

# <u>Unit 1</u>

# **Solution of Nonlinear Equations**

# <u>Errors in Numerical Methods</u>

- 1. **True Error:** True error is denoted by  $E_t$  and is defined as the difference between the true value and approximate value i.e. *True error* = *True value Approximate value*
- 2. **Relative Error:** Relative error is denoted by  $E_r$ , and is defined as the ratio between the true error and the true value i.e. *Relative error* =  $\frac{True\ Error}{True\ Value}$
- 3. Approximate Error: Approximate error is denoted by E<sub>a</sub> and is defined as the difference between the present approximation and previous approximation i.e. Approximate error= Present approximation- previous approximation
- 4. **Relative Approximate Error:** Relative approximate error is denoted by  $E_{ra}$ , and is defined as the ratio between the approximate error and the present approximation i.e. Relative approximate error =  $\frac{Approximate Error}{Present Approximation}$

## **Sources of Error**

- 1. **Turncation Errors:** Turncation errors arises from using an approximation in place of exact mathematical procedure. It is the error resulting from the truncation of the numerical process. We often use some finite number of terms to estimate the sum of a finite series. For e.g.  $S = \sum_{i=0}^{\infty} a_i x^i$  is replaced by some finite sum which give rise to truncation errors.
- 2. **Round off Errors:** Round off errors occurs when fixed number of digits are used to represent exact number. Since, the numbers are stored at every stage of computation; round off errors is introduced at the end of every arithmetic operation.

# **Bracketing & Non-Bracketing Methods**

- Bracketing Method start with two initial guesses that bracket the root and then systematically reduce the width of the bracket until the solution is reached. E.g.
   Bisection Method.
- Non-Bracketing Methods (Open-end Method) use a single starting value or two values that do not necessarily bracket the root. E.g.
  - Secant method,
  - Newton-Raphson Method.

https://collegenote.pythonanywhere.com/



### **Different methods for the solution of Non-linear equations are explained below:**

# **Bisection Method**

Bisection method is an iterative method used for the solution of non-linear equations, also known as binary chopping or half interval method.

This method is based on the intermediate value theorem which states that if f(x) is continuous in the interval  $[x_1, x_2]$  and  $f(x_1)$  and  $f(x_2)$  has different signs then the equation f(x) = 0 has at least one root between  $x_1$  and  $x_2$ .

Here mid-point  $x_0$  is

 $(x_1)$ 

$$x_0 = \frac{x_1 + x_2}{2}$$

This gives us two new intervals  $[x_1, x_0]$  &  $[x_0, x_2]$ .

If  $f(x_0) = 0$  then  $x_0$  is the root of f(x). Otherwise



If  $f(x_0) * f(x_1) < 0$  then the root lies between  $x_0 \& x_1$  else root lies between  $x_0 \& x_2$ . Then we bisect the interval as before and continue the process until the desired level of accuracy achieved.

## <u>Algorithm</u>

- 1. Define function f(x) and error.
- 2. *Guess two initial values*  $x_1$  and  $x_2$ .
- 3. Compute  $f(x_1)$  and  $f(x_2)$ .

4. If 
$$f(x_1)^* f(x_2) > 0$$
  
goto step 8, otherwise:  
5. Calculate  $x_0 = \frac{x_1 + x_2}{2}$   
6. Check if  $|f(x_0)| > error$   
if  $f(x_0)^* f(x_1) > 0$   
 $x_1 = x_0$   
else  
 $x_2 = x_0$   
goto step 5  
7. Print root =  $x_0$   
8. END



# **<u>1.</u>** Find the root of equation $x^3 - 2x - 5 = 0$ using bisection method.

#### <u>Sol<sup>n</sup>:</u>

# Given that, $f(x) = x^3 - 2x - 5$ Let the initial guess be 2 and 3. f(2) = -1 < 0 and f(3) = 16 > 0. Therefore root lies between 2 and 3.

https://collegenote.pythonanywhere.com/



#### Now let us calculate root by tabulation method.

| n  | $x_1$  | <i>x</i> <sub>2</sub> | $x_0 = \frac{x_1 + x_2}{2}$ | $f(x_0)$ |
|----|--------|-----------------------|-----------------------------|----------|
|    |        |                       | 2                           |          |
| 1  | 2      | 3                     | 2.5                         | 5.625    |
| 2  | 2      | 2.5                   | 2.25                        | 1.891    |
| 3  | 2      | 2.25                  | 2.215                       | 0.346    |
| 4  | 2      | 2.125                 | 2.0625                      | -0.35132 |
| 5  | 2.0625 | 2.125                 | 2.0938                      | -0.0083  |
| 6  | 2.0938 | 2.125                 | 2.1094                      | 0.1671   |
| 7  | 2.0938 | 2.1094                | 2.1016                      | 0.0789   |
| 8  | 2.0938 | 2.1016                | 2.0977                      | 0.0352   |
| 9  | 2.0938 | 2.0977                | 2.0958                      | 0.0139   |
| 10 | 2.0938 | 2.0958                | 2.0948                      | 0.0027   |

Since,  $x_1$ ,  $x_2$  &  $x_0$  are same up to two decimal places, so the root of given equation is 2.0948.

<u>Note</u>: To find the root of trigonometric equation we have to first make sure that calculator is in radian form.

**<u>2.</u>** Estimate a real root of following nonlinear equation using bisection method correct upto two significant figures.

$$x^2 sinx + e^{-x} = 3$$

## Sol<sup>n</sup>:

Given that,

$$f(x) = x^2 sinx + e^{-x} - 3 = 0$$
  
Let the initial guess be 1 & 2.  
 $f(1) = -1.7906 < 0$   
 $f(2) = 0.7725 > 0$ . Therefore root lies between 1 & 2.

Now let us calculate root by tabulation method.

| n  | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $x_0 = \frac{x_1 + x_2}{2}$ | $f(x_0)$               |
|----|-----------------------|-----------------------|-----------------------------|------------------------|
| 1  | 1                     | 2                     | 1.5                         | -0.5325                |
| 2  | 1.5                   | 2                     | 1.75                        | 0.1872                 |
| 3  | 1.5                   | 1.75                  | 1.625                       | -0.1663                |
| 4  | 1.625                 | 1.75                  | 1.6875                      | 0.0133                 |
| 5  | 1.625                 | 1.6875                | 1.6562                      | -0.0761                |
| 6  | 1.6562                | 1.6875                | 1.6718                      | -0.0314                |
| 7  | 1.6718                | 1.6875                | 1.6796                      | $-9.17x10^{-3}$        |
| 8  | 1.6796                | 1.6875                | 1.6835                      | $1.91 \times 10^{-3}$  |
| 9  | 1.6796                | 1.6835                | 1.6815                      | $-3.77 \times 10^{-3}$ |
| 10 | 1.6815                | 1.6835                | 1.6825                      | $-9.27 \times 10^{-4}$ |
| 11 | 1.6825                | 1.6835                | 1.683                       | $4.93 \times 10^{-4}$  |

Since,  $x_1$ ,  $x_2 \& x_0$  has same value up to 2 decimal place, so the root of given equation is 1.683.

https://collegenote.pythonanywhere.com/



## **Convergence of Bisection Method**

In bisection method interval is halved every interval. After n<sup>th</sup> iteration size of interval is reduced to

 $\frac{x_2 - x_1}{2^n} = \frac{\Delta x}{2^n}$ 

Now we can say that maximum error after n<sup>th</sup> iteration is  $E_n = \pm \frac{\Delta x}{2^n}$ 

 $|\mathbf{E}_n| = \frac{\Delta x}{2^n}$ 

Similarly, after (n+1)<sup>th</sup> iteration max<sup>m</sup> error is given by

$$\mathbf{E}_{n+1} = \left| \frac{\Delta x}{2^{n+1}} \right| = \frac{\mathbf{E}n}{2}$$

This equation shows that error is halved after each iteration of bisection method. Therefore we can say that bisection method converges linearly.

# Advantages of Bisection Method

- 1. The bisection method is always convergent. Since, the method brackets the roots, the method guaranteed to converge.
- 2. As iteration are conducted, the interval gets halved. So one can guarantee the decrease in the error in the solution of the equation.

# **Disadvantages of Bisection Method**

The convergence of bisection method is slow as it is simply based on halving the interval.
 If one of the initial guesses is closer to the root, it will take larger number of iterations to

reach the root.

# Secant Method

This method uses two initial estimates but doesn't require that they must bracket the root. Let us consider the following figure:

The point  $x_1$  and  $x_2$  are starting point, they do not bracket the root. Slope of line (secant line) passing through  $x_1$  and  $x_2$  is given by

$$\frac{f(x_1)}{x_1 - x_3} = \frac{f(x_2)}{x_2 - x_3}$$
$$f(x_1)(x_2 - x_3) = f(x_2)(x_1 - x_3)$$
$$x_3[f(x_2) - f(x_1)] = f(x_2).x_1 - f(x_1)$$



$$x_{3=} \frac{f(x_2)x_1 - f(x_1)x_2}{f(x_2) - f(x_1)}$$

Now, by adding and subtracting  $f(x_2)x_2$  to the numerator

and rearranging the terms; we get

https://collegenote.pythonanywhere.com/

Prepared By: Jayanta Poudel

 $|x_2|$ 

 $x_3$ 

**x** 

 $x_1$ 



This equation is called secant formula. Here,  $x_3$  represents the approximate root of f(x). The approximate value of root can be refined by repeating this procedure by replacing  $x_1$  by  $x_2$  and  $x_2$  by  $x_3$  in equation (1) i.e. next approximate value is given by

$$x_4 = x_3 - \frac{f(x_3)(x_3 - x_2)}{f(x_3) - f(x_2)}$$

This procedure is continued till the desired level of accuracy is obtained.

The secant formula in general form is

 $f(x_i)(x_i - x_{i-1})$ 

 $x_{i+1} = x_i - \frac{f(x_i)}{f(x_i) - f(x_{i-1})}$ 

#### <u>Algorithm</u>

1. Define function f(x) and error 2. Guess two initial values  $x_1$  and  $x_2$ 3. Calculate  $f(x_1)$  and  $f(x_2)$ . 4. Compute  $x_3 = x_2 - \frac{f(x_2)(x_2-x_1)}{f(x_2)-f(x_1)}$ 5. Set  $x_1=x_2$  &  $x_2=x_3$ 6. Check if  $|f(x_3)| > error$ goto step 4, otherwise, 7. Print root =  $x_3$ 8. END

# <u>Examples</u>

**<u>1.</u>** Use the secant method to estimate the root of the equation sinx-2x+1.

#### Sol<sup>n</sup>:

```
Given that,

f(x) = sinx-2x+1

Let the initial guess be 0 and 1.
```

Now, let us calculate the root using tabular form.

| n                                                                                                             | $x_1$                       | x <sub>2</sub> | $f(x_1)$ | $f(x_2)$ | $f(x_2)(x_2 - x_1)$                                     |  |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|----------|----------|---------------------------------------------------------|--|--|
|                                                                                                               |                             |                |          |          | $x_3 = x_2 - \frac{f(x_2)(x_2 - x_1)}{f(x_2) - f(x_1)}$ |  |  |
| 1                                                                                                             | 1                           | 0              | -0.1585  | 1        | 0.863185                                                |  |  |
| 2                                                                                                             | 0                           | 0.863185       | 1        | 0.03355  | 0.89315                                                 |  |  |
| 3                                                                                                             | 0.863185                    | 0.89315        | 0.03355  | -0.00725 | 0.88782                                                 |  |  |
| 4                                                                                                             | 0.89315                     | 0.88782        | -0.00725 | 0.000577 | 0.88786                                                 |  |  |
| Hence, the value of $x_3$ in $3^{rd}$ and $4^{th}$ iteration is similar up to 3 decimal places so the root of |                             |                |          |          |                                                         |  |  |
| given                                                                                                         | given equation is 0.088786. |                |          |          |                                                         |  |  |

https://collegenote.pythonanywhere.com/



**<u>2.</u>** Estimate a real root of following nonlinear equation using secant method correct up to three decimal places.

$$x^2 + lnx = 3$$

# <u>Sol<sup>n</sup>:</u> Given that, $f(x) = x^2 + lnx - 3$ Let the initial guess be 1 and 2.

Now, let us calculate the root using tabular form.

| n | x <sub>1</sub> | x <sub>2</sub> | $f(x_1)$ | $f(x_2)$ | $x_3 = x_2 - \frac{f(x_2)(x_2 - x_1)}{f(x_2) - f(x_1)}$ |
|---|----------------|----------------|----------|----------|---------------------------------------------------------|
| 1 | 1              | 2              | -2       | 1.6932   | 1.54154                                                 |
| 2 | 2              | 1.54154        | 1.6932   | -0.19087 | 1.58799                                                 |
| 3 | 1.54154        | 1.58799        | -0.19087 | -0.01582 | 1.59219                                                 |
| 4 | 1.58799        | 1.59219        | -0.01582 | 0.00018  | 1.59214                                                 |
|   | .1 1           | c · ord        | o the    | • • • •  |                                                         |

Hence, the value of  $x_3$  in 3<sup>rd</sup> & 4<sup>th</sup> iteration is similar up to 3 decimal places so the root of given equation is 1.59214.

**<u>3.</u>** Using the secant method, estimate the root of the equation  $x^2 - 4x - 10 = 0$  with the initial estimates of  $x_1 = 4 \& x_2 = 2$ . Do these points bracket a root? <u>Sol<sup>n</sup>:</u>

Given that

Given that,  

$$f(x) = x^2 - 4x - 10$$
  
Initial estimates be  $x_1 = 4 \& x_2 = 2$ .

Now, let us calculate the root using tabular form.

| n     | $  x_1$                                                                                                                   | x <sub>2</sub> | $f(x_1)$ | $f(x_2)$ | $f(x_2)(x_2 - x_1)$                                   |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------|-------------------------------------------------------|--|--|
|       |                                                                                                                           |                |          |          | $x_3 = x_2 - \frac{f(x_2) - f(x_1)}{f(x_2) - f(x_1)}$ |  |  |
| 1     | 4                                                                                                                         | 2              | -10      | -14      | 9                                                     |  |  |
| 2     | 2                                                                                                                         | 9              | -14      | 35       | 4                                                     |  |  |
| 3     | 9                                                                                                                         | 4              | 35       | -10      | 5.11                                                  |  |  |
| 4     | 4                                                                                                                         | 5.11           | -10      | -4.36    | 5.97                                                  |  |  |
| 5     | 5.11                                                                                                                      | 5.97           | -4.36    | 1.761    | 5.72                                                  |  |  |
| 6     | 5.97                                                                                                                      | 5.72           | 1.761    | -0.1616  | 5.74                                                  |  |  |
| 7     | 5.72                                                                                                                      | 5.74           | -0.1616  | -0.0124  | 5.74                                                  |  |  |
| Hence | Hence, the value of $x_3$ in 6 <sup>th</sup> & 7 <sup>th</sup> iteration is similar up to 2 decimal places so the root of |                |          |          |                                                       |  |  |

given equation is 5.74. Here, the root of given equation doesn't lie between given initial estimates  $x_1 = 4 \& x_2 = 2$ . So, given points doesn't bracket a root.

# **Convergence of Secant Method**

Read yourself (page no. 155, E Balagurusamy's Numerical Methods)

https://collegenote.pythonanywhere.com/



# Newton-Raphson Method

Consider a graph below of f(x). Let us consider  $x_1$  is an approximate root of f(x) = 0. Draw a tangent at the curve f(x) at  $x = x_1$  as shown in figure. The point of intersection of this tangent with the x-axis gives the second approximation to the root. Let the point of intersection be  $x_2$ . The slope of the tangent is given by; f(x)

$$\tan \propto = \frac{f(x_1)}{x_1 - x_2} = f'(x_1)$$

Where  $f(x_1)$  is the slope of f(x) at  $x = x_1$ . Solving for  $x_2$  we obtain

 $[x_1, f(x_1)]$  $[x_2, f(x_2)]$ 

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

This is called the Newton-Raphson formula.

The next approximation would be

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

In general,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Repeat this process until the difference between two successive values is within a prescribed limit.



#### <u>Algorithm</u>

- 1. Guess initial root= $x_1$  and define stopping criteria error.
- Evaluate  $f(x_1) \& f'(x_1)$ 2.
- *Compute new root* 3.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

- Set  $x_1 = x_2$ 4.
- 5. Check if  $|f(x_2)| > error$ goto step 3, otherwise;
- *Print root* =  $x_2$ 6.
- 7. END

https://collegenote.pythonanywhere.com/



#### <u>Examples</u>

**<u>1.</u>** Find the root of the equation  $e^x - 3x = 0$  using Newton Raphson method correct up to 3 decimal places.

#### <u>Sol</u><sup>n</sup>:

Given that,  $f(x)=e^x - 3x$   $f'(x) = e^x - 3$ Let the initial guess be 0.5.

Now, let us calculate the root using tabular form.

| n | <i>x</i> <sub>1</sub> | $f(x_1)$   | $f'(x_1)$ | $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ |
|---|-----------------------|------------|-----------|--------------------------------------|
|   |                       |            |           |                                      |
| 1 | 0.5                   | 0.14872    | -1.351278 | 0.61005                              |
| 2 | 0.61005               | 0.010373   | -1.15947  | 0.61899                              |
| 3 | 0.61899               | 0.0081472  | -1.14294  | 0.61273                              |
| 4 | 0.61273               | 0.0035755  | -1.14287  | 0.61903                              |
| 5 | 0.61903               | 0.00003575 | -1.14287  | 0.61906                              |

Here, the 4<sup>th</sup> and 5<sup>th</sup> iteration has same value of  $x_2$  up to 3 decimal place, so that root of given equation is 0.61906.

**<u>2.</u>** Use the Newton method to estimate the root of the equation  $x^2 + 2x - 2 = 0$ .

#### <u>Sol</u><sup>n</sup>:

Given that,  $f(x) = x^2 + 2x - 2$ 

f'(x) = 2x + 2

# Let the initial guess be 0.

Now, let us calculate the root using tabular form.

| n | <i>x</i> <sub>1</sub> | $f(x_1)$                 | $f'(x_1)$ | $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ |
|---|-----------------------|--------------------------|-----------|--------------------------------------|
| 1 | 0                     | -2                       | 2         | 1                                    |
| 2 | 1                     | 1                        | 4         | 0.75                                 |
| 3 | 0.75                  | 0.0625                   | 3.5       | 0.73214                              |
| 4 | 0.73214               | 0.000309                 | 3.464     | 0.73205                              |
| 5 | 0.73205               | $-2.7975 \times 10^{-6}$ | 3.464     | 0.73205                              |

Here, the 4<sup>th</sup> and 5<sup>th</sup> iteration has same value of  $x_2$ , so that root of given equation is 0.73205.

https://collegenote.pythonanywhere.com/



# **<u>3.</u>** Find the root of equation $x \cos x - x^2 = 0$ using newton's method up to 5 decimal places.

#### <u>Sol</u><sup>n</sup>:

Given that,  $f(x) = x \cos x - x^2$ f'(x) = cosx - xsinx - 2xLet the initial guess be 1.

Now, let us calculate the root using tabular form.

| n  | x <sub>1</sub> | $f(x_1)$                | $f'(x_1)$ | $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ |
|----|----------------|-------------------------|-----------|--------------------------------------|
| 1  | 1              | -0.4597                 | -2.3012   | 0.80023                              |
| 2  | 0.80023        | -0.0829                 | -1.4781   | 0.74414                              |
| 3  | 0.74414        | $-6.302 \times 10^{-3}$ | -1.2566   | 0.73912                              |
| 4  | 0.73912        | $-4.313x10^{-5}$        | -1.2371   | 0.73908                              |
| 5  | 0.73908        | $6.349 \times 10^{-6}$  | -1.2369   | 0.73908                              |
| TT | 1 4th 1        | <b>5</b> th: 1          | 1         | $\frac{1}{1}$                        |

Here, the 4<sup>th</sup> and 5<sup>th</sup> iteration has same value of  $x_2$  up to 5 decimal places, so that root of given equation is 0.73908.

**<u>4.</u>** Find the roots of the following equations using Newton's method.

$$\log x - \cos x = \theta$$

#### Solution:

Given,

$$f(x) = log x - cos x$$
$$f'(x) = \frac{1}{x} + sin x$$
Let the initial guess be 0.5.

| n | <i>x</i> <sub>1</sub> | $f(x_1)$ | $f'(x_1)$ | $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ |
|---|-----------------------|----------|-----------|--------------------------------------|
| 1 | 0.5                   | -1.17    | 2.47      | 1.62                                 |
| 2 | 1.62                  | 0.26     | 1.62      | 1.45                                 |
| 3 | 1.45                  | 0.04     | 1.68      | 1.43                                 |
| 4 | 1.43                  | 0.01     | 1.68      | 1.42                                 |
| 5 | 1.42                  | 0.002    | 1.69      | 1.42                                 |

Here, the 4<sup>th</sup> and 5<sup>th</sup> iteration has same value of  $x_2$  up to 2 decimal place, so that root of given equation is 1.42.

https://collegenote.pythonanywhere.com/



# <u>Q.</u> Derive the Newton-Raphson formula using the Taylor series expansion.

Sol<sup>n</sup>:

Assume that  $x_0$  be the approximate root of f(x) = 0 and  $x_1 = x_0 + h$  be correct root so that  $f(x_1) = f(x_0 + h) = 0$ 

Where, h is a small interval i.e.  $h = x_1 - x_0$ 

We can express  $f(x_1)$  using Taylor series expansion as follows:

$$f(x_1) = f(x_0) + f'(x_0)h + f''(x_0)\frac{h^2}{2!} + \dots \dots \dots$$

If we neglect the terms containing the second order and higher derivatives, we get

$$f(x_1) = f(x_0) + f'(x_0)h = 0$$
  

$$h = \frac{-f(x_0)}{f'(x_0)}$$
  

$$x_1 - x_0 = \frac{-f(x_0)}{f'(x_0)}$$
  

$$\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Similarly,

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Which is the required formula for Newton Raphson method.

# **Convergence of Newton-Raphson Method**

Read yourself (page no. 147, E Balagurusamy's Numerical Methods)

# Limitations of Newton-Raphson Method

- 1. Division by zero may occur if  $f'(x_n)$  is zero or very close to zero.
- 2. If the initial guess is too far away from the required root, the process may converge to some other root.
- 3. Calculating the required derivative for every iteration may be costly tasks for some functions.

https://collegenote.pythonanywhere.com/



# **Fixed Point Method**

Any function in the form

 $f(x) = 0 \dots \dots (1)$ 

can be manipulated such that x is on the left hand side of the equation as shown below

 $x = g(x) \dots \dots (2)$ 

Equations (1) & (2) are equivalent and therefore a root of equation (2) is a root of equation (1).

If  $x_0$  is the initial guess to a root, the next approximation is given by;

$$x_1 = g(x_0)$$

Further approximation is given by;

$$x_2 = g(x_1)$$

Thus iteration process can be expressed in general form as;

$$x_{i+1} = g(x_i)$$
  $i = 0, 1, 2 ...$ 

Which is fixed point iteration formula.

The iteration process would be terminated when two successive approximation agree within some specified error.

#### <u>Algorithm</u>

 Define function f(x) and error
 Convert the function f(x) = 0 in the form x = g(x).
 Guess initial values x<sub>0</sub>.
 Calculate x<sub>i+1</sub> = g(x<sub>i</sub>)
 If | <sup>x<sub>i+1</sub>-x<sub>i</sub></sup>/<sub>x<sub>i+1</sub> | <= error goto step 7, otherwise;
 Assign x<sub>i</sub> = x<sub>i+1</sub> goto step 4
 Display x<sub>i</sub> as the root
 END
</sub>

#### <u>Examples</u>

# **<u>1.</u>** Find the one root of the equation $x^2 + x - 2 = 0$ using the fixed point method.

#### <u>Sol<sup>n</sup>:</u>

Given that,

 $f(x) = x^2 + x - 2 = 0.....(1)$ 

https://collegenote.pythonanywhere.com/



For fixed point iteration method, arranging equation (1) in terms of g(x).

$$x^{2} + x - 2 = 0$$
  
or,  $x(x + 1) = 2$   
or,  $x = \frac{2}{x+1}$   
 $\therefore g(x) = \frac{2}{x+1}$ 

Let the initial guess be 0.

Now calculating the root using tabular form

| n  | $x_i$ | $x_{i+1} = g(x_i)$ |
|----|-------|--------------------|
| 1  | 0     | 2                  |
| 2  | 2     | 0.667              |
| 3  | 0.667 | 1.199              |
| 4  | 1.199 | 0.91               |
| 5  | 0.91  | 1.04               |
| 6  | 1.04  | 0.98               |
| 7  | 0.98  | 1.01               |
| 8  | 1.01  | 0.99               |
| 9  | 0.99  | 1.00               |
| 10 | 1.00  | 1.00               |

Since, the value of  $x_{i+1}$  in 9<sup>th</sup> and 10<sup>th</sup> iteration has similar value. So the root of the given equation is 1.00.



**<u>2.</u>** Find the root of equation sinx = 5x - 2 up to 4 decimal places with initial guess 0.5 using fixed point iteration method.

## Sol<sup>n</sup>:

Given that,

For fixed point iteration method, arranging equation (1) in terms of g(x).

$$sinx - 5x + 2 = 0$$
  
or, 
$$sinx = 5x - 2$$
  
or, 
$$x = \frac{1}{5}(sinx + 2)$$
  
$$\therefore g(x) = \frac{1}{5}(sinx + 2)$$

Now calculating the root using tabular form

| n | x <sub>i</sub> | $x_{i+1} = g(x_i)$ |
|---|----------------|--------------------|
| 1 | 0.5            | 0.49589            |
| 2 | 0.49589        | 0.49516            |
| 3 | 0.49516        | 0.49503            |
| 4 | 0.49503        | 0.49501            |

Since, the value of  $x_{i+1}$  in 3<sup>rd</sup> and 4<sup>th</sup> iteration has similar value up to 4 decimal place. So the root of the given equation is 0.49503.

https://collegenote.pythonanywhere.com/



## **Horner's Method**

Let 
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$
  
=  $((\dots ((a_n x + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0)$ 

Let  $p_n = a_n$  $p_{n-1} = a_n x + a_{n-1}$  $p_{n-2} = p_{n-1}x + a_{n-2}$ 

$$p_i = p_{i+1}x + a_i$$

. . .

$$p_1 = p_2 x + a_1$$
  
$$f(x) = p_0 = p_1 x + a_0$$

#### <u>Algorithm</u>

- 1. Read the order of function 'n' and coefficient  $a_{i}$ .
- 2. Read the value for x where value should be determined.
- 3. Set  $P_n = a_n$
- 4. For i=n-1 to 0

 $p_i = p_{i+1} * x + a_i$ 5. *Print functional value at*  $x=p_0$ 6. END

# <u>Example</u>

**<u>Q.</u>** Evaluate the polynomial  $f(x) = 5x^3 + 4x^2 + 3x + 9$  using Horner's rule at x=2. **Sol<sup>n</sup>:** n=3,  $a_3=5$ ,  $a_2=4$ ,  $a_1=3$ ,  $a_0=9$ 

 $P_3 = a_3 = 5$ 

 $P_2 = 5 * 2 + 4 = 14$ 

 $P_1 = 14 * 2 + 3 = 31$ 

 $P_0 = 31 * 2 + 9 = 71$ 

$$\therefore f(2) = 71$$

https://collegenote.pythonanywhere.com/



#### **References:**

- E. Balagurusamy, Numerical Methods, Tata McGraw-Hill

Please let me know if I missed anything or anything is incorrect.

Poudeljayanta99@gmail.com

https://collegenote.pythonanywhere.com/