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Unit-2: lterative Algorithms

* A program Is call iterative when there is a loop (or
repetition).

* Example: Program to find the factorial of a number

* Time complexity of iteration can be found by finding the
number of cycles being repeated inside the loop.
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Unit-2: lterative Algorithms

Euclidean algorithm:

* The Euclidean algorithm is one of the oldest numerical
algorithms still to be in common use.

* |t solves the problem of computing the greatest common
divisor (gcd) of two positive integers.
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Unit-2: lterative Algorithms
A

Euclidean algorithm by subtraction

- The original version of Euclid’'s algorithm is based on subtraction: we
recursively subtract the smaller number from the larger.

Greatest common divisor by subtraction.

1
2
3
4
5
6
4

def gcd(a, b):
If a ==b:
return a

if a>b:
gcd(a - b, b)
else:

gcd(a, b - a)

* Let’s estimate this algorithm’s time complexity (based on n = a+b). The number
of steps can be linear, for e.g. gcd(x, 1), so the time complexity is O(n).

* This is the worst-case complexity, because the value x + y decreases with
every step.
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Euclidean algorithm by division

Let’'s start by understanding the algorithm and then go on to
prove Its correctness.

For two, given numbers a and b, such that a =b:
- 1f b=a, then gcd(a, b) = b,

- otherwise gcd(a, b) = gcd(b, a mod b).
Greatest common divisor by dividing.

- 1 defgcd(a, b):

- 2 ifa%b==0:

- 3 returnb

- 4 else:

- 5 return gcd(b, a % b)
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Euclidean algorithm by division

Denote by (a;,b;) pairs of values a and b, for which the above algorithm performs 7 steps.
Then b; = Fib;—; (where Fib; is the i-th Fibonacei number). Inductive proof;

1. for one step, by =0,
2. for two steps, b = 1,

3. for more steps, (apq,bps1) = (ag, bp) = (agp_1,bg—1), then ap = bpyy, a1 = by,
be_1 = a mod by, s0 ap = q - by + by_y for some g = 1, 80 by 2 by +bp_y.

Fibonacci numbers can be approximated hy:
14+v5yn
2

V5

Thus, the time complexity is logarithmic based on the sum of a and b — O(log(a + b)).

Fiby, =

(12.1)
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A

You are given two positive numbers M and N. The task Is to print greatest
common divisor of M'th and N’'th Fibonacci Numbers.

The first few Fibonacci Numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

Note that O is considered as 0’'th Fibonacci Number.
Example 1:

- Input :M=3,N=6

- Output : 2

- Fib(3) =2, Fib(6) =8

- GCD of above two numbers is 2
Example 2:

- Input :M=8 N=12

- Output: 3

- Fib(8) =21, Fib(12) = 144

- GCD of above two numbers is 3
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* For Fibonacci Numbers do at your own.
We have covered sufficient examples in chapter one.
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Unit-2: lterative Algorithms
Sequential Search and its analysis

| N

* Linear / sequential search is a very simple search

algorithm. In this type of search, a sequential search is
made over all items one by one.

* Every item Is checked and if a match is found then that
particular item Is returned, otherwise the search continues
till the end of the data collection.

Linear Search

'l Ty s Sy Sy " L T Y
14 | 19]| 26 27][31 33 [35 | 42 || a4
AN L . LN

b LS - N A A A A
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Unit-2: lterative Algorithms

Sequential Search and its analysis

| N

Sequential search, or linear search, is a search algorithm implemented on
lists.

It iIs one of the most intuitive approaches to search: simply look at all
entries in order until the element is found.

Given a target value, the algorithm iterates through every entry on the list
and compares it to the target. If they match then it is a successful search
and the algorithm returns true.

If the end of the list iIs reached and no match was found, it is an
unsuccessful search and the alannrithm retiirng false

Linear Search

' Ty i R Sy 5 " M T Y
14 | 19]| 26 27][31 33 [35 | a2 || aa
L L . A

A LS - S - A A
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A

Given a list L of length n with the it element denoted L;, and a target value
denoted T-:

for i from 0 to n-1:
If L=T:
return i

return -1

- The basic and dominant operation of sequential search (and search
algorithms in general) iIs comparison. Thus we can measure the running
time of this algorithm by counting the number of comparisons it makes
given a list of size n. i.e. O(n).

- The algorithm is iterative, meaning the only space needed is the single
variable that keeps track of the index of the current element being
checked. As such, sequential search always has a constant spatial
complexity O(1).
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Unit-2: lterative Algorithms
Sorting Algorithms:

| N

A Sorting Algorithm is used to rearrange a given array or list elements
according to a comparison operator on the elements.

The comparison operator is used to decide the new order of element in the
respective data structure.

For example: The below list of characters is sorted in increasing order of
their ASCII values. That is, the character with lesser ASCII value will be
placed first than the character with higher ASCII value.
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Sorting Algorithms:

| N

Sorting Algorithms are methods of reorganizing a large number of items
Into some specific order such as highest to lowest, or vice-versa, or even in
some alphabetical order.

These algorithms take an input list, processes it (i.e, performs some
operations on it) and produce the sorted list.

The most common example we experience every day is sorting clothes or
other items on an e-commerce website either by lowest-price to highest, or
list by popularity, or some other order.

Some Examples of sorting algorithms are:
- Bubble Sort,

- Selection Sort and

- Insertion Sort
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Unit-2: lterative Algorithms
Sorting Algorithms:

| N

Sorting Algorithms are methods of reorganizing a large number of items
Into some specific order such as highest to lowest, or vice-versa, or even in
some alphabetical order.

These algorithms take an input list, processes it (i.e, performs some
operations on it) and produce the sorted list.

The most common example we experience every day is sorting clothes or
other items on an e-commerce website either by lowest-price to highest, or
list by popularity, or some other order.

Some Examples of sorting algorithms are:
- Bubble Sort,

- Selection Sort and

- Insertion Sort
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Unit-2: lterative Algorithms
Bubble Sort:

Bubble sort, also referred to as comparison sort, is a simple sorting algorithm
that repeatedly goes through the list, compares adjacent elements and swaps
them if they are in the wrong order.

| N

This is the most simplest algorithm and inefficient at the same time.

Yet, it is very much necessary to learn about it as it represents the basic
foundations of sorting.

Understand the working of Bubble sort

- Bubble sort is mainly used in educational purposes for helping students
understand the foundations of sorting.

- This is used to identify whether the list is already sorted. When the list is
already sorted (which is the best-case scenario), the complexity of bubble
sort is only O(n).

- Inreal life, bubble sort can be visualised when people in a queue wanting to
be standing in a height wise sorted manner swap their positions among
themselves until everyone is standing based on increasing order of heights.
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Unit-2: lterative Algorithms
Bubble Sort:

Example:

First Pass:

(51428)->(15428), Here, algorithm compares the first two elements, and swaps since 5> 1.
(15428)-> (14528), Swapsince5>4

(14528)->(14258), Swapsince5>2

(14258)->(14258), Now, since these elements are already in order (8 > 5), algorithm does not
swap them.

Second Pass:

(14258)->(14258)

(14258)->(12458), Swapsince 4>2

(12458)->(12458)

(12458)->(12458)

Mow, the array is already sorted, but our algorithm does not know if it is completed. The algorithm

needs one whole pass without any swap to know it is sorted.
Third Pass:

(12458) -»
(12458) ->
(12458) ->
(12458) ->

12458
12458
12458
12458

(
(
(
(

)
)
)
)
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Bubble Sort:

wvoid swap(int *xp, int *yp)
{
i:11 tem’:!_::- = "xD»;
2P = "M,
VR = emp;
¥

void bubbleSort(int arr{ ], int n)
i

int i, j;

bool swapped;

for(i=0; i<n-1;i++)

i
swapped = false;
for (j = 0: j <n-i-1; j++)
i
if (arrlj] = arr[j+11)
i
swapl( &arr[jl. S&arrlj+1]1);
swapped = true;
¥
A IF mo two elements were swapped by inner loop, then break
if (swapped == false)
break:
¥
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Bubble Sort: >

Complexity Analysis
Time Complexity of Bubble sort

» Best case scenario: The best case scenario occurs when the array is already sorted. In this case, no

swapping will happen in the first iteration (The swapped variable will be false). So, when this happens, we
break from the loop after the very first iteration. Hence, time complexity in the best case scenario
is 0(n) because it has to traverse through all the elements once.

» Worst case and Average case scenario: In Bubble Sort, n-1 comparisons are done in the 1st
pass, n-2 in 2nd pass, n-3 in 3rd pass and so on. So, the total number of comparisons will be:

Sum
sum = n{n-1)/2
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Hence, the time complexity is of the order n2 or D{nz}.

Space Complexity of Bubble sort

The space complexity for the algorithm is O(1), because only a single additional memory space is required i.e. for
temporary variable used for swapping.
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Unit-2: lterative Algorithms

Selection Sort

| N

» Selection sort is a simple comparison-based sorting algorithm. It is in-place
and needs no extra memory.

* The idea behind this algorithm is pretty simple. We divide the array into two
parts: sorted and unsorted. The left part is sorted subarray and the right
part is unsorted subarray. Initially, sorted subarray is empty and unsorted
array iIs the complete given array.

* We perform the steps given below until the unsorted subarray becomes
empty:

- Pick the minimum element from the unsorted subarray.
- Swap it with the leftmost element of the unsorted subarray.

- Now the leftmost element of unsorted subarray becomes a part
(rightmost) of sorted subarray and will not be a part of unsorted
subarray.
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Selection Sort
A selection sort works as followvws:

I Part of unsorted array

I Part of sorted array
B Leftimost element in unsorted array

P mMinimum element in unsorted array

=3 =i =
0 1 2 = <5 5 L] Fa

This is our initial array & = [&, 2, 6. 7, 2, 1, 0, 3]

E=2) ==l ]
L 1 = = £ = & s

L=ftrmrost elasment of unsorted part = AjO]

PAIOIMUuUMm =lermeent of unsorted part = AG]
W will swwap AJD] and AJE] then, make AJO0] part of sorted subarray.

=S E=1 T
LB ] 1 = = oy = o -
Leftrmost elemeaent of unsorted part = Ajf1]

PAIMIMuMmM =lermeaent of unsorted part = AS]

Wie will svwwap Al1] arnd A[S] theaen, maks Al1] part of sorted sulbarray.
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Selection Sort o o o
El BN =]
0 1 Z 32 . S & Fi

Leftmost element of unsorted part = Af2]

PIiNniMum element of unsorted part = A4]

We will swap A[Z] and A[4] then, make A[Z2] part of sorted subarray.
I RE] =1

0 1 2 3 “a = L F
Leftmost element of unsorted part = A[3]

PAinimMmum element of unsorted part = A[S]

We will swap A[3] and A[S] then, make A[3] part of sorted subarray.
=2 IR

0 1 2 3 Ly 5 & 7
Leftmost element of unsorted part = Af4]

PAinimum element of unsorted part = A[ 7]

We will swap AJ4] and A[7] then, make A[4] part of sorted subarray.
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Selection Sort
= Ed 2]
0 1 2 3 44 = & F
Leftmost element of unsorted part = A[S]

PAINIMUM element of unsorted part = A[G]

We will swap A[S] amnd A[E] then, make A[D] part of sorted subarray.
2 BN = Jlest

0 1 2 3 £ 5 & r
Leftimost element of unsorted part = AJG]

PMinimum element of unsorted part = A[F]

We will swap A[E6] and A[7] then, make A[E] part of sorted subarray.
o M 1 | 2 | E B

0 1 FJ 3 & = & r
This is the final soried array.
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Selection Sort

SelectionSort(Arr[], arr_size):
FOR i from 1 to arr_size:
min_index = FindMinIndex{Arr, i, arr_size)

IF i !'= min_index:
swap(Arr[i], Arr[min_index])
END of IF
END of FOR

Suppose, there are ‘n’ elements in the array. Therefore, at worst case, there can be n iterations in FindMinindex()
for start = 1 and end = n. No auxiliary space used.

Total iterations = (n—-1)+(n-2)+...+1=(n"(n-1))/2=(n2—-n)/2
Therefore,
Time complexity: O(n?)

Space complexity: 0(1)
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Insertion Sort:

| N

Insertion sort iIs the sorting mechanism where the sorted array iIs built
having one item at a time.

The array elements are compared with each other sequentially and then
arranged simultaneously in some particular order.

The analogy can be understood from the style we arrange a deck of cards.
This sort works on the principle of inserting an element at a particular
position, hence the name Insertion Sort.
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Insertion Sort:
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Unit-2: lterative Algorithms

Insertion Sort:

| N

Insertion sort is a simple sorting algorithm that works similar to the way you
sort playing cards in your hands. The array is virtually split into a sorted and
an unsorted part. Values from the unsorted part are picked and placed at
the correct position in the sorted part.

Algorithm : To sort an array of size n in ascending order:
1: Iterate from arr[1] to arr[n] over the array.
2. Compare the current element (key) to its predecessor.

3: If the key element is smaller than its predecessor, compare it to the
elements before. Move the greater elements one position up to make
space for the swapped element.
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Insertion Sort works as follows:

1. The first step involves the comparison of the element in question with its adjacent element.
2. And if at every comparison reveals that the element in guestion can be inserted at a particular position, then

space is created for it by shifting the other elements one position to the right and inserting the element at the
suitable position.

3. The above procedure is repeated until all the element in the array is at their apt position.
Let us now understand working with the following example:

Consider the following array: 25, 17, 31,13, 2

First lteration: Compare 25 with 17. The comparison shows 17< 25. Hence swap 17 and 25.

The array now looks like:

17,25,31,13,2

First lteration

Design and Analysis of Algorithms ~ (CSC-314)
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Insertion Sort:

Second lteration: Begin with the second element (25), but it was already swapped on for the correct position, so
we move ahead to the next element.

MNow hold on to the third element (31) and compare with the ones preceding it.

Since 31= 25, no swapping takes place.
Also, 31= 17, no swapping takes place and 31 remains at its position.

The array after the Second iteration looks like:

17,25, 31,13, 2

Second lteration
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Insertion Sort:

Third Iteration; Start the following fteration with the fourth element (13), and compare it with its preceding
elements.

Since 13< 31, we swap the two.
Array now becomes: 17, 25, 13, 31, 2.

But there still exist elements that we haven't yet compared with 13. Now the comparison takes place between 25
and 13. Since, 13 < 25, we swap the two.

The array becomes 17, 13, 25, 31, 2.

The last comparison for the iteration is now between 17 and 13. Since 13 < 17, we swap the two.

The array now becomes 13, 17, 25, 31, 2.
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Insertion Sort:

Thind Iteraton

O o 2 3
O | = 3
O o | =2 =
O i B = 3
O i B = 3
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Insertion Sort:

Fourth Iteration: The last iteration calls for the comparison of the last element (2), with all the preceding elements
and make the appropriate swapping between elements.

| N

Since, 2« 31. Swap 2 and 31.

Array now becomes: 13, 17, 25, 2, 31.
Compare 2 with 25, 17, 13.

Since, 2< 25 Swap 25 and 2.

13, 17,2, 25, 31.

Compare 2 with 17 and 13.

Since, 2<17. Swap 2 and 17.

Array now becomes:

13, 2,17, 25, 31.

The |last comparison for the Iteration is to compare 2 with 13.
Since 2< 13. Swap 2 and 13.

The array now becomes:
2,13,17, 25, 31.

This is the final array after all the corresponding iterations and swapping of elements.
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Insertion Sort:

(0] 1
(9] 1
(8] 1
o z &
O 1
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Insertion Sort:

Pseudocode

INSERTION-SORT(A)
for 1 =1 ton
key — A [1]
]+~1-1
while j > = & and A[]] > key
A[1+1] - A[]]
j-3-2
End while
A[J+1] ~ key
End for
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Insertion Sort:

Time Complexity Analysis:

Even though insertion sort is efficient, still, if we provide an already sorted array to the insertion sort algorithm, it
will still execute the outer for loop, thereby requiring n steps to sort an already sorted array of n elements, which
makes its best case time complexity a linear function of n.

Wherein for an unsorted array, it takes for an element to compare with all the other elements which mean every n
element compared with all other n elements. Thus. making it for n x n, i.e., n2 comparisons. One can also take a

look at other sorting algorithms such as Merge sort, Quick Sort, Selection Sort, efc. and understand their
complexities.

Worst Case Time Complexity [ Big-0]: Il:'.\‘l_nzj

Best Case Time Complexity [Big-omega]: O(n)

Average Time Complexity [Big-theta]: ﬂl_ni}l
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Time Complexities of Sorting Algorithms:

Algorithm
Quick Sort
Bubble Sort
Merge Sort
Insertion Sort
Selection Sort
Heap Sort
Radix Sort

Bucket Sort

Best
Q(n log(n))
()(n)

()(n log(n))
()(n)
Q(n"2)
()(n log(n))
Q(nk)

Q(n+k)

Average
A(n log(n))
a(n"2)
©(n log(n})
on"2)
o(n"2)
O(n log(n})
O(nk)

O(n+k)
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Worst
o(n*2)
O(n"2)
O(n log(n))
o(n*2)
O(n"2)
O(n log(n))
O(nk)

O(n"2)

4
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Assignment:

* Discuss Binary Euclidean algorithm to find GCD and also
mention its complexity.

Design and Analysis of Algorithms ~ (CSC-314)
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