
Data Link Layer

 It is responsible for node-to-node delivery of
data.

 It receives the data from network layer and
creates FRAMES , add physical address to these
frames & pas them to physical layer

 It consist of 2 layers:

 Logical Link Layer (LLC) : Defines the
methods and provides addressing information
for communication between network devices.

 Medium Access Control (MAC):
establishes and maintains links between
communicating devices.

8

For more notes visit https://collegenote.pythonanywhere.com

Functions of Data Link Layer

 Framing : DLL divides the bits received from N/W
layer into frames. (Frame contains all the addressing
information necessary to travel from S to D).

 Physical addressing: After creating frames, DLL
adds physical address of sender/receiver (MAC
address) in the header of each frame.

 Flow Control: DLL prevents the fast sender from
drowning the slow receiver.

9

For more notes visit https://collegenote.pythonanywhere.com

Data Link Layer Example

10

For more notes visit https://collegenote.pythonanywhere.com

Functions of Data Link Layer

 Error Control: It provides the mechanism of error
control in which it detects & retransmits damaged or
lost frames.

 Access Control: When single comm. Channel is
shared by multiple devices, MAC layer of DLL
provides help to determine which device has control
over the channel.

11

For more notes visit https://collegenote.pythonanywhere.com

Contents

• Sub Layers
1. LLC
2. MAC

• MAC Address

• Framing

• Flow Control
1. Stop and Wait ARQ
2. Go Back N ARQ
3. Selective Repeat ARQ

• Error Control Mechanisms
1. Error Detection
2. Error Correction

• Channel (Multiple) Access
1. ALOHA
2. CSMA

• IEEE 802 Standards

• Virtual Circuit Switching
1. Frame Relay
2. ATM
3. X.25

For more notes visit https://collegenote.pythonanywhere.com

1.Data Link Layer

• Functions of the data link layer include:

• Providing a well-defined service interface to the network layer
(framing)

• Dealing with transmission errors (error control)

• Regulating the flow of data so that slow receivers are not swamped
by fast senders (flow control)

For more notes visit https://collegenote.pythonanywhere.com

1. Data Link Layer

• To accomplish these goals, packets from the network layers are
encapsulated into frames (See Figure Given Below):

For more notes visit https://collegenote.pythonanywhere.com

1.1Data Link Sub Layers

• Data link layer is divided into 2
sublayers

1. MAC (Media Access Control)

2. LLC (Logical Link Control)

Application

Presentation

Session

Transport

Network

Data
Link

LLC

MAC

Physical

For more notes visit https://collegenote.pythonanywhere.com

1.1 Link Sub Layers

1. MAC

• MAC sub layer directly interact with lower layer i.e. Physical layer

• Framing is done in MAC sub layer

• Framing done with help of MAC address

2. LLC

• LLC sub layer directly interact with upper layer i.e. network layer

• Error Control and Flow control is done in LLC sublayer

For more notes visit https://collegenote.pythonanywhere.com

2 MAC Address

• Media Access Control (MAC address), also called physical address, is
a unique identifier assigned to network interfaces for
communications on the physical network segment

• It is used in data link layer communication

• If devices are in same network (LAN) MAC address is used for
communication

• MAC address is 48 bit in length i.e. 6 Bytes(Octets)

• It represented using Hexa-decimal Values (6 groups)

• Example : F1-23-45-67-89-AB

For more notes visit https://collegenote.pythonanywhere.com

2 MAC Address

• First 3 bytes is assigned to specific Organization

Figure : MAC Address Format

For more notes visit https://collegenote.pythonanywhere.com

3 Framing

• Data transmission in the physical layer means moving bits in the form
of a signal from the source to the destination

• The physical layer provides bit synchronization to ensure that the
sender and receiver use the same bit durations and timing

• The data link layer, on the other hand, needs to pack bits into frames,
so that each frame is distinguishable from another

• Framing in the data link layer separates a message from one source
to a destination, or from other messages to other destinations, by
adding a sender address and a destination address

For more notes visit https://collegenote.pythonanywhere.com

3 Framing

• The destination address defines where the packet is to go; the
sender address helps the recipient acknowledge the receipt

• Frames are of 2 types

1. Fixed Size

2. Variable

For more notes visit https://collegenote.pythonanywhere.com

3.1 Fixed size frame

• Fixed size frames all frames a have same size

• No need for defining frame boundary

• Size itself can be used as a delimiter

• Fixed type of framing is used ATM network

• ATM frame size is 53 bytes (48 for payload +5 for header)

For more notes visit https://collegenote.pythonanywhere.com

3.2 Variable frame size

• Size of each frames will be different sizes

• In variable-size framing, Start of frame and end of frame (i.e. frame
boundary) has to be defined

• Two approaches were used for this purpose defining frame boundary:
1. Character(Byte) -oriented approach

2. Bit-oriented approach

Figure : Frame Format in Variable Size frame

For more notes visit https://collegenote.pythonanywhere.com

3.2.1 Character (Byte)- Oriented

• Data to be carried are 8-bit characters from a coding system such as
ASCII

Figure : Frame in Character Oriented Protocol

• In character oriented protocols, a frame starts with synchronization
characters (one or more)

• SYN- Synchronization Idle Character (Usually coded as 0x16)

• SOH- Start of Header(means Start of frame information)

For more notes visit https://collegenote.pythonanywhere.com

3.2.1 Character (Byte)- Oriented

• STX - Start of Text(Means start of data)

• ETX - End of Text

• ETB - End of Transmission Block
• If Multiple Frames are send ETB is used in intermediate frames and ETX at the

last frame

• BCC – Binary Check Character (for error detection)

• DLE – Data Link Escape(Escape Character/ Flag/ Delimiter)
• If the DLE character appears in the data field it must be replaced by the

sequence DLE DLE (Known as Character stuffing)
NB :Character Stuffing Section is explained in next slide

For more notes visit https://collegenote.pythonanywhere.com

3.2.1.1 Character(Byte) Stuffing

• If the DLE(Escape) character appears in
the data field it must be replaced by the
sequence DLE DLE This Known as
Character stuffing or Byte Stuffing

• This creates another problem. What
happens if the text contains one or more
escape characters followed by a flag?

• The receiver removes the escape
character, but keeps the flag, which is
incorrectly interpreted as the end of the
frame

• To solve this problem, the escape
characters that are part of the text must
also be marked by another escape
character.

• In other words, if the escape character is
part of the text, an extra Escape
Character is added to show that the
second one is part of the text

Figure : Byte Stuffing (Sender) and Un-stuffing (Receiver)

For more notes visit https://collegenote.pythonanywhere.com

3.2.2 Bit Oriented Protocol

• Frame is a collection of bit

• In a bit-oriented protocol, the data section of a frame is a sequence of
bits to be interpreted by upper layer data(Text, video, audio, etc..)

• Each frame have Address, control, data, FCS and Delimiter(Flag)

Figure 3 : Frame in Bit Oriented Protocol

• Flag (Delimiter)
• Used to mark start and end of frame(usually 8 bit pattern flag 01111110)

• One flag is used to separate end and start of next frame if they are contiguous

For more notes visit https://collegenote.pythonanywhere.com

3.2.2 Bit Oriented Protocol

• Address field indicates source and destination address

• Control field indicates type or length of frame

• FCS (Frame Check Sequence) : For error detection

• Bit Stuffing: is the process of adding one extra 0 whenever there is 5
consecutive 1’s in frame , so that the receiver does not mistake the
pattern 0111110 for a flag.

Figure 5 : Bit Oriented Frame with data field having 01111110 pattern flag

For more notes visit https://collegenote.pythonanywhere.com

3.2.2.1 Bit stuffing

• Each frame begins and ends with a special bit pattern called a flag
byte [01111110]

• Whenever sender data link layer encounters five consecutive 1’s in the
data stream, it automatically stuffs a 0 bit into the outgoing stream

• When the receiver sees five consecutive incoming 1’s followed by a 0
bit, it automatically dyestuffs the 0 bit before sending the data to the
network layer

For more notes visit https://collegenote.pythonanywhere.com

3.2.2.1 Bit stuffing

Figure : Original Data in sender

Figure: Data sent to receiver after stuffing

Figure: Data un stuffed after receiving

For more notes visit https://collegenote.pythonanywhere.com

3.3 Frame format

Figure : Frame format (Numbers in each filed indicates size in bytes)

• Ethernet does not provide any mechanism for acknowledging
received frames, making it what is known as an unreliable medium

• Acknowledgments must be implemented at the higher layers

• The Ethernet frame contains seven fields as shown in figure

NB : Explanation of Each field is given in next page

For more notes visit https://collegenote.pythonanywhere.com

3.3.1 Frame format- Preamble

• The first field of frame contains 7 bytes (56 bits)

• Alternating 0’s and 1’s that alerts the receiving system to the coming
frame and enables it to synchronize its input timing

01

• The pattern provides only an alert and a timing pulse

• The 56-bit pattern allows the stations to miss some bits at the
beginning of the frame

• The preamble is actually added at the physical layer and is not
(formally) part of the frame.

For more notes visit https://collegenote.pythonanywhere.com

3.3.2 Frame format- SFD

• The second field is Start Frame Delimiter(SFD) is of 1 byte

• 10101011 (8 bits)

• signals the beginning of the frame

• The SFD warns the station or stations that this is the last chance for
synchronization

• The last 2 bits alerts the receiver that the next field is the destination
address

For more notes visit https://collegenote.pythonanywhere.com

3.3.3 Frame format- Destination Address

• The DA field is 6 bytes

• It contains the physical address(MAC) of the destination station or
stations to receive the packet

Source
(Sender)

Destination
(Receiver)

For more notes visit https://collegenote.pythonanywhere.com

3.3.4 Frame format- Source Address

• The SA field is 6 bytes

• It contains the physical address(MAC) of the source station or stations
to receive the packet

Source
(Sender)

Destination
(Receiver)

For more notes visit https://collegenote.pythonanywhere.com

3.3.5 Frame format- Type/Length

• This field is defined as a type field or length field.

• The original Ethernet used this field as the type field to define the
upper-layer protocol using the MAC frame.

• The IEEE standard used it as the length field to define the number of
bytes in the data field

For more notes visit https://collegenote.pythonanywhere.com

3.3.6 Frame format- Data and Padding

• This field carries data encapsulated from the upper-layer protocols.

• It is a minimum of 46 and a maximum of 1500 bytes, as we will see
later

• If upper layer data is less than 46 byte add 0’s

• used to insure data is minimum 46 bytes.

For more notes visit https://collegenote.pythonanywhere.com

3.3.7 Frame format- CRC

• CRC- Cyclic Redundancy Checking

• For Error control

• It is 4 bytes

For more notes visit https://collegenote.pythonanywhere.com

4 Error Control

• Error is corruption (change)in bit / bits due to noise, signal distortion
or attenuation in the media

• If errors do occur, then some of the bits will either change from 0 to 1
or from 1 to 0

• There are 2 types of error
1. Bit error : Only one bit is corrupted in data

2. Burst error: More than one bits are corrupted in data

• Error Control allows the receiver to inform the sender of any frames
lost or damaged in transmission and coordinates the retransmission
of those frames by the sender

For more notes visit https://collegenote.pythonanywhere.com

4 Error Control

2 ways of error control
1. FEC(Forward Error Correction)

2. ARQ(Automatic Repeat reQuest)

1. FEC

• FEC is accomplished by adding redundancy to the transmitted
information using a predetermined algorithm

• Each redundant bit is invariably a complex function of many original
information bits

For more notes visit https://collegenote.pythonanywhere.com

4 Error Control

1. ARQ

• Receiver detects transmission errors in a message and automatically
requests a retransmission from the transmitter

• When the transmitter receives the ARQ, the transmitter retransmits
the message until it is either correctly received or the error persists
beyond a predetermined number of retransmissions (usually 15)

• A few types of ARQ protocols are Stop-and-wait ARQ, Go-Back-N ARQ
and Selective Repeat ARQ (We will discuss in Flow control)

For more notes visit https://collegenote.pythonanywhere.com

4 Error Control

• Error control is divided into 2 categories
1. Error detection

2. Error correction

• Error Detection: It allows a receiver to check whether received data
has been corrupted during transmission. If corrupted it can check for
retransmission (Example: Parity Checking and CRC)

• Error Correction: It allows a receiver check for error and to
reconstruct the original information when it has been corrupted
during transmission (Example : Hamming code)

For more notes visit https://collegenote.pythonanywhere.com

4.1 Error Detection

• It allows a receiver to check whether received data has been
corrupted during transmission

• If corrupted it can check for retransmission

• Here ARQ is used for Error correction

• Error Detection Mechanism
1. Parity Checking (Bit error checking)

2. CRC(Burst error checking)

3. Checksum (Burst error checking)

For more notes visit https://collegenote.pythonanywhere.com

4.1.1 Parity Checking

• The simplest error-detection scheme is to append a parity bit to the
end of a block of data

• Value of parity bit is selected so that the character has an even
number of 1s (even parity) or an odd number of 1s (odd parity)

Figure : Parity Message format

• Parity can detect odd numbers of errors only.

Data Bits (n) Parity bit(1)

Message to be Sent = Data + Parity (total n+1 bits)

For more notes visit https://collegenote.pythonanywhere.com

4.1.1 Parity Checking

• Consider parity encoding scheme with 4 bit data and bit parity

• Code word = data + parity (5 bit)

• Parity bit is calculate with the help modulo 2 arithmetic

• Here even parity is used

• If data bits have odd number of 1’s then parity bit will be 1

• If data bits have even number of 1’sthen parity bit will be 0

a3 a2 a1 a0 p

p=a3 XOR a2 XOR a1 XOR a0 (modulo 2 method)

For more notes visit https://collegenote.pythonanywhere.com

4.1.1 Parity Checking

Example Scenario

• Consider message 1010 (4 bit)

• Parity bit p is calculating using XORing (modulo 2 method)

• Transmitter will append parity bit (0 because of even number of 0’s)

• Code word 10100 is send through medium to receiver(message +
parity bit , total 5 bits)

• Receiver will check received data and do XORing (modulo 2
arithmetic) and compare the result with parity bit

• If parity bit in code word and XORing in receiver matches NO ERROR

For more notes visit https://collegenote.pythonanywhere.com

4.1.2 CRC

• CRC (Cyclic Redundancy Checking)

• CRC is based on polynomial

• Sender and receiver have to choose a common polynomial for
checking error

• Instead of one parity bit here R parity bits are used for error checking

• The value of R is determined by the degree of polynomial selected

• Data word(N bits) + parity word(R bits) = code word (K bits)

For more notes visit https://collegenote.pythonanywhere.com

4.1.2 CRC

Figure : CRC Encoder/Decoder

For more notes visit https://collegenote.pythonanywhere.com

4.1.2.1 CRC – Encoder (Sender)

• Consider

• Data word(message) =1001 (4 bit)

• Polynomial =x3+x+1(i.e. in binary representation 1011)

• The above polynomial is of degree 3 (so 3 parity bit is used)

• Code word (k)= 7 bit in total

• Code word is generated with help of data bit and polynomial

For more notes visit https://collegenote.pythonanywhere.com

4.1.2.1 CRC – Encoder (Sender)

Steps in encoder

1. First add R bits of 0’s in the with the data word

2. 1001 is data word and 3 0’s augmented(added) so 1001000 is generated

3. 1001000 is called augmented data word

4. 1001000 is divided with the polynomial bits i.e. 1011(divisor)

5. 110 is obtained as reminder and quotient is discarded

6. 110 is augmented with data bits i.e. 1001 to create code word i.e.
1001110

7. Code word is sent through the transmission media

NB: Division is shown in next page

For more notes visit https://collegenote.pythonanywhere.com

4.1.2.1 CRC – Encoder (Sender)

For more notes visit https://collegenote.pythonanywhere.com

4.1.2.1 CRC – Decoder (Receiver)

• Received Code word(message + parity) =1001110 (7 bit)

• Have same Polynomial =x3+x+1(i.e. in binary representation 1011)

• The above polynomial is of degree 3 (so 3 parity bit is used)

• Receiver will check for error by doing division with the code word
received and polynomial as divisor

• If the remainder is 000 then there is no error in transmission else
there is error in transmission.

For more notes visit https://collegenote.pythonanywhere.com

4.1.2.1 CRC – Decoder (Receiver)

Steps in Decoder.

1. Code word (1001110) is received through the transmission media

2. First divide (binary modulo 2 division) the code word the
polynomial bits i.e. 1011(divisor)

3. After division discard the quotient and take reminder only

4. If reminder is 000 then there is no error in transmission

NB : Division is shown in next page

For more notes visit https://collegenote.pythonanywhere.com

4.1.2.1 CRC – Decoder (Receiver)

For more notes visit https://collegenote.pythonanywhere.com

4.2. Error Correction Codes

• It allows a receiver check for error and to reconstruct the original
information when it has been corrupted during transmission

• It is also called FEC (Forward Error Correction)

• Hamming Code is Error correction code

• Error correction done with help of Hamming Distance

For more notes visit https://collegenote.pythonanywhere.com

4.2.1. Hamming Distance

• Given any two code words that may be transmitted or received—say,
10001001 and 10110001 respectively

• To determine how many bits differ(error), just XOR the two code
words and count the number of 1 bits in the result

1 0 0 0 1 0 0 1 XOR

1 0 1 1 0 0 0 1

0 0 1 1 1 0 0 0 Here 3 bits One So 3 error bits(Hamming Distance = 3)

For more notes visit https://collegenote.pythonanywhere.com

4.2.2. Minimum Hamming Distance

• The minimum Hamming distance is the smallest Hamming distance
between all possible pairs in a set of words

• First find all distances and find the minimum distance

• For 2 bit word all possible combinations are (00,01,10,11)

d(00,01)=1 d(00,10)=1 d(00,11)=2

d(01,10)=2 d(01,11)=1 d(10,11)=1

Here minimum distance for 2 bit word is 1

For more notes visit https://collegenote.pythonanywhere.com

4.2.3. Hamming Code

• Hamming code can be used to check and correct errors

• Hamming code works based on minimum hamming distance(𝑑𝑚𝑖𝑛)

• Consider Hamming code(n,k)
• n- no of code bits

• k- no of data bits

• r- no of redundant bit(Bits added with data For Error detection and correction)

• n =k+r

• With the help of below equation we can calculate the number of
redundant bit for given data bit

2𝑟 ≥ 𝑘 + 𝑟 + 1

For more notes visit https://collegenote.pythonanywhere.com

4.2.4. Hamming Code(7,4)

• Consider example hamming code(7,4)

• No of data bits (k)=4

• Calculating redundant bits with help of formula 2𝑟 ≥ 𝑘 + 𝑟 + 1
• Consider r=1 2 ≥ 4 + 1 + 1 𝑁𝑜𝑡 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒

• Consider r=2 4 ≥ 4 + 2 + 1 𝑁𝑜𝑡 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒

• Consider r=3 8 ≥ 4 + 3+ 1 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒

• For data (k) bits =4 we need 3 redundant (r) bits

• So total number bits in code word (n)=4+3 (k+r)=7

• In this example Minimum hamming distance is 𝑑𝑚𝑖𝑛 = 3

For more notes visit https://collegenote.pythonanywhere.com

4.2.4.1. Hamming Code(7,4) Encoder

• Consider 4 data bits as (𝑑0, 𝑑1, 𝑑2, 𝑑3) and 3 redundant bits(𝑟0 , 𝑟1 , 𝑟2)

• Calculation of redundant bits (Modulo 2 addition / XOR)

• 𝑟0=𝑑3 + 𝑑2 + 𝑑1
• 𝑟1=𝑑3 + 𝑑2 + 𝑑0
• 𝑟2=𝑑3 + 𝑑1 + 𝑑0

For more notes visit https://collegenote.pythonanywhere.com

4.2.4.1. Hamming Code(7,4) Encoder

Consider message 0011 sent using hamming bit(order is d3,d2,d1,d0)

Find the redundant bits with help of formula given in previous page
• 𝑟0=𝑑2 + 𝑑1 + 𝑑0 = 0 + 1 + 1 = 0

• 𝑟1=𝑑3 + 𝑑2 + 𝑑1 = 0+ 0 + 1 = 1

• 𝑟2=𝑑3 + 𝑑1 + 𝑑0 = 0 + 1 + 1 = 0

• Code word=0011010(𝑑3 𝑑2 𝑑1 𝑑0 𝑟2 𝑟1 𝑟0)

• This code word is transmitted to receiver

𝑑0 𝑑1 𝑑2 𝑑3
1 1 0 0

Data bits

𝑟0 𝑟1 𝑟2
0 1 0

Redundant Bits

For more notes visit https://collegenote.pythonanywhere.com

4.2.4.2. Hamming Code Decoder

• Here 7 bit code word is received and receiver has to do error checking
and correction

• Syndrome bit is used for error correction

• First step receiver will find the number of syndrome bits

• Here number of code word position in which error might occur is 7
and other condition is no error in code word (total 8 conditions)

• So we can consider 3 syndrome bits which will produce 8
combinations (000 to 111)

For more notes visit https://collegenote.pythonanywhere.com

4.2.4.2. Hamming Code Decoder

• Calculation of syndrome bits

• (Modulo 2 addition / XOR)

• 𝑠0 = 𝑟0 + 𝑑3 + 𝑑2 + 𝑑1
• 𝑠1 = 𝑟1 + 𝑑3 + 𝑑2 + 𝑑0
• 𝑠2 = 𝑟2 + 𝑑3 + 𝑑1 + 𝑑0
If there is error in transmission
syndrome matrix will help to find which
bit the error is located and corrected by
receiver

𝑠2 𝑠1 𝑠0 Error
Bit

Remark

0 0 0 No Error

0 0 1 𝑟0 𝑟0 𝑜𝑛𝑙𝑦 𝑖𝑛 𝑠0

0 1 0 𝑟1 𝑟1 𝑜𝑛𝑙𝑦 𝑖𝑛 𝑠1

0 1 1 𝑑2 𝑑2 𝑖𝑛 𝑠0 , 𝑠1

1 0 0 𝑟2 𝑟2 𝑜𝑛𝑙𝑦 𝑖𝑛 𝑠2

1 0 1 𝑑1 𝑑1 𝑖𝑛 𝑠0 , 𝑠2

1 1 0 𝑑0 𝑑0 𝑖𝑛 𝑠2 , 𝑠1

1 1 1 𝑑3 𝑑3 𝑖𝑛 𝑠0 , 𝑠1 , 𝑠2

Syndrome matrix in receiver

For more notes visit https://collegenote.pythonanywhere.com

4.2.4.2. Hamming Code Decoder (No Error Condition)

• Consider the message we encoded in the Encoder section i.e.
0011010(𝑑3 𝑑2 𝑑1 𝑑0 𝑟2 𝑟1 𝑟0) received same message

• Syndrome bit 0 means no error in that bit, 1 means error present

0011010

Encoder /
Sender

0011010

Decoder /
Reciever

For more notes visit https://collegenote.pythonanywhere.com

4.2.4.2. Hamming Code Decoder (Error Condition)

• First we have to find the syndrome bits
• 𝑠0 = 𝑟0 + 𝑑3 + 𝑑2 + 𝑑1 = 1 + 0 + 0 + 1 = 0

• 𝑠1 = 𝑟1 + 𝑑3 + 𝑑2 + 𝑑0 = 1 + 0 + 0+ 1 = 0

• 𝑠2 = 𝑟2 + 𝑑3 + 𝑑1 + 𝑑0 = 0 + 0 + 1 + 1 = 0

• Syndrome bit 000(s2,s1,s0) means no error (From syndrome matrix)
present in the received data

For more notes visit https://collegenote.pythonanywhere.com

4.2.4.2. Hamming Code Decoder (Error Condition)

• Consider an error condition left most 3rd bit is changed in
transmission

• 0011010(𝑑3 𝑑2 𝑑1 𝑑0 𝑟2 𝑟1 𝑟0) send message

• 0001010(𝑑3 𝑑2 𝑑1 𝑑0 𝑟2 𝑟1 𝑟0) received message

0011010

Encoder /
Sender

0001010

Decoder /
Reciever

For more notes visit https://collegenote.pythonanywhere.com

4.2.4.2. Hamming Code Decoder (Error Condition)

• First we have to find the syndrome bits
• 𝑠0 = 𝑟0 + 𝑑3 + 𝑑2 + 𝑑1 = 1 + 0 + 0 + 0 = 1

• 𝑠1 = 𝑟1 + 𝑑3 + 𝑑2 + 𝑑0 = 1 + 0 + 0+ 1 = 0

• 𝑠2 = 𝑟2 + 𝑑3 + 𝑑1 + 𝑑0 = 0 + 0 + 0 + 1 = 1

• Syndrome bits are 101(s2,s1,s0)

• From the syndrome matrix error presents in bit which is present in
s2,s0 and not present on s1, d1 is commonly present in calculation of
s2 and s0 not in s1

• Negate the d1 bit for correcting the error.

For more notes visit https://collegenote.pythonanywhere.com

5. Flow Control

• There are 2 techniques of Error correction
1. FEC (Forward Error correction) – Using Hamming codes

2. ARQ (Automatic Repeat reQuest)– Resending of data

• In noisy Channel error control is achieved with help of ARQ which is a
flow control mechanism

• Flow control is a technique for assuring that a transmitting entity
does not overwhelm a receiving entity with data

• Flow control is a set of procedures that tells the sender how much
data it can transmit before it must wait for an acknowledgment from
the receiver

For more notes visit https://collegenote.pythonanywhere.com

5.1 ARQ (Automatic Repeat reQuest)

• Any time an error is detected in an exchange, specified frames are
retransmitted. This process is called ARQ

• ARQ - Which basically means the retransmission of data

• The ARQ techniques are:-
1. Stop and Wait ARQ

2. Go-Back-N ARQ

3. Selective Repeat ARQ
Sliding Window Protocol

For more notes visit https://collegenote.pythonanywhere.com

5.1.1 Stop and Wait ARQ

• Protocols in which the sender
sends one frame and then waits for
an acknowledgement before
proceeding are called stop-and-
wait

• No other data frames can be sent
until the destination station’s reply
arrives at the source station

• Two sorts of errors could occur :
1. Error in Data Frame

2. Error in Acknowledgement

For more notes visit https://collegenote.pythonanywhere.com

5.1.1 Stop and Wait ARQ

1. Error in Data Frame

• The frame that arrives at the destination could be damaged

• The receiver detects this by using the error-detection technique
referred to earlier and simply discards the frame

• To account for this possibility, the source station is equipped with a
timer
After a frame is transmitted, the source station waits for an acknowledgment

If no acknowledgment is received by the time that the timer expires, then the
same frame is sent again

For more notes visit https://collegenote.pythonanywhere.com

5.1.1 Stop and Wait ARQ

• To avoid this problem, frames are alternately labelled with 0 or 1 and
positive acknowledgments are of the form ACK0 and ACK1

• ACK0 acknowledges receipt of a frame numbered 1 and indicates that the
receiver is ready for a frame numbered 0

• All frame reaching for transmission is numbered 0 and 1 alternatively
2. Error in Acknowledgement

1. Station A sends a frame.
2. The frame is received correctly by station B, which responds with an

acknowledgment (ACK).
3. The ACK is damaged in transit and is not recognizable by A, which will therefore

time out and resend the same frame
4. This duplicate frame arrives and is accepted by B.
5. B has therefore accepted two copies of the same frame as if they were separate.

For more notes visit https://collegenote.pythonanywhere.com

5.1.2 Go-Back-N ARQ

• Uses Sliding window Technique

• Station may send a series of frames sequentially numbered modulo some
maximum value (Maximum size of window)

• Acknowledgement is send for the group of frame instead of single frame.

• Have positive and negative acknowledgement

Sequence Numbers

• Frames from a sending station are numbered sequentially However,
because we need to include the sequence number of each frame in the
header, we need to set a limit

• Range of sequence number varies from 0 to 2𝑚-1

For more notes visit https://collegenote.pythonanywhere.com

5.1.2 Go-Back-N ARQ

• Consider m=3 so value is 0 to 7

• However, we can repeat the sequence. So the sequence numbers are

0,1,2,3,4,5,6, 7,0,1,2,3,4,5,6,7,0,1,…

Stop and wait single frame have single ack but in

• There is 2 types of Acknowledgement frames in this scenario
1. RR(Receive Ready)

2. REJ(Reject)

For more notes visit https://collegenote.pythonanywhere.com

5.1.2 Go-Back-N ARQ

1. Receive Ready(RR)

It is like positive acknowledgement.

When all frames upto 𝑖𝑡ℎ frame is received receiver will send RR i+1
and after that sender will receive RR i+1 message then the sender will
send i+2 th frame

1. REJECT(REJ)

It is like negative acknowledgement.

When frame number i is not received

REJ i is send and sender will resend the frames starting from i

For more notes visit https://collegenote.pythonanywhere.com

5.1.2 Go-Back-N ARQ

• In the figure First frame 0,1,2 is sent after
Receiving Frame 1, RR2 is send by the
receiver then frame 3 , 4 , 5 is sent and 4 is
lost in middle of transmission and REJ 4 is
sent after that frame 4,5 is sent again RR5
is sent after receiving frame 6,7 is sent

For more notes visit https://collegenote.pythonanywhere.com

5.1.3 Selective Repeat ARQ

• RR is used similarly as in GO back N

• SREJ used as negative ACK

• With selective-reject ARQ, the only frames retransmitted are those
that receive a negative acknowledgment, in this case called SREJ, or
those that time out

• Selective reject would appear to be more efficient than go-back-N,
because it minimizes the amount of retransmission

• On the other hand, the receiver must maintain a buffer large enough
to save post-SREJ frames until the frame in error is retransmitted and
must contain logic for reinserting that frame in the proper sequence

For more notes visit https://collegenote.pythonanywhere.com

5.1.3 Selective Repeat ARQ

• The transmitter, too, requires more complex
logic to be able to send a frame out of
sequence

• Because of such complications, select-reject
ARQ is much less widely used than go-back-N
ARQ

• Selective reject is a useful choice for a
satellite link because of the long propagation
delay involved

For more notes visit https://collegenote.pythonanywhere.com

6. Media Access(Multiple Access)

• In random access or contention methods, no station is superior to
another station and none is assigned the control over another

• No station permits, or does not permit, another station to
send(Randomly send if medium is free)

Multiple Access
Protocols

Controlled Access
Protocol

Random Access
Protocol

Channelization
Protocol

Reservation, Polling,
Token Passing

ALOHA, CSMA FDMA, TDMA, CDMA

For more notes visit https://collegenote.pythonanywhere.com

6. Media Access(Multiple Access)

• Two features give random access method

1. There is no scheduled time for a station to transmit. Transmission is
random among the stations

2. No rules specify which station should send next. Stations compete
with one another to access the medium

• There are 2 methods
1. ALOHA

2. CSMA

For more notes visit https://collegenote.pythonanywhere.com

6.1 ALOHA

• Developed at the Univ. of Hawaii

• Random access method used for any type of shared medium(wireless
and wired)

• ALOHA have 2 types
1. Pure ALOHA

2. Slotted ALOHA

For more notes visit https://collegenote.pythonanywhere.com

6.1.1. pure ALOHA

• The node immediately transmits its frame completely If the frame is
collided it retransmits the frame again (after completely transmitting
its collided frame) with the probability

For more notes visit https://collegenote.pythonanywhere.com

6.1.1. pure ALOHA (Frame sending Procedure)

For more notes visit https://collegenote.pythonanywhere.com

6.1.1. pure ALOHA (Frame sending Procedure)

• Procedure in pure ALOHA:
1. Send frame

2. Wait for a time out(time interval) and check if acknowledgement is
received or not if received transmission is SUCCESS else go to step 3

3. Increment the number of attempts (k)and check if it reaches maximum(15)
if it reaches maximum attempt ABORT transmission else go to step 4

4. Choose a random time interval (R) between 0 to 2𝑘 − 1 and calculate back
off time(𝑇𝐵) using random time interval time and propagation time/frame
transmission time(𝑇𝑝/𝑇𝑓𝑟) 𝑇𝐵=R*𝑇𝑝 or 𝑇𝐵=R*𝑇𝑓𝑟

5. Repeat from step 1 until success/ abort

For more notes visit https://collegenote.pythonanywhere.com

6.1.1. pure ALOHA (Vulnerable Time)

• Station A sends a frame at time t

• Now imagine station B has already
sent a frame between t - Tfr and t

• This leads to a collision between the
frames from station A and station B

• The end of B's frame collides with the
beginning of A's frame

• On the other hand, suppose that
station C sends a frame between t and
t + Tfr

• Here, there is a collision between
frames from station A and station C.
The beginning of C's frame collides
with the end of A's frame

• Vulnerable time = 2*𝑇𝑓𝑟

For more notes visit https://collegenote.pythonanywhere.com

6.1.2. slotted ALOHA

• Frames are of the same size time is divided into equal size slots, time to transmit 1 frame
nodes start to transmit frames only at beginning of slots nodes are synchronized

• If a frame is ready for transmission after starting time of slot 1 it will be transmitted in
slot 2

• If 2 or more nodes transmit in slot, all nodes detect collision

For more notes visit https://collegenote.pythonanywhere.com

6.1.2. slotted ALOHA

• when node obtains fresh frame it transmits in next slot

• No collision, node can send new frame in next slot

• If collision, node retransmits frame in each subsequent slot with
probability (p) until success

• Here Procedure of frame sending is similar to pure ALOHA but of
frame will be sent only on starting of time slot

For more notes visit https://collegenote.pythonanywhere.com

6.1.2. slotted ALOHA (Vulnerable Time)

• Because a station is allowed to
send only at the beginning of the
synchronized time slot, if a
station misses this moment, it
must wait until the beginning of
the next time slot

• This means that the station
which started at the beginning
of this slot has already finished
sending its frame

• Vulnerable time = 𝑇𝑓𝑟

For more notes visit https://collegenote.pythonanywhere.com

6.2. CSMA (Carrier Sense Multiple Access)

• Invented to minimize collisions and increase the performance

• A station now “follows” the activity of other stations

• Simple rules for a polite human conversation
1. Listen before talking

2. If someone else begins talking at the same time as you, stop talking

• A node should not send if another node is already sending(Carrier
Sensing)

• Vulnerable time is the propagation time which is the time needed for
a signal to propagate from one end of the medium to the other

For more notes visit https://collegenote.pythonanywhere.com

6.2.1 CSMA (Persistence Methods)

• Persistence methods :- Methods for Sensing the channel (busy/ idle)

• 3 Persistence methods are available:
1. I-persistence

2. Non-persistence

3. P-persistence

For more notes visit https://collegenote.pythonanywhere.com

6.2.1.1. I-Persistence Method

• In this method, after the station
finds the line idle, it sends its
frame immediately (with
probability I)

• This method has the highest
chance of collision because two
or more stations may find the
line idle and send their frames
immediately

Figure : Behaviour I persistence

Figure : Flow diagram of I persistence

For more notes visit https://collegenote.pythonanywhere.com

6.2.1.2. Non-Persistence Method

• In the Non-persistent method, a station
that has a frame to send senses the line.

• If the line is idle, it sends immediately.

• If the line is not idle, it waits a random
amount of time and then senses the line
again.

• The Non-persistent approach reduces the
chance of collision because it is unlikely
that two or more stations will wait the
same amount of time and retry to send
simultaneously

• This method reduces the efficiency of the
network because the medium remains
idle when there may be stations with
frames to send.

Figure : Behaviour of Non persistence

Figure : Flow diagram of Non persistence

For more notes visit https://collegenote.pythonanywhere.com

6.2.1.3. P-Persistence Method

• The p-persistent method is used
if the channel has time slots with
a slot duration equal to or
greater than the maximum
propagation time

• The p-persistent approach
combines the advantages of the
other two strategies

• It reduces the chance of collision
and improves efficiency.

Figure : Behaviour P persistence

Figure : Flow diagram of P persistence

For more notes visit https://collegenote.pythonanywhere.com

6.2.1.3. P-Persistence Method

• In this method, after the station finds the line idle it follows these
steps:

1. With probability p, the station sends its frame.

2. With probability q = 1 - p, the station waits for the beginning of the next
time slot and checks the line again.
I. If the line is idle, it goes to step 1.

II. If the line is busy, it acts as though a collision has occurred and uses the back off
procedure.

For more notes visit https://collegenote.pythonanywhere.com

6.2.2 CSMA/CD (Collision Detection)

• In this method, a station monitors the medium after it sends a frame
to see if the transmission was successful. If so, the station is finished.
If, however, there is a collision, the frame is sent again

• In CSMA/CD Channel can be in one of the three states: contention,
transmission, and idle.

For more notes visit https://collegenote.pythonanywhere.com

6.2.2 CSMA/CD Procedure

For more notes visit https://collegenote.pythonanywhere.com

6.2.2 CSMA/CD Procedure

• Procedure is similar to ALOHA but with certain differences

• The main differences are:-
• Addition of the persistence process before transmission

• Transmission is continuous process

• Jamming signal is used in it

Figure : Energy Level During Transmission

For more notes visit https://collegenote.pythonanywhere.com

6.2.2 CSMA/CD Throughput

• The throughput of CSMAlCD is greater than that of pure or slotted
ALOHA

• The maximum throughput occurs at a different value of G and is
based on the persistence method and the value of p in the p-
persistent approach.

• For I-persistent method the maximum throughput is around 50
percent when G =1

• For non-persistent method, the maximum throughput can go up to 90
percent when G is between 3 and 8

For more notes visit https://collegenote.pythonanywhere.com

6.2.3 CSMA/CA (Collision Avoidance)

• Collisions are avoided through the use of CSMAICA's three strategies:
1. Inter Frame Space

2. Contention window

3. Acknowledgments

Figure : Timing in CSMA/CA

For more notes visit https://collegenote.pythonanywhere.com

6.2.3 CSMA/CA Inter Frame Space

• When an idle channel is found, the station does not send
immediately

• Station waits for a period of time called the inter frame
space or IFS

• In CSMA/CA, the IFS can also be used to define the priority of a
station or a frame
• For EX: a station that is assigned a shorter IFS has a higher priority while

sending

For more notes visit https://collegenote.pythonanywhere.com

6.2.3 CSMA/CA Contention Window

• Contention window (random wait time) is an amount of time divided
into slots

• A station that is ready to send chooses a random number of slots as
its wait time

• The number of slots in the window changes according to the binary
exponential back-off strategy

• Binary exponential back-off strategy means that it is set to one slot
the first time and then doubles each time the station cannot detect
an idle channel after the IFS time

• Restarts content window timer when the channel becomes idle

For more notes visit https://collegenote.pythonanywhere.com

6.2.3 CSMA/CA Procedure

• Channel needs to be sensed before and after
the IFS and sensed during the contention
time

• For each time slot of the contention window,
the channel is sensed

• If it is found idle, the timer continues else if
the channel is found busy, the timer is
stopped and continues after the timer
becomes idle again.

For more notes visit https://collegenote.pythonanywhere.com

7. IEEE Data Link Layer Protocol/Standards

• Here we are discussing about the protocols and standard used in data
link layer.

• Here 802 commonly refer to data link layer specifically(MAC Sub
layer)

Standards

• IEEE 802.3

• IEEE 802.4

• IEEE 802.5

For more notes visit https://collegenote.pythonanywhere.com

7.1. IEEE 802.3 Ethernet

• IEEE 802.3 frame format (refer section 3.3)

• It uses mainly CSMA as channel access mechanism

Figure : Different IEEE 802.3 standards

For more notes visit https://collegenote.pythonanywhere.com

7.1.1. IEEE 802.3 Standard Ethernet

• Maximum data rate is up to 10Mbps

• Standard Ethernet uses I-persistent CSMA/CD

• Uses 48 bit addressing

• It uses following Technologies

10Base2 - Thin Co-axial cable (Also called Thinnet / Thin Ethernet)

10Base5 - Thick Co-axial cable (Also called Thicknet / Thick Ethernet)

10BaseT – Unsheilded Twisted Pair Cable (Also called Twisted pair
Ethernet)

10BaseF – Optical Fiber Cable

For more notes visit https://collegenote.pythonanywhere.com

7.1.1. IEEE 802.3 Standard Ethernet

For more notes visit https://collegenote.pythonanywhere.com

7.1.2. IEEE 802.3u Fast Ethernet

• Fast Ethernet is backward-compatible with Standard Ethernet, but it
can transmit data 10 times faster at a rate of 100 Mbps

Features

1. Upgrade the data rate to 100 Mbps

2. Make it compatible with Standard Ethernet

3. Keep the same 48-bit address

4. Keep the same frame format

5. Keep the same minimum and maximum frame lengths

6. Can connect Point to point / Star

For more notes visit https://collegenote.pythonanywhere.com

7.1.2. IEEE 802.3u Fast Ethernet

Figure : Fast Ethernet Connection Topologies

• 100BaseTX UTP Cat5 Two wire Implementation

• 100BaseFX Fiber Optic Cable

• 100BaseT4 UTP Cat3 Four Wire Implementation

For more notes visit https://collegenote.pythonanywhere.com

7.1.3. IEEE 802.3z GigaBit Ethernet

• Higher data rate than fast ethernet (1000 Mbps)

Features

1. Upgrade the data rate to 1 Gbps.

2. Make it compatible with Standard or Fast Ethernet.

3. Use the same 48-bit address.

4. Use the same frame format.

5. Keep the same minimum and maximum frame lengths.

6. To support auto negotiation as defined in Fast Ethernet

For more notes visit https://collegenote.pythonanywhere.com

7.1.3. IEEE 802.3z Gigabit Ethernet

Figure : Topologies of Gigabit Ethernet

For more notes visit https://collegenote.pythonanywhere.com

7.1.3. IEEE 802.3z Gigabit Ethernet

• 1000BaseSX – Fiber Optic Short wave (2 wire)

• 1000BaseLX – Fiber Optic Short wave (2 wire)

• 1000BaseCX – Copper STP Cable (2 wire)

• 1000BaseSX – Fiber Optic Short wave (4 wire)

For more notes visit https://collegenote.pythonanywhere.com

7.1.4. IEEE 802.3ae 10 GigaBit Ethernet

Features

1. Upgrade the data rate to 10 Gbps.

2. Make it compatible with Standard, Fast, and Gigabit Ethernet.

3. Use the same 48-bit address.

4. Use the same frame format.

5. Keep the same minimum and maximum frame lengths.

6. Allow the interconnection of existing LANs into a metropolitan area
network (MAN) or a wide area network (WAN).

7. Make Ethernet compatible with technologies such as Frame Relay and
ATM

For more notes visit https://collegenote.pythonanywhere.com

7.1.4. IEEE 802.3ae 10 GigaBit Ethernet

• Ten-Gigabit Ethernet is designed for using fiber-optic cable over long
distances

Figure : 10 Gigabit Ethernet Implementation

For more notes visit https://collegenote.pythonanywhere.com

7.2. IEEE802.4 Token Bus

• The 802.4 IEEE standard defines the Token Bus protocol for a token-passing
access method on a bus topology.

• In a token-passing access method, a special packet called a token is passed
from station to station and only the token holder is permitted to transmit
packets onto the LAN.

• No collisions can occur with this protocol(Only One Station can transfer)

• When a station is done transmitting its packets, it passes the token to the
"next" station.

• The next station does not need to be physically closest to this one on the
bus, just the next logical station.

For more notes visit https://collegenote.pythonanywhere.com

7.2. 802.4 Token Bus

• A station can hold the token for only a certain amount of time before
it must pass it on -even if it has not completed transmitting all of its
data.

• This assures access to all stations on the bus within a specified period
of time.

Figure : Token Bus Network (Red Arrow Indicates Token Passing Sequence)

For more notes visit https://collegenote.pythonanywhere.com

7.3. 802.5 Token Ring

Figure : Token Bus Network (Red Arrow Indicates Token Passing Sequence)

For more notes visit https://collegenote.pythonanywhere.com

7.3. 802.5 Token Ring

• The 802.5 IEEE standard defines the Token Ring protocol which, like
Token Bus, is another token-passing access method, but for a ring
topology

• A ring topology consists of a series of individual point-to-point links
that form a circle

• A token is passed from station to station in one direction around the
ring, and only the station holding the token can transmit packets onto
the ring

For more notes visit https://collegenote.pythonanywhere.com

7.3. 802.5 Token Ring

• Data packets travel in only one direction around the ring

• When a station receives a packet addressed to it, it copies the packet
and puts it back on the ring

• When the originating station receives the packet, it removes the
packet.

For more notes visit https://collegenote.pythonanywhere.com

