Digital Logic BIT

Unit-1
Number Systems, Operations and Codes

For more notes visit:

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com/

https://collegenote.pythonanywhere.com/

Digital Logic BIT

Unit-2
Number Systems, Operation and Codes

Number System

In general, in any number system there is an ordered set of symbols known as digits with
rules defined for performing arithmetic operations like addition, multiplication etc. A
collection of these digits makes a number in general has two parts- integer and fractional. Set
apart by a radix point (.), i.e.

Radix point

kaqn.l.qn_j . A:LAE .5-1 A_z .:‘;’A_m +1 A.r_r}‘\

Integer portion (n digits) Fractional portion (m digits)

Most Significant Digit (MSD) Least Significant Digit (LSD)

N = a number and r = radix or base of number system

In general, a number expressed in base-r system has coefficients multiplied by powers of r:

At L+ Ay o2 e+ At + Agr® + A r Y+ A r T2+ e+ A rT™

For example, (3456.54),, can be written as:

3x103+4x1024+5x10'+6x10°+5x10"1+4x 1072

» There are mainly four number system which are used in digital electronics platform.

1. Decimal number system:
- The decimal number system contains ten unique digits from 0 to 9.
- The base or radix is 10.

2. Binary number system:
- The binary number system contains two unique digits 0 and 1.
- The base or radix is 2.

3. Octal number system:
- The octal number system contains eight unique digits from 0 to 7.
- The base or radix is 8.

4. Hexadecimal number system:
- The hexadecimal number system contains sixteen unique digits: 0 to 9 and six letters A,
B,C,D,Eand F.
- The base or radix is 16.

https://collegenote.pythonanywhere.com/

Digital Logic BIT

DECIMAL (BASE 10) BINARY (BASE 2) OCTAL (BASE 8) HEXADECIMAL
(BASE 16)
0 00000 0 0
1 00001 7 17 7 1
2 00010 2 2
3 00011 3 3
4 00100 4 4
5 00101 5 5
6 00110 6 6
7 00111 7 7
8 01000 10 8
9 01001 11 9
10 01010 12 A
11 01011 13 B
12 01100 14 C
13 01101 15 D
14 01110 16 E
15 01111 17 F
16 10000 20 10
Examples
255 11111111 m FF
256 100000000 100

Number Base Conversion

The possibilities:

Hexadecimal

:
- |

Decimal to Other Base System

The decimal number can be an integer or floating-point integer. When the decimal number is
a floating-point integer, then we convert both part (integer and fractional) of the decimal
number in the isolated form (individually). There are the following steps that are used to
convert the decimal number into a similar number of any base 'r’.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

Digital Logic BIT

Conversion of Integer part:

- Divide the given integer part of decimal number by base ‘r’ successively and write down
all the remainders till the quotient is zero.

- Write all the remainders starting with the MSB (Most Significant Bit) i.e. from bottom to
LSB (Least Significant Bit) i.e. top.

Conversion of Fractional part:

- Multiply the given fractional part of decimal number by base 'r’ successively until the
fractional part becomes zero.

- Note down the integer part starting from first.
Note: If fractional part does not become zero then, result has been taken up to 6 places.

» Decimal to Binary Conversion

1. Convert (51)19 and (152),, into binary.

2 | 152

2|51 2176 0(LSB)
2|25 1(LSB) 2138 0
2112 1 219 0
216 0 29 1
218 o 22 1
21l 1 202 o
0 1 (MSB) 211 ¢

(51);0 = (110011), 0 1(MSB)

(152),, = (10011000),

2. Convert (41.6875),, into binary.

Conversion of integer part: Conversion of fractional part:

2 ;s integer | fraction
2020 1(LSB) 0.6875x2 | 1 0.3750
2110 o 0.3750x2 | 0 0.7500
215 0 0.7500x2 | 1 0.5000
ZZ— 1 0.5000x2 | 1 0.0000
21 o

0 1 (MSB)
(41),, = (101001), (0.6875),, = (0.1011),

~ (41.6875),9 = (101001.1011),

https://collegenote.pythonanywhere.com/

Digital Logic

> Decimal to

1. Convert
8

(125)40

2. Convert
Convers
8

8|
8]

(153)10

« (153.513)10 = (231.406517)4

3. Convert (125.6875)4, to octal.

Convers
8

8
8

(125)40

19

Octal Conversion

(125)4, into octal.
125

z 15 5 (LSB)
8

1 7

0 1 (MSB)

= (175)g

(153.513),, into octal.

ion of integer part:
153

1 (LSB)
2 3

0 2 (MSB)

= (231)4

ion of integer part:

125
15 5(LSB)
1 7

0 1 (MSB)

= (175)g

« (125.6875)19 = (175.54)4

https://collegenote.pythonanywhere.com/

BIT

Conversion of fractional part:

integer | fraction
0.513x8 | 4 0.104
0.104x8 |0 0.832
0.832x8 | 6 0.656
0.656x8 |5 0.248
0.248x8 |1 0.984
0.948x8 |7 0.584

(0.513),, = (0.406517),

Conversion of fractional part:

integer | fraction
0.6875x8 | 5 0.5000
0.5000x8 | 4 0.0000

(0.6875)19 = (54)g

Digital Logic

> Decimal to Hexadecimal Conversion

1. Convert (2598)4 to hexadecimal.

16 | 2598
16 | 162 6 (LSB)
16 | 10 2

0 10(A) (MSB)

(2598)19 = (A26)45

2. Convert (952.62),, to hexadecimal.

Conversion of integer part:

16 | 952
16|59 8(LSB)
163 11(B)
o 3(vsB)

(952)10 = (3B8)16

~ (952.62)19 = (3B8.9EB851),4

Any Base to Decimal Conversion

BIT

Conversion of fractional part:

integer | fraction
0.62x16 |9 0.92
0.92x16 | 14(E) |0.72
0.72x16 | 11(B) |0.52
0.52x16 |8 0.32
0.32x16 |5 0.12
0.12x16 |1 0.92

(0.513),, = (0.9EB851),,

Converting from any base to decimal is done by multiplying each digit by its corresponding

positional weights and summing.

» Binary to Decimal

1. Convert (10110), into decimal.

(10110), = 1x2*+0x23+1x224+1x21+0x2°

=16+0+4+2+0
=22
- (10110), = (22)4

2. Convert (1101.011), into decimal.

(1101.011), =1x234+1x224+0x2'+1x2°4+0x27 1 +1x22+1x273

=8+4+0+1+0+0.25+0.125

= 13.375
~ (1101.011), = (13.375)o

https://collegenote.pythonanywhere.com/

Digital Logic

» Octal to Decimal

1. Convert (724.25)g into decimal.

(724.25)g =7%x8%2+2x8' +4x8°+2x81+5x82

=448+ 18+ 4+ 0.25+0.0781
= 470.3281
o (72425)8 == (4‘70 3281)10

2. Convert (6301)g into decimal.

(6301)g =6x83+3x82+0x8+1x8°
=3072+192+0+1
= 3265
-~ (6301)g = (3265)10

> Hexadecimal to Decimal

1. Convert (AOF9.0EB), to decimal.
(AOF9.0EB) ¢

BIT

=10x1634+0x1624+15%x 161 +9%x16°+0x 1671 + 14

X1672 +11x 1673

=40960+0+240+9+ 0+ 0.0546 + 0.0026

= 41209.0572
~ (AOF9.0EB) = (41209.0572)4,

2. Convert (A9F5.DE)4 to decimal.

Octal and Hexadecimal number to Binary

» Octal to Binary

To convert Octal number to its Binary equivalent, each digit of given octal number is

directly converted to its 3-bit binary equivalent.

Q. Convert (367.52)g into Binary.
(367.52)g =011 110 111.101 010

=11110111.10101
- (367.52)g = (11110111.10101),

https://collegenote.pythonanywhere.com/

Digital Logic BIT

» Hexadecimal to Binary
To convert Hexadecimal number to its Binary equivalent, each digit of given hexadecimal
number is converted to its 4-bit binary equivalent.

Q. Convert (3A9E.BOD) 4, into Binary.

(3A9E.BOD);¢ = 0011 1010 1001 1110.1011 0000 1101
=11101010011110.101100001101

~ (3A9E.BOD)¢ = (11101010011110.101100001101),

Binary to Octal and Hexadecimal Numbers

» Binary to Octal
As 8 = 23, for binary to octal conversion groups of 3 binary bits each are formed in the
binary number. After forming groups, each group of three binary bits is converted to its
octal equivalent.
- For integer part of the binary number, the group of three bits is formed from right to
left. In the binary fraction the group of three bits is formed from left to right. If there are
not 3 bits available at last, just stuff ‘0’ to make 3 bits group.

1. Convert (10110001101011.111100000110), into octal.

(10110001101011.111100000110), = 010 110 001 101 011.111 100 000 110
=2 6 1 5 3.7 4 0 6
= 26153.7406

~ (10110001101011.111100000110), = (26153.7406)g

2. Convert (110101.101010), into octal.

(110101.101010), = 110 101.101 010
= 65.52

~ (110101.101010), = (65.52)g

» Binary to Hexadecimal
As 16 = 24, for binary to hexadecimal conversion groups of 4 binary bits each are
formed in the binary number. After forming groups, each group of four binary bits is
converted to its hexadecimal equivalent.
- For integer part of the binary number, the group of four bits is formed from right to left.
In the binary fraction the group of four bits is formed from left to right. If there are not 4
bits available at last, just stuff ‘0’ to make 4 bits group.

https://collegenote.pythonanywhere.com/

Digital Logic BIT

1. Convert (10110001101011.111100000110), into hexadecimal.
(10110001101011.111100000110), = 0010 1100 0110 1011.1111 00000110
= 2 C 6 B F 0 6
= 2C6B.F06

~ (10110001101011.111100000110), = (2C6B.F06)4¢

Conversion of Octal and Hexadecimal numbers

» Octal to Hexadecimal
Steps to convert from octal to its hexadecimal equivalent:
- Each digit of given octal number is converted into its 3-bit binary equivalent.
- Now, form the groups of 4 binary bits to obtain its hexadecimal equivalent.

E.g.
(175)¢ —pOctal number

v

(001111101) —»Converted binary of octal

Y 4 \ 4
0000 0111 1101 —»Grouped binary value

Y Y
0 7 D _pHexadecimal of each
grouped digit of binary

]

(175)s=(7D)1s —Converted Hex of Octal

Q. Convert (673.124)g into hexadecimal.

(673.124)s=(110111011. 001 010 100),
=(0001 1011 1011 .00101010),

= (1BB.2A)1s

» Hexadecimal to Octal
Steps to convert from hexadecimal to its octal equivalent:
- Each digit of given hexadecimal number is converted into its 4-bit binary equivalent.
- Now, form the groups of 3 binary bits to obtain its octal equivalent.

E.g.

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

Digital Logic BIT

(1A)1s ——pHexadecimal number
Converted binary of
(UEBLLILL hexadecimal
000011 010 —pGrouped binary value
0o 3 2 —pOctal of each grouped
binary number

(1A)16=(32)s —®»Converted Octal of Hex

Q. Convert (B9F.AE)4, into octal.

(B9F.AE), = (1011 1001 1111. 1010 1110),
= (101 110 011 111. 101 011 100),
= (5637.534)4

Unsigned and Signed numbers

Unsigned numbers:

- Numbers without any positive and negative sign.
- Represents only magnitude.

Signed magnitude numbers:

- Inbinary number system, both +ve and —ve values are possible.
- Inthis, we use 0’s and 1’s to represent every number. The representation of number is
known as signed number.
0 — +ve number
1 — -ve number

E.g.
+7 = 0111

-7=1111
This kind of representation for signed number is called signed magnitude representation.
Note: For +ve numbers, the result is the same as the unsigned binary representation.

The signed numbers are represented in three ways: Sign-magnitude form, 1’s complement
form and 2’s complement form

https://collegenote.pythonanywhere.com/

Digital Logic BIT

1. Sign-Magnitude form
In this form, a binary number has a bit for a sign symbol. If this bit is set to 1, the number
will be negative else the number will be positive if it is set to 0. Apart from this sign-bit,
the n-1 bits represent the magnitude of the number.

Syntax:
\ Sign Bit \ Actual binary \

E.g. +7 = 0111
-7=1111

2. 1's Complement
By inverting each bit of a number, we can obtain the 1's complement of a number. The
negative numbers can be represented in the form of 1's complement. In this form, the
binary number also has an extra bit for sign representation as a sign-magnitude form.

Syntax:
‘ Sign Bit ‘ 1’s complement of actual binary ‘
E.g.7=111
1’s complement = 000
- 7=1000

3. 2's Complement
By inverting each bit of a number and adding plus 1 to its least significant bit, we can
obtain the 2's complement of a number. The negative numbers can also be represented in
the form of 2's complement. In this form, the binary number also has an extra bit for sign
representation as a sign-magnitude form.
Syntax:
Sign Bit 2’s complement of actual binary

E.g. 7=111
1’s complement = 000
2’s complement = 000 + 1 =001
-7=1001

Floating-Point Representation

A floating-point number is represented by the triple:
- Sisthe sign bit (0 is +ve and 1 is —ve)
= Representation is called sign and magnitude.
- E is the Exponent field (signed)
= Very large numbers have large positive exponents
= Very small close-to-zero numbers have negative exponents
= More bits in exponent field increases range of values
- Fis the fraction field (fraction after binary point)
= More nits in fraction field improves the precision of FP numbers.

| S | Exponent | Fraction |

| Value of a floating-point number = (—1)S x val(F) x 2V*®)

https://collegenote.pythonanywhere.com/

Digital Logic BIT

Binary Addition

Addition rules: Example:

0+0=0 0011010 + 001100 =00100110 11 carry
0011010 =261

0+1=1 +0001100 =121
1+0=1 T 0100110 =38
1+1=0withcarryl
1+1+1=1withcarryl

Binary Subtraction

Subtraction rules: Example:
0-0=0 0011010 - 001100 =00001110 11 borrow
1-0=1 0011010 =261

0001100 =120
0 -1 =1 with borrow 1

1-1=0

0001110 =144

Binary Multiplication

Multiplication rules: Example:
0x0=0 1001
0x1=0 . x101
_ 1001
1x0=0 0000
1x1=1 + 1001
101 101
Binary Division
10) 1111100 (111110 101) 101101 (1001
)
— () 101 U
11 t
-) 101
10 {_}
v 101
11
0 1, 0
llf
) 1
10
1o
00
00

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

Digital Logic BIT

Complements

Complements are used in digital computers for simplifying the subtraction operation and for
logical manipulations.

There are two types of complements for each base—r system:
a) The r’s complement and
b) The (r — 1)’s complement.

v' r's complement is known as 10’s complement in base 10 and 2’s complement in base 2.

v' (r —1)’s complement is known as 9’s complement in base 10 and 1°s complement in
base 2.

» 1’'s complement
Given a positive number N in base r with an integer part of n digits, the r’s complement
of N is defined as

r—N, if N0

Therscomplementosz{ 0, ifN=0

E.g.
10’s complement of 52520 = 10°-52520 = 47480
10’s complement of 0.3267 = 10°-0.3267 = 0.6733
10’s complement of 25.639 = 10?-25.639 = 74.361
2’s complement of (101100)2 = (28)10-(101100). = (1000000-101100), = 010100
2’s complement of (0.0110)2 = (2°)10-0.0110 = 0.1010

> (r —1)’s complement

Given a positive number N in base r with an integer part of n digits and a fractional part
of m digits, the (r — 1)’s complement of N is defined as:

The (r — 1)’s complementof N =™ —r™™ — N
E.g.
9’s complement of (52520)10 = (10°-10°-52520) = 47479
9’s complement of (0.3267)1o is (10°-10-0.3267) = 0.6732
9’s complement of (25.693)10 is (102-103-25.693) = 74.306
1’s complement of (101100)2 is (2°-2°)10-(101100), = 111111-101100 = 010011
1’s complement of (0.0110); is (1-2%)10-(0.0110), = 0.1001

https://collegenote.pythonanywhere.com/

Digital Logic BIT

Subtraction with Complements

>

E.g.

Subtraction with r’s Complements

Subtraction of two positive numbers (M — N), both of base r, may be done as follows:
Step-1: Add the minuend M to the r’s complement of subtrahend N.
Step-2: Inspect the result obtained in step 1 for an end carry:

(a) Ifan end carry occurs, discard it.
(b) If an end carry does not occur, take the r’s complement of the number obtained in
step 1 and place a negative sign in front.

1. Using 10’s complement, subtract (72532-3250).

Let, M = 72532 and

N = 03250
10’s complement of N = (10°> — 03250) = 96750
Now,
72532
+96750
169282

Here, end carry occurred. So discard it.
So, answer = 69282

2. Using 10’s complement, subtract (3250-72532).

Let, M = 03250 and

N = 72532
10’s complement of N = (10° — 72532) = 27468
Now,
03250
427468
30718

Here, no end carry. .
So, answer = —(10’s complement of 30718) = —(10° — 30718) = —69282

3. Using 2’s complement, subtract (1000100-1010100).

Let, M = 1000100 and

N = 1010100
2’s complement of N = (27),, — (1010100), = 10000000 — 1010100 = 0101100
Now,
1000100
+0101100
1110000

No end carry. .
So, answer = —(2’s complement of 1110000) = —[(27), — (1110000),] = —10000

https://collegenote.pythonanywhere.com/

Digital Logic BIT

4. Subtract (1110.111-1010.101) using 2’s complement.
Let, M =1110.111 and

N = 1010.101
2’s complement of N = (2%),, — (1010.101), = 10000 — 1010.101 = 0101.011
Now,
1110.111
+0101.011
10100.010

End carry occurred. So discard it.
So, answer = 0100.010

> Subtraction with (r-1)’s Complements

The subtraction of M — N, both positive number in base r, may be calculated in the
following manner:
Step-1: Add the minuend M to the (r — 1)’s complement of the subtrahend N.
Step-2: Inspect the result obtained in step 1 for an end carry.
(a) If an end carry occurs, add 1 to the list significant digit (end-round carry)
(b) If an end carry does not occurs, take the (r — 1)’s complement of the number
obtained in step 1 and place a negative sign in front.

E.g.
1. Using 9’s complement, subtract (453.35-321.17).
Let, M = 453.35 and

N = 321.17
9’s complement of N = 103 — 1072 — 321.17 = 678.82
Now,
453.35
_+678.82

113217 17
/ 132 18
End carry occurred.

End round carry.
~ Answer = 132.18

2. Using 9’s complement, subtract (3250 — 72532).
Let, M = 03250 and

N = 72532
9’s complement of N = 105 — 10° — 72532 = 27467
Now,
03250
+27467
30717

Here, no end carry. .
So, answer = —(9’s complement of 30717) = —(10° — 10° — 30718) = —69282

https://collegenote.pythonanywhere.com/

Digital Logic BIT

3. Using 1’s complement, subtract (1000100-1010100).
Let, M = 1000100 and

N = 1010100
1’s complement of N = 0101011
Now,
1000100
+0101011
1101111

No end carry. .
So, answer = —(1’s complement of 1101111) = —10000

4. Subtract (1010100 - 1000100) using 1’s complement.

Let, M = 1010100 and N = 1000100
I’s complement of N = 0111011
1010100

_+0111011
10001111

+1
010000
End carry occurred. =~ Answer = 10000

End round carry.

Binary Codes

When numbers, letters or words are represented by a special group of binary
symbols/combinations, we say that they are being encoded and the group of symbols is called
a code. Some familiar binary codes are: Decimal Codes, Error-detection Codes, The
Reflected Code, Alphanumeric Codes etc.

Decimal Codes

The representation of decimal digits by binary combinations is known as decimal codes.
Binary codes from decimal digits require minimum of four bits. Numerous different codes
can be obtained by arranging four or more bits in ten distinct possible combinations. Some
decimal codes are-

- BCD

- Excess-3

» Binary-Coded-Decimal (BCD) Code
If each digit of a decimal number is represented by its binary equivalent, the result is a
code called binary coded decimal (BCD). It is possible to assign weights to the binary bits
according to their positions. The weights in the BCD code are 8,4,2,1.

https://collegenote.pythonanywhere.com/

Digital Logic BIT

Decimal BCD Excess-3
8 4 21 BCD +0011
0 00 0O (% v Al
1 00 0 1 0100
2 0040 010 1
3 00 4 1 0110
4 0100 [y W (s G
5 010 1 100 0
6 0: 1: 4 0 10 0 1
7 Ji i s Bt 5 4500450
8 1 0 0- 0 PO 4
9 0 0 & 110 0

> Excess-3 Code

This is an unweighted code. Its code assignment is obtained from the corresponding value
of BCD after the addition of 3.

Q. Convert decimal number 23 to Excess-3 code.

So, according to excess-3 code we need to add 3 to both digit in the decimal number then
convert into 4-bit binary number for result of each digit. Therefore,

2 3
+3 3
5 6

5 6 =01010110 which is required excess-3 code for given decimal number 23

Q. Convert decimal number 15.46 into Excess-3 code.

According to excess-3 code we need to add 3 to both digit in the decimal number then
convert into 4-bit binary number for result of each digit. Therefore,

1 5.4 6
+3 3.3 3
4 8.7 9

48.79 = 0100 1000.0111 1001 which is required excess-3 code for given decimal
number 15.46.

Error-detection Codes

An error detection codes can be used to detect errors during transmission. A parity bit is
an extra bit included with a message to make the total number of 1’s either odd or even.
For a message of four bits parity (P) is chosen so that the sum of'all 1’s is odd (in all five
bits) or the sum of all 1’s is even. In the receiving end, all the incoming bits (in this case
five) are applied to a “parity-check™ network for checking.

An error is detected if the check parity does not correspond to the adopted one. The parity
method detects the presence of one, three or any odd combination of errors. An even
combination of errors is undetectable. Additional error-detection schemes may be needed
to take care of an even combination of errors.

https://collegenote.pythonanywhere.com/

Digital Logic BIT

Message P (Odd) Total Message Message P (even) Total Message
0000 1 10000 0000 0 00000
0001 0 00001 0001 1 10001
0010 0 00010 0010 1 10010
0011 1 10011 0011 0 00011
0100 0 00100 0100 1 10100
0101 1 10101 0101 0 00101
0110 1 10110 0110 0 00110
0111 0 00111 0111 1 10111
1000 0 01000 1000 1 11000
1001 1 11001 1001 0 01001
1010 1 11010 1010 0 01010
1011 0 01011 1011 1 11011
1100 1 11100 1100 0 01100
1101 0 01101 1101 1 11101
1110 0 01110 1110 1 11110
1111 1 11111 1111 0 01111

The Reflected Code/Gray Code

- The Reflected code, also called Gray code is unweighted and is not an arithmetic code;
that is, there are no specific weights assigned to the bit positions.

- Itis a binary numeral system where two successive values differ in only one bit (binary
digit).

- For instance, in going from decimal 3 to decimal 4, the Gray code changes from 0010 to
0110, while the binary code changes from 0011 to 0100, a change of three bits. The only
bit change is in the third bit from the right in the Gray code; the others remain the same.

Decimal Digit | Binary Reflected or gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Q. Convert (123)10 to gray code.
Binary code of (123)10 = (1111011)>

https://collegenote.pythonanywhere.com/

Digital Logic BIT

b k k & b k k
< . E = - 1 0 |Binary code
1 1 1 1 0 1 1
by | by @b |bs b, by Dby |bs @by by @by | by By
| 1§l 1§ 1 1§l 10 Dl 1§ 1
! l l l ! l
1 0]] 1 1]
ol e 2 & g, g 2 Gray code

(123)10 = (1000110)GrayCode

Alphanumeric Code

- Inorder to communicate, we need not only numbers, but also letters and other symbols.
In the strictest sense, alphanumeric codes are codes that represent numbers and alphabetic
characters (letters). Most such codes, however, also represent other characters such as
symbols and various instructions necessary for conveying information.

- The ASCII is the most common alphanumeric code.

» ASCII Code

ASCII is the abbreviation for American Standard Code for Information Interchange.
ASCII is a universally accepted alphanumeric code used in most computers and other
electronic equipment. Most computer keyboards are standardized with the ASCIIl. When we
enter a letter, a number, or control command, the corresponding ASCII code goes into the
computer.

- ASCII has 128 characters and symbols represented by a 7-bit binary code. Actually,
ASCII can be considered an 8-bit code with the MSB always 0. This 8-bit code is 00
through 7F in hexadecimal.

- The first thirty-two ASCII characters are non-graphic commands that are never printed or
displayed and are used only for control purposes. Examples of the control characters are
"null,” "line feed," "start of text," and "escape."

- The other characters are graphic symbols that can be printed or displayed and include the
letters of the alphabet (lowercase and uppercase), the ten decimal digits, punctuation signs
and other commonly used symbols.

» Extended ASCII characters

In addition to the 128 standard ASCII characters, there are an additional 128 characters that
were adopted by IBM for use in their PCs (personal computers). Because of the popularity of
the PC, these particular extended ASCII characters are also used in applications other than
PCs and have become essentially an unofficial standard. The extended ASCII characters are
represented by an 8-bit code series from hexadecimal 80 to hexadecimal FF.

https://collegenote.pythonanywhere.com/

Digital Logic BIT

ASCII control ASCI| printable Extended ASCII
characters characters characters
00 NULL (Null character) 32 space 64 @ 96 126 ¢ 160 & 192 L (224 O
01 SOH (Start of Header) 33 1 65 A 97 a 129 1] 161 i 193 - 225 B
02 STX (Start of Text) 34 g 66 B 98 b 130 é 162] 194 226 0
03 ETX (End of Text) 35 # 67 c 99 c 131 a 163 a 195 I 227 0
04 EOT (End of Trans.) 36 $ 68 D 100 d 132 a 164 f 196 - 228 (]
05 ENQ (Enquiry) 37 % 69 E 101 e 133 a 165 N 197 + 229 o]
06 ACK (Acknowledgement) 38 & 70 F 102 f 134 a 166 L 198 a 230 1]
07 BEL (Bell) 39 ! 71 G 103 g 135] 167 . 199 A 231 b
08 BS (Backspace) 40 (72 H 104 h 136 é 168 e 200 L 232 2]
09 HT (Horizontal Tab) 41) 73 | 105 i 137 é 169 ® 201 I 233 U
10 LF (Line feed) 42 2 74 J 106] 138 e 170 a1 202 234 0
1" VT (Vertical Tab) 43 + 75 K 107 k 139 1 17 Ya 203 235 V]
12 FF (Form feed) 44) 76 L 108 I 140 i 172 Ya 204 I 236 y
13 CR (Carriage retumn) 45 - 77 M 109 m 141 i 173 i 205 = 237 Y
14 SO (Shift Out) 46 5 78 N 110 n 142 A 174 « 206 # 238 =
15 Si (Shift In) 47 ! 79 0 m o 143 A 175 207 o 239
16 DLE (Data link escape) 48 0 80 P 112 p 144 E 176 208] 240 B
17 DC1 (Device control 1) 49 1 81 Q 113 q 145 F- -] 177 209 3] 241 t
18 DC2 (Device control 2) 50 2 82 R 114 r 146 £ 178 210 E 242 -
19 DC3 (Device controf 3) 51 3 83 S 115 s 147 [} 179 211 E 243 %
20 DC4 (Device control 4) 52 4 84 T 116 t 148] 180 212 E 244 1
21 NAK (Negative acknowl.) 53 5 85 u 117 u 149 [} 181 213 1 245 §
22 SYN (Synchronous idie) 54 6 86 v 118 v 150 a 182 214 i 246 L
23 ETB (End of trans. block) 55 7 87 w 119 w 151 u 183 215 I 247
24 CAN (Cancel) 56 8 88 X 120 X 152 y 184 216 1 248
25 EM (End of medium) 57 9 89 Y 121 y 153 (o} 185 217 4 249 2
26 SuB (Substitute) 58] 90 z 122 z 154 0 186 218 250 '
27 ESC (Escape) 59 5 91 [123 { 155 [} 187 219 i 251 y
28 FS (File separator) 60 < 92 \ 124 | 156 £ 188 220 = 252 .
29 GS (Group separator) 61 = 93] 125 } 157 [%] 189 221 H 253 .
30 RS (Record separator) 62 > 94 & 126 ~ 158 x 190 222 1 254 [
31 us (Unit separator) 63 ? 95 _ 159 ¥ 191 223 - 255 nbsp
127 DEL (Delete)
References:

- M. Morris Mano, “Digital Logic & Computer Design”

https://collegenote.pythonanywhere.com/ Prepared By: Jayanta Poudel

