)) iff

there exists two positive constants c and x0 such that
for all x >=x0 , 0 <= f(x) <= c*g(x)

● The above relation says that g(x) is an upper bound of
f(x).

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-O Notations:
● For all values of n >= n 0 , plot shows clearly that f(n) lies below or

on the curve of c*g(n)

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-O Notations:

Example:

● Given, f(n) = 3n2 + 4n + 7 and g(n) = n2, then prove that f(n) =
O(g(n)).

– Proof: let us choose c and n0 values as 14 and 1 respectively
then we can have

● f(n) <= c*g(n), n>=n0 as
● 3n2 + 4n + 7 <= 14*n2 for all n >= 1

● The above inequality is true. Hence f(n) = O(g(n))

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-Ω Notation:
● Big-Ω (Omega) describes the best running time of a

program.
● We compute the big-Ω by counting how many iterations

an algorithm will take in the best-case scenario based on
an input of N.

● Big omega notation gives asymptotic lower bound. A
function f(x) = Ω (g(x)) (read as g(x) is big omega of g(x))
iff there exists two positive constants c and x 0 such that
for all x >= x0 , 0 <= c*g(x)<= f(x).

● The above relation says that g(x) is a lower bound of f(x).

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-Ω Notation:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-Ω Notation:
● Example: f(n) = 3n2 + 4n + 7 and g(n) = n2 , then prove

that f(n) = Ω (g(n)).

● Proof: let us choose c and n0 values as 1 and 1,
respectively then we can have

– f(n) >= c*g(n), n>=n0 as

– 3n2 + 4n + 7 >= 1*n2 for all n >= 1
● The above inequality is trivially true. Hence f(n) = Ω (g(n))

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-Θ Notation:
● We compute the big-Θ of an algorithm by counting the

number of iterations the algorithm always takes with an
input of n.

● When we need asymptotically tight bound then we use
notation.

● A function f(x) = (g(x)) (read as f(x) is big theta of g(x)) iff
there exists three positive constants c1 , c2 and x0 such
that for all x >= x0 , c1 *g(x) <= f(x) <= c2 *g(x)

● The above relation says that f(x) is order of g(x).

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-Θ Notation:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Big-Θ Notation:
● Example :f(n) = 3n2 + 4n + 7 and g(n) = n2 , then prove

that f(n) = (g(n)).

● Proof: let us choose c1 , c2 and no values as 14, 1 and 1
respectively then we can have,

– f(n) <= c1 *g(n), n>=n0 as 3n2 + 4n + 7 <= 14*n2 , and

– f(n) >= c2 *g(n), n>=n0 as 3n2 + 4n + 7 >= 1*n2 for
all n >= 1(in both cases).

● So, c2 *g(n) <= f(n) <= c1 *g(n) is trivial.

● Hence f(n) = Θ (g(n)).

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Mathematical Foundation

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Mathematical Foundation:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is Recursion?
● The process in which a function calls itself directly or

indirectly is called recursion and the corresponding
function is called as recursive function.

● Using recursive algorithm, certain problems can be
solved quite easily. Examples of such problems are
Towers of Hanoi (TOH), Inorder/Preorder/Postorder Tree
Traversals, DFS of Graph, etc.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is Recursion?
● Let us consider a problem that a programmer have to

determine the sum of first n natural numbers, there are
several ways of doing that but the simplest approach is
simply add the numbers starting from 1 to n. So the
function simply looks like,

● approach(1) – Simply adding one by o
– f(n) = 1 + 2 + 3 +……..+ n

● approach(2) – Recursive adding
– f(n) = 1 n=1
– f(n) = n + f(n-1) n>1

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is recursive algorithm?
● A recursive algorithm is an algorithm which calls itself

with "smaller (or simpler)" input values, and which
obtains the result for the current input by applying simple
operations to the returned value for the smaller (or
simpler) input.

● More generally if a problem can be solved utilizing
solutions to smaller versions of the same problem, and
the smaller versions reduce to easily solvable cases,
then one can use a recursive algorithm to solve that
problem.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is recursive algorithm?
● Example: Factorial

● n! = 1*2*3...*n and 0! = 1 (called initial case)
● So the recursive defintiion n! = n*(n-1)!

● Algorithm F(n):
● if n = 0 then return 1 // base case
● else F(n-1)*n // recursive call

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

What is recurrence relation?
● A recurrence relation is an equation that recursively

defines a sequence where the next term is a function of
the previous terms (Expressing Fn as some combination
of Fi with i<n).

● Example −

● Fibonacci series − Fn = Fn-1 + Fn-2

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Solving recurrence relation?
● Recursion Tree Method,
● Substitution Method,
● Masters Method

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method
● This methods is a pictorial representation of every

iteration which is in the form of tree where each level
nodes are expanded.

● In recursion tree each root and child represent the cost of
a single sub program.

● We sum the costs within each of the levels of the tree to
obtain a set of pre-level cost and sum all pre-level cost to
determine the total cost of all level of recursion.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method
● Examples:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method
● Examples:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method
● Examples:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method
● Examples:
● O+1+2+3+…...+(n-1)+n =n(n+1)/2 = O(n2)

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method
● Examples:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method
● Examples:
● T(n)= logn+log(n-1)+log(n-2)+...+log(2)+log(1)

= log[n*(n-1)*….*2*1)]

=log(n!)

=O(nlogn)

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method
● Examples:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method
● Examples:

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Recursion Tree Method

● Examples: T(n)= {1 , n=0

 2T(n-1) +1, n>1

● T(n)= 1+2+22 +23 +……..+2k

● This pattern follow geometric series like,

a+ar+ar2+…..+ark = a(rk+1-1) /(r-1)

● Here a=1 and r=2, Then

T(n)= 1(2k+1-1) /(2-1) = 2k+1-1)

● Assuming, (n-k)=0 then n=k gives,

T(n)= 2n-1-1 i.e. O(2n)

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Substitution Method

● Example 1

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Substitution Method

● Example 1
●

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Substitution Method

● Example 1

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Substitution Method

● Example 2

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Substitution Method

● Example 2

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Substitution Method

● Example 2

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Substitution Method

● Example 3

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Master Method
● Master method is a direct way of getting the solution.
●

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Master Method : General form

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Master Method: Example

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Master Method: Example

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Master Method: Example

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Master Method: Example

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Master Method: Example

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Master Method: Example

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Summary of some Recurrence functions

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Class Assignments

● How algorithm is a technology ? Explain.

● What do you understand by Analysis of Algorithm? Briefly
explain the use of RAM Model in algorithm analysis.

● Briefly explain the Aggregate Analysis with example.

● What is Asymptotic Analysis? Does Asymptotic Analysis
always work?

● Discuss some general properties of Asymptotic Notations.

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Class Assignments

● Solve the following Recurrence relations using master
methods.
– T(n)= 2T(n/4)+√n
– T(n)= 2T(2n/3)+1
– T(n)= 9T(n/3)+n
– T(n)= 4T(n/2)+n2

– T(n)= 3T(n/2)+n
– T(n)= 3T(n/4)+n log n
– T(n)= 4T(n/4)+n2/ log n

●

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Class Assignments

● Solve the following Recurrence relations using Recursion
tree methods.
– T(1)=1 when n=1

T(n)= T(n-1)+1 when n>1
– T(1)=1 when n=1

T(n)= 2T(n/2)+1 when n>1
– T(1)=1 when n=1

T(n)= 2T(n/2)+n when n>1

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Class Assignments

● Solve the following Recurrence relations using substitution
methods.
– T(1)=1 when n=1

T(n)= T(n-1)+1 when n>1
– T(1)=1 when n=1

T(n)= 2T(n/2)+1 when n>1
– T(1)=1 when n=1

T(n)= 8T(n/2)+n 2 when n>1
– T(1)=1 when n=1

T(n)= 4T(n/2)+n when n>1

Unit-1: Foundation of Algorithm Analysis

Design and Analysis of Algorithms (CSC-314)

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

