
Unit 1

.NET Framework & Language Constructs



Introduction to .NET Framework

 .NET is a software framework which is designed and developed by 
Microsoft. 

 first version of the .Net framework was 1.0 which came in the year 2002. 

 and the current version is 4.7.1. 

 In easy words, it is a virtual machine for compiling and executing programs 
written in different languages like C#, VB.Net etc. 

 used to develop Windows Form-based applications, Web-based 
applications, and Web services. 

 VB.Net and C# being the most common ones. 

 It is used to build applications for Windows, phone, web, etc.

 .NET is not a language (Runtime and a library for writing and executing 
written programs in any compliant language)



Introduction to .NET Framework

 .NET Framework supports more than 60 programming 
languages in which 11 are designed and developed by 
Microsoft, 

 Some of them includes:
◦ C#.NET

◦ VB.NET

◦ C++.NET

◦ J#.NET

◦ F#.NET

◦ JSCRIPT.NET

◦ WINDOWS POWERSHELL



Base Class Library

Common Language Specification

Common Language Runtime

ADO.NET: Data and XML

VB VC++ VC#

V
is

u
a

l S
tu

d
io

.N
E

T
ASP.NET: Web Services

and Web Forms

JScript …

Windows

Forms

Framework, Languages, And Tools



The .NET Framework
.NET Framework Services

 Common Language Runtime
 Windows® Forms
 ASP.NET
◦Web Forms
◦Web Services

 ADO.NET, evolution of ADO
 Visual Studio.NET



Common Language Runtime (CLR)

CLR works like a virtual machine in executing all languages.  

All .NET languages must obey the rules and standards imposed 
by CLR. Examples:

◦ Object declaration, creation and use

◦ Data Types, language libraries

◦ Error and exception handling

◦ Interactive Development Environment (IDE)



Common Language Runtime(CLR)

 Development
◦ Mixed language applications

 Common Language Specification (CLS)

 Common Type System (CTS)

 Standard class framework

 Automatic memory management

◦ Consistent error handling and safer execution

◦ Potentially multi-platform

 Deployment
◦ Removal of registration dependency

◦ Safety – fewer versioning problems



Common Language Runtime
Multiple Language Support

• CTS is a rich type system built into the CLR
– Implements various types (int, double, etc)

– And operations on those types

• CLS is a set of specifications that language and library 
designers need to follow
– This will ensure interoperability between languages



Compilation and Execution of .NET Application

Code in VB.NET Code in C#
Code in another 
.NET Language

VB.NET compiler C# compiler
Appropriate

Compiler

IL(Intermediate
Language) code

CLR just-in-time
execution



Compilation and Execution of .NET Application

 Any code written in any .NET complaint languages when compiled, 
converts into MSIL (Microsoft Intermediate Language) code in form of an 
assembly through CLS, CTS.

 IL is the language that CLR can understand. 

 On execution, this IL is converted into binary code(machine code) by 
CLR’s just in time compiler (JIT) and these assemblies or DLL are loaded 
into the memory.

 Compilation can be done with Debug or Release configuration. The 
difference between these two is that in the debug configuration, only an 
assembly is generated without optimization. However, in release 
complete optimization is performed without debug symbols.



Basic Languages constructs

 Data Types

 Variables

 Conditional Statements

 Looping Statements

 Array

 Functions

 Class, Object, Methods, Properties

 Inheritance, Polymorphism



Lets Get Started

 Before we begin, download visual studio 2019

 Here is the download link

 https://visualstudio.microsoft.com/downloads/

https://visualstudio.microsoft.com/downloads/


C# Overview

 C# is general-purpose, object-oriented programming language 
developed by Microsoft. 

 C# is designed for Common Language Infrastructure (CLI), which 
consists of the executable code and runtime environment that 
allows use of various high-level languages on different computer 
platforms and architectures. 

 Reasons - C# a widely used professional language:
◦ It is object oriented & structured language 

◦ It is component oriented.

◦ It is easy to learn & produces efficient programs. 

◦ It can be compiled on a variety of computer platforms.

◦ a part of .Net Framework.



Strong Programming Features of C# 

 Boolean Conditions

 Automatic Garbage Collection

 Standard Library

 Assembly Versioning

 Properties and Events

 Delegates and Events Management

 Easy-to-use Generics

 Indexers

 Conditional Compilation

 Simple Multithreading

 LINQ and Lambda Expressions

 Integration with Windows



C# Program Structure

namespace ConsoleApplication1

{

class Program

{

static void Main(string[] args)

{

}

}

}



C# - Program.cs (First Program in C#)

namespace ConsoleApplication1

{

class Program

{

static void Main(string[] args)

{

}

}

}



Data Types

 int

 short

 long

 char

 string

 bool

 float

 decimal

 double

 object

float f1 = 10.31f ;
decimal d1 = 23.34m ;
string name = “Your Name” ;

int x = 10;
object obj = x; // boxing, implicit
int y = (int) obj ;  //unboxing, explicit



C# - Program.cs (First Program in C#)

namespace ConsoleApplication1

{

class Program

{

static void Main(string[] args)

{

Console.WriteLine(“My First Program in C#”);

Console.ReadKey();

}

}

}



Example



Operator

 Arithmetic : 

◦ +, -, *, /, %, ++, --

 Comparison : 

◦ >, <, >=, <=, ==, ===, !=

 Logical : 

◦ && (AND), || (OR), ! (NOT)

 Assignment : 

◦ =, +=, -=, *=, /=, %=

 Conditional or Ternary - ? :  
20



Arithmetic
Operator

21

Operator Description Example Result

+ Addition x=2 4

y=2

x+y

- Subtraction x=5 3

y=2

x-y

* Multiplication x=5 20

y=4

x*y

/ Division 15/5 3

5/2 2,5

% Modulus (division 
remainder)

5%2 1

10%8 2

10%2 0

++ Increment x=5 x=6

x++

-- Decrement x=5 x=4

x--



Assignment
Operator

22

Operator Example Is The Same As

= x=y x=y

+= x+=y x=x+y

-= x-=y x=x-y

*= x*=y x=x*y

/= x/=y x=x/y

%= x%=y x=x%y



Comparison
Operator

23

Operator Description Example

== is equal to 5==8 returns false

=== is equal to (checks for both 
value and type)

x=5

y="5"

x==y returns true

x===y returns false

!= is not equal 5!=8 returns true

> is greater than 5>8 returns false

< is less than 5<8 returns true

>= is greater than or equal to 5>=8 returns false

<= is less than or equal to 5<=8 returns true



Logical
Operator

24

Operator Description Example

&& and x=6

y=3

(x < 10 && y > 1) returns true

|| or x=6

y=3

(x==5 || y==5) returns false

! not x=6

y=3

!(x==y) returns true



Controlling Program Flow 

 Conditions: Making Decisions – 2 Ways

◦ if … else statement

◦ Switch ....case

25



Controlling Program Flow 

 forms of if..else statement
◦ if statement
◦ if...else statement
◦ if...else if... statement.

 Syntax
◦ if(expression) {

statement(s) to be executed if true

} 

26



27

Example
If - else



Controlling Program Flow 

 switch ....case

28



29

Example
switch case



Loop

 Used to perform an action repeatedly 
till satisfied condition meets.

 3 Types of Loops
◦ While loop

◦ Do While loop

◦ For loop

 These loops have
◦ Initialization statement

◦ Condition statement

◦ Update (increment or decrement)

statement
30



While Loop

do while loop

31



 Syntax
for (initialize; condition; iteration) {  

Statement(s) to be executed if test condition is true

}

 Ex

for (int i=1; i<=10; i++) {

Console.WriteLine(”Count is : ” + i);

}

Loop – For loop

32



Array & for each loop



Strings

 Used for storing and manipulating text

 A string variable contains zero or more characters within double quotes.

34



Functions



Function Overloading



Class & Object

 A class consists of data declarations plus functions that act on 
the data.

◦ Normally the data is private

◦ The public functions (or methods) determine what clients can do with 
the data.

 An instance of a class is called an object.

◦ Objects have identity and lifetime.

◦ Like variables of built-in types.

37
37



Encapsulation

 By default the class definition encapsulates, or hides, the data 
inside it.

 Key concept of object oriented programming.

 The outside world can see and use the data only by calling the 
build-in functions.

◦ Called “methods”

38
38



Class Members

 Methods and variables declared inside a class are called 
members of that class.

◦ Member variables are called fields.

◦ Member functions are called methods.

 In order to be visible outside the class definition, a member 
must be declared public.

39
39



Objects

 An instance of a class is called an object.

 You can create any number of instances of a given class.  

◦ Each has its own identity and lifetime.

◦ Each has its own copy of the fields associated with the class.

 When you call a class method, you call it through a particular 
object.  

◦ The method sees the data associated with that object.

40
40



Creating a Class



Class - Properties



Class - Constructor



Task

Create a class “Employee” with following specs:

- Field Members : firstName, lastName, salary

- Properties : FirstName, LastName, Salary

- Methods : ShowFullName, IncrementSalary(double s)

- Constructor : Employee(__ , ___ , ___)

Now, create object of Employee(“Ram”, “Bahadur”, 20000)

- Show Employee Fullname & Salary

- Change FirstName to “Hari” & increment salary by 5000

- Show full name & salary



Inheritance

 New Classes called derived classes are created from existing classes 
called base classes

public class Class A

{

}
public class Class B : A
{

}



Inheritance 
Example

public class ParentClass

{
public ParentClass() {

Console.WriteLine(“Parent Constructor”);

}
public void Print() {

Console.WriteLine(“I’m a Parent Class.”);
}

}

public class ChildClass : ParentClass {
public ChildClass () {

Console.WriteLine(“Parent Constructor”);
}

}



Inheritance Example

class Program
{

static void Main(string[] args)
{

ChildClass cc= new ChildClass();
cc.Print();

}
}



Use base key word

public class ParentClass
{

public int x = 10;
public ParentClass() 
{

Console.WriteLine(“Parent Constructor”);
}
public void Print() {

Console.WriteLine(“I’m a Parent Class.”);
}

}



Use base key word

public class ChildClass : ParentClass
{

public ChildClass() : base() 
{

Console.WriteLine(“Child Constructor”);
base.Print();
Console.WriteLine(base.x);

}
}



Inheritance Example

class Program
{

static void Main(string[] args)
{

ChildClass cc= new ChildClass()
cc.Print();
Console.ReadKey();

}
}



Indexer
 An indexer allows an object to be indexed such as an array. 
 When you define an indexer for a class, this class behaves 

similar to a virtual array.
 You can then access the instance of this class using the array 

access operator ([ ]).

element-type this[int index]
{

get    {   // return the value specified by index   }
set    {   // set the value specified by index   }

}



Indexer 
Example



Indexer 
Example



The sealed class
Sealed classes are used to restrict the inheritance feature of 

object oriented programming. Once a class is defined as a 
sealed class, the class cannot be inherited. 

 In C#, the sealed modifier is used to define a class as sealed

sealed class SealedClass
{

}



Abstract Class

Classes can be declared as abstract by using keyword abstract.
Abstract classes are one of the essential behaviors provided by 

.NET. 
 If you like to make classes that only represent base classes, and 

don’t want anyone to create objects of these class types, use 
abstract class to implement such functionality.

Object of this class can be instantiated, but can make 
derivations of this.

The derived class should implement the abstract class members.



Abstract Class



Abstract Class



Interface

 An interface is not a class. It is an entity that is defined by the keyword 
Interface. 

 By Convention, Interface Name starts with letter ‘I’
 has no implementation; just the declaration of the methods without the 

body. 
 a class can implement more than one interface but can only inherit from 

one class. 
 interfaces are used to implement multiple inheritance.

interface IFace
{

}



Partial Classes

 In C#, a class definition can be divided over multiple files.

◦ Helpful for large classes with many methods.

◦ Used by Microsoft in some cases to separate automatically generated 
code from user written code.

 If class defintion is divided over multiple files, each part is 
declared as a partial class.

59



Partial Classes
In file circ1.cs

partial class Circle

{

// Part of class defintion

...

}

In file circ2.cs

partial class Circle

{

// Another part of class definition

...

}

60



Exception Handling

 An exception is a problem that arises during the 
execution of a program. 

 A C# exception is a response to an exceptional 
circumstance that arises while a program is running, 
such as an attempt to divide by zero, Array Index Out of 
Bounds, etc

 Exceptions provide a way to transfer control from one 
part of a program to another.

 C# exception handling is built upon four 
keywords: try, catch, finally, and throw.

61



Exception Handling

 try: A try block identifies a block of code for which particular 
exceptions is activated. It is followed by one or more catch blocks.

 catch: A program catches an exception with an exception handler 
at the place in a program where you want to handle the problem. 
The catch keyword indicates the catching of an exception.

 finally: The finally block is used to execute a given set of 
statements, whether an exception is thrown or not thrown. 

 throw: A program throws an exception when a problem shows 
up. This is done using a throw keyword.

62



Exception 
Handling

Syntax

63



Exception Handling

 What will happen to this program?

 In which line, we encounter the error?

 Will this execute all statements?

 Can this program display the last 2 lines?

1. int a = 10;

2. int b = 0;

3. int c = a / b;

4. Console.WriteLine(c);

5. Console.WriteLine(“This is last line”);
64



Exception Handling

65



Delegate

 C# delegates are similar to pointers to functions, in C or C++. 

 A delegate is a reference type variable that holds the reference 
to a method. The reference can be changed at runtime.

 Delegates are especially used for implementing events and the 
call-back methods. 

 Syntax – Delegate Declaration : 

delegate <return-type> <delegate_name> <params>

66



Delegate

 Delegate Declaration : 

delegate <return-type> DelegateName> <arg_list>

 Object Creation : 

DelegateName d = new DelegateName<function to which the 
delegate points>

Invoking :

d<list of args that are to be passed to the functions>

67



Delegate - Ex

68



Collection Types

 Collection Types are specialized classes for data storage and 
retrieval. 

 These classes provide support for stacks, queues, lists, and hash 
tables. 

 Collection classes serve various purposes, such as allocating 
memory dynamically to elements and accessing a list of items on 
the basis of an index etc.

 Namespaces:
◦ System.Collection

◦ System.Collection.Generic

69



 System.Collection

◦ ArrayList, Hashtable, SortedList, Stack, Queue

 System.Collection.Generic

◦ generic collection is strongly typed (type safe), that you can 
only put one type of object into it. 

◦ This eliminates type mismatches at runtime.

◦ Another benefit of type safety is that performance is better 

◦ Ex: List, Dictionary

70

Collection Types



Array List – System.Collections

71



List – System.Collection.Generic

72


