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Introduction:
● In computer science, divide and conquer is an algorithm 

design paradigm. 
● A divide-and-conquer algorithm recursively breaks down 

a problem into two or more sub-problems of the same or 
related type, until these become simple enough to be 
solved directly. 

● The solutions to the sub-problems are then combined to 
give a solution to the original problem.

● The divide-and-conquer technique is the basis of efficient 
algorithms for many problems, such as sorting (e.g., 
quicksort, merge sort).



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Introduction:
● This technique can be divided into the following three 

parts:
– Divide: This involves dividing the problem into smaller 

sub-problems.
– Conquer: Solve sub-problems by calling recursively 

until solved.
– Combine: Combine the sub-problems to get the final 

solution of the whole problem.
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Algorithm:

Algorithm D and C (P)  { 

if small(P) 

 then return S(P) 

else {
– divide P into smaller instances P1 ,P2 .....Pk 
– Apply D and C to each sub problems
– Return combine (D and C(P1)+ D and C(P2)+.......+D and 

C(Pk)) 
}

} 
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Let a recurrence relation is expressed as      

T(n)=   Θ(1),  if n<=C  
   aT(n/b) + D(n)+ C(n) ,otherwise 

● Here,  
– n=input size
–  a = no. of sub-problems 
– n/b = input size of the sub-problems
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Some of the specific computer algorithms are based on 
the Divide & Conquer approach:
– Maximum and Minimum Problem
– Binary Search
– Sorting (merge sort, quick sort)
– Tower of Hanoi...etc.
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Some Applications of Divide and Conquer Approach:
● Following algorithms are based on the concept of the Divide and 

Conquer Technique:
● Binary Search: The binary search algorithm is a searching algorithm, which 

is also called a half-interval search or logarithmic search. It works by 
comparing the target value with the middle element existing in a sorted array. 
After making the comparison, if the value differs, then the half that cannot 
contain the target will eventually eliminate, followed by continuing the search 
on the other half. We will again consider the middle element and compare it 
with the target value. The process keeps on repeating until the target value 
is met. If we found the other half to be empty after ending the search, then it 
can be concluded that the target is not present in the array.

● Quicksort: It is the most efficient sorting algorithm, which is also known as 
partition-exchange sort. It starts by selecting a pivot value from an array 
followed by dividing the rest of the array elements into two sub-arrays. The 
partition is made by comparing each of the elements with the pivot value. It 
compares whether the element holds a greater value or lesser value than the 
pivot and then sort the arrays recursively.
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Some Applications of Divide and Conquer Approach:
● Following algorithms are based on the concept of the 

Divide and Conquer Technique:
● Merge Sort: It is a sorting algorithm that sorts an array 

by making comparisons. It starts by dividing an array into 
sub-array and then recursively sorts each of them. After 
the sorting is done, it merges them back.

● Closest Pair of Points: It is a problem of computational 
geometry. This algorithm emphasizes finding out the 
closest pair of points in a metric space, given n points, 
such that the distance between the pair of points should 
be minimal.
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Some Applications of Divide and Conquer Approach:
● Following algorithms are based on the concept of the Divide 

and Conquer Technique:
● Strassen's Algorithm: It is an algorithm for matrix multiplication, 

which is named after Volker Strassen. It has proven to be much 
faster than the traditional algorithm when works on large matrices.

● Cooley-Tukey Fast Fourier Transform (FFT) algorithm: The 
Fast Fourier Transform algorithm is named after J. W. Cooley and 
John Turkey. It follows the Divide and Conquer Approach and 
imposes a complexity of O(nlogn).

● Karatsuba algorithm for fast multiplication: It is one of the 
fastest multiplication algorithms of the traditional time, invented by 
Anatoly Karatsuba in late 1960 and got published in 1962. It 
multiplies two n-digit numbers in such a way by reducing it to at 
most single-digit.
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Advantages of Divide and Conquer
● Divide and Conquer tend to successfully solve one of the biggest 

problems, such as the Tower of Hanoi, a mathematical puzzle. It is 
challenging to solve complicated problems for which you have no 
basic idea, but with the help of the divide and conquer approach, it 
has lessened the effort as it works on dividing the main problem into 
two halves and then solve them recursively. This algorithm is much 
faster than other algorithms.

● It efficiently uses cache memory without occupying much space 
because it solves simple sub-problems within the cache memory 
instead of accessing the slower main memory.

●  It is more proficient than that of its counterpart Brute Force technique.
● Since these algorithms inhibit parallelism, it does not involve any 

modification and is handled by systems incorporating parallel 
processing
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Disadvantages of Divide and Conquer
● Since most of its algorithms are designed by 

incorporating recursion, so it necessitates high memory 
management.

● An explicit stack may overuse the space.
● It may even crash the system if the recursion is 

performed rigorously greater than the stack present in 
the CPU.
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What is Search?
● Search is a utility that enables its user to find documents, 

files, media, or any other type of data held inside a 
database. 

● Search works on the simple principle of matching the 
criteria with the records and displaying it to the user. In 
this way, the most basic search function works.
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Searching Algorithms:
● In computer science, a search algorithm is an algorithm 

which solves a search problem. 
● Search algorithms work to retrieve information stored 

within some data structure, or calculated in the search 
space of a problem domain, either with discrete or 
continuous values. 

● Types of algorithms: 
– Linear (we have discussed in unit 2)
– binary, and 
– hashing
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Binary search:
● Binary search, also known as half-interval search or 

logarithmic search or binary chop is a search algorithm 
that finds the position of a target value within a sorted 
array.

●  A binary search is an advanced type of search algorithm 
that finds and fetches data from a sorted list of items. 

● Its core working principle involves dividing the data in the 
list to half until the required value is located and 
displayed to the user in the search result.
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Binary search:
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How Binary Search Works?

The binary search works in the following manner:
● The search process initiates by locating the middle 

element of the sorted array of data.
● After that, the key value is compared with the element:

– If it is the desired value then the search is successful
– If the key value is smaller than the search only in first 

half of the array.
– In case the key value is greater than searching is 

carried in second half of the array.
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● Pseudo code:
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Analysis:
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Analysis:
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Analysis:
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Analysis:
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Analysis:
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The above image illustrates the following:
● You have an array of 10 digits, and the element 59 needs to be found.
● All the elements are marked with the index from 0 – 9. Now, the middle of 

the array is calculated. To do so, you take the left and rightmost values of 
the index and divide them by 2.The result is 4.5, but we take the floor 
value. Hence the middle is 4.

● The algorithm drops all the elements from the middle (4) to the lowest 
bound because 59 is greater than 24, and now the array is left with 5 
elements only.

● Now, 59 is greater than 45 and less than 63. The middle is 7. Hence the 
right index value becomes middle – 1, which equals 6, and the left index 
value remains the same as before, which is 5.

● At this point, you know that 59 comes after 45. Hence, the left index, 
which is 5, becomes mid as well.

● These iterations continue until the array is reduced to only one element, or 
the item to be found becomes the middle of the array.
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The above image illustrates the following:  
● You have an array of sorted values ranging from 2 to 20 

and need to locate 18.
● The average of the lower and upper limits is (l + r) / 2 = 4. 

The value being searched is greater than the mid which 
is 4.

● The array values less than the mid are dropped from 
search and values greater than the mid-value 4 are 
searched.

● This is a recurrent dividing process until the actual item 
to be searched is found.
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Max-Min Algorithm:
● The Max-Min Problem in algorithm analysis is finding the 

maximum and minimum value in an array.
● To find the maximum and minimum numbers in a given 

array numbers [ ] of size n, the following algorithm can be 
used. 
– First we are representing the naive method and 
– then we will present divide and conquer approach.
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Max-Min Algorithm: Naïve Method:
● Naïve method is a basic method to solve any problem. In this 

method, the maximum and minimum number can be found 
separately. To find the maximum and minimum numbers, the 
following straightforward algorithm can be used.

Algorithm: Max-Min-Element (numbers[ ]) 

max := numbers[1] 

min := numbers[1] 

for i = 2 to n do 
if numbers[i] > max then  

max := numbers[i]
if numbers[i] < min then  

min := numbers[i] 

return (max, min) 
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Max-Min Algorithm: Naïve Method:

Analysis:
● The number of comparison in Naive method is 2n – 2.

–  So  Time complexity O(n).

● The number of comparisons can be reduced using the 
divide and conquer approach.
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Max-Min Algorithm: Divide and Conquer Approach
● In this approach, the array is divided into two halves. 
● Then using recursive approach maximum and minimum 

numbers in each halves are found. Later, return the 
maximum of two maxima of each half and the minimum 
of two minima of each half.

● In this given problem, the number of elements in an array 
is y−x+1, where y is greater than or equal to x.

● Max−Min(x,y) will return the maximum and minimum 
values of an array numbers[x...y].
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Max-Min Algorithm: Divide and Conquer Approach

Pair MaxMin(array, array_size)

   if array_size = 1

      return element as both max and min

   else if arry_size = 2

      one comparison to determine max and min

      return that pair

   else    /* array_size  > 2 */

      recur for max and min of left half

      recur for max and min of right half

      one comparison determines true max of the two candidates

      one comparison determines true min of the two candidates

      return the pair of max and min
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Max-Min Algorithm: Divide and Conquer Approach

Pseudo code:
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Max-Min Algorithm: Divide and Conquer Approach

Analysis:
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Max-Min Algorithm: Divide and Conquer Approach

Examples:
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Merge Sort:
● It is one of the well-known divide-and-conquer algorithm. 

This is a simple and very efficient  algorithm for sorting a 
list of numbers.

● It divides the input array into two halves, calls itself for 
the two halves, and then merges the two sorted halves. 

● The merge() function is used for merging two halves. The 
merge(arr, l, m, r) is a key process that assumes that 
arr[l..m] and arr[m+1..r] are sorted and merges the two 
sorted sub-arrays into one. 
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Merge Sort:

To sort an array A[l . . r]:
● Divide

– Divide the n-element sequence to be sorted into two 
subsequences of n/2 elements each

● Conquer

– Sort the subsequences recursively using merge sort. 
When the size of the sequences is 1 there is nothing 
more to do

●  Combine

– Merge the two sorted subsequences



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Merge Sort:
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Merge Sort:
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Merge Sort: Pseudo code
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Merge Sort:

● Time Complexity:

– NO of sub problems=2

– Size of each subproblem =n/2

– Dividing cost is constant for each subproblems

– Merging cost is n

– So recurrence relations is:
● T(n) =1 if n=1
● T(n) = 2T(n/2)+O(n) if n>1

– Solving this we get, T(n)=O(nlogn) 

● Space complexity: 

– Auxiliary Space taken is O(n)
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Merge Sort: Examples
● Let's consider an array with values {14, 7, 3, 12, 9, 11, 6, 

12}
● Below, we have a pictorial representation of how merge 

sort will sort the given array.
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Merge Sort: Examples
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Merge Sort: Examples

In merge sort we follow the following steps:
● We take a variable p and store the starting index of our 

array in this. And we take another variable r and store the 
last index of array in it.

● Then we find the middle of the array using the formula (p + 
r)/2 and mark the middle index as q, and break the array 
into two subarrays, from p to q and from q + 1 to r index.

● Then we divide these 2 subarrays again, just like we 
divided our main array and this continues.

● Once we have divided the main array into subarrays with 
single elements, then we start merging the subarrays.

●
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Quick Sort: 
● QuickSort is a Divide and Conquer algorithm. It picks an 

element as pivot and partitions the given array around 
the picked pivot. 

● There are many different versions of quickSort that pick 
pivot in different ways. 
– Always pick first element as pivot.
– Always pick last element as pivot 
– Pick a random element as pivot.
– Pick median as pivot.
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Quick Sort: 
● Quick Sort is one of the different Sorting Technique which is 

based on the concept of Divide and Conquer, just like merge 
sort. 

● But in quick sort all the heavy lifting(major work) is done while 
dividing the array into subarrays, while in case of merge sort, all 
the real work happens during merging the subarrays. 

● In case of quick sort, the combine step does absolutely nothing.
● It is also called partition-exchange sort. This algorithm divides 

the list into three main parts:
– Elements less than the Pivot element
– Pivot element(Central element)
– Elements greater than the pivot element
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Quick Sort: 
● Divide

Partition the array A[l…r] into 2 subarrays A[l..m] and 
A[m+1..r], such that each element of A[l..m] is smaller 
than or equal to each element in A[m+1..r]. Need to find 
index p to partition the array.

● Conquer

Recursively sort A[p..q] and A[q+1..r] using Quicksort
● Combine

Trivial: the arrays are sorted in place. No additional work 
is required to combine them.
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Quick Sort: 

Technically, quick sort follows the below steps:
● Step 1 − Make any element as pivot
● Step 2 − Partition the array on the basis of pivot
● Step 3 − Apply quick sort on left partition recursively
● Step 4 − Apply quick sort on right partition recursively
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Quick Sort:
● Pivot element can be any element from the array, it can be the first 

element, the last element or any random element. In this tutorial, 
we will take the rightmost element or the last element as pivot.

● For example: In the array {52, 37, 63, 14, 17, 8, 6, 25}, we take 25 
as pivot. So after the first pass, the list will be changed like this.

{6 8 17 14 25 63 37 52}
● Hence after the first pass, pivot will be set at its position, with all 

the elements smaller to it on its left and all the elements larger 
than to its right. Now 6 8 17 14 and 63 37 52 are considered as 
two separate sunarrays, and same recursive logic will be applied 
on them, and we will keep doing this until the complete array is 
sorted.
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Quick Sort:Pseudo Code
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Quick Sort:
● Time complexity:

– In Worst Case: The worst case occurs when the 
partition process always picks greatest or smallest 
element as pivot. If we consider partition strategy 
where last element is always picked as pivot, the 
worst case would occur when the array is already 
sorted in increasing or decreasing order. Following is 
recurrence for worst case. 

T(n) = T(0) + T(n-1) + O(n) which is equivalent to  
● T(n) = T(n-1) + O(n)

– The solution of above recurrence is  O(n2)
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Quick Sort: Examples

Problem Statement:
● Consider the following array: 50, 23, 9, 18, 61, 32
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Quick Sort:Examples
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Quick Sort:Examples

Step 1:
– Make any element as pivot: Decide any value to be the pivot from the list. For convenience of code, 

we often select the rightmost index as pivot or select any at random and swap with rightmost. 
Suppose for two values “Low” and “High” corresponding to the first index and last index respectively.

– In our case low is 0 and high is 5.
– Values at low and high are 50 and 32 and value at pivot is 32.
– Partition the array on the basis of pivot: Call for partitioning which rearranges the array in such a 

way that pivot (32) comes to its actual position (of the sorted array). And to the left of the pivot, the 
array has all the elements less than it, and to the right greater than it.

– In the partition function, we start from the first element and compare it with the pivot. Since 50 is 
greater than 32, we don’t make any change and move on to the next element 23.

– Compare again with the pivot. Since 23 is less than 32, we swap 50 and 23. The array becomes 23, 
50, 9, 18, 61, 32

– We move on to the next element 9 which is again less than pivot (32) thus swapping it with 50 
makes our array as 23, 9, 50, 18, 61, 32.

– Similarly, for next element 18 which is less than 32, the array becomes 23, 9, 18, 50, 61, 32. Now 61 
is greater than pivot (32), hence no changes.

– Lastly, we swap our pivot with 50 so that it comes to the correct position.
– Thus the pivot (32) comes at its actual position and all elements to its left are lesser, and all 

elements to the right are greater than itself.
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Quick Sort:Examples

Step 2: 
● The main array after the first step becomes

– 23, 9, 18, 32, 61, 50

Step 3: 
● Now the list is divided into two parts

– Sublist before pivot element
– Sublist after pivot element

Step 4: 
● Repeat the steps for the left and right sublists recursively. The 

final array thus becomes
– 9, 18, 23, 32, 50, 61.



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Randomized Quick Sort:
● The algorithm is called randomized if its behavior depends on 

input as well as random value generated by random number 
generator. 

● The beauty of the randomized algorithm is that no particular 
input can produce worst-case behavior of an algorithm. 

● IDEA: Partition around a random element. Running time is 
independent of the input order. 

● No assumptions need to be made about the input distribution. 
No specific input elicits the worst-case behavior. 

● The worst case is determined only by the output of a random-
number generator. Randomization cannot

● eliminate the worst-case but it can make it less likely!
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Randomized Quick Sort:
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Randomized Quick Sort:

i.e. T(n) =O(n2)
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Concept of Heap Data Structures:
● Heap is a special tree-based data structure. 
● A binary tree is said to follow a heap data structure if 

– it is a complete binary tree.
– All nodes in the tree follow the property that they are 

greater than their children 
● i.e. the largest element is at the root and both its 

children and smaller than the root and so on. Such a 
heap is called a max-heap.

●  If instead, all nodes are smaller than their children, it is 
called a min-heap



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Concept of Heap Data Structures:
● Heap is a special tree-based data structure. 
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Array Representation of Heap:
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Array Representation of Heap:
● Why array based representation for Binary Heap? 
● Since a Binary Heap is a Complete Binary Tree, it can 

be easily represented as an array and the array-based 
representation is space-efficient. 

● If the parent node is stored at index I, the left child can 
be calculated by 2 * I + 1 and the right child by 2 * I + 2 
(assuming the indexing starts at 0).
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Array Representation of Heap:
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Generally, Heaps can be of two types:
● Max-Heap: 

– In a Max-Heap the key present at the root node must be 
greatest among the keys present at all of it’s children. 
The same property must be recursively true for all sub-
trees in that Binary Tree.

●  Min-Heap: 
– In a Min-Heap the key present at the root node must be 

minimum among the keys present at all of it’s children. 
The same property must be recursively true for all sub-
trees in that Binary Tree.
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Generally, Heaps can be of two types:
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Concept of Heap Data Structures:

The following example diagram shows Max-Heap and Min-
Heap.
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Adding/Deleting Nodes
● New nodes are always inserted at the bottom level (left 

to right) and nodes are removed from the bottom level 
(right to left).
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Operations on Heaps
● Maintain/Restore the max-heap property

– MAX-HEAPIFY
● Create a max-heap from an unordered array

– BUILD-MAX-HEAP
● Sort an array in place

– HEAPSORT
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Maintaining the Heap Property
● Suppose a node is smaller than a child and Left and 

Right subtrees of i are max-heaps. To eliminate the 
violation:
– Exchange with larger child
– Move down the tree
– Continue until node is not smaller than children
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Maintaining the Heap Property
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Maintaining the Heap Property
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How to “heapify” a tree?
● The process of reshaping a binary tree into a Heap data 

structure is known as ‘heapify’. 
● A binary tree is a tree data structure that has two child 

nodes at max. If a node’s children nodes are ‘heapified’, 
then only ‘heapify’ process can be applied over that 
node. 

● A heap should always be a complete binary tree.
● Starting from a complete binary tree, we can modify it to 

become a Max-Heap by running a function called 
‘heapify’ on all the non-leaf elements of the heap. i.e. 
‘heapify’ uses recursion.
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Algorithm for “heapify”:

heapify(array)

   Root = array[0]

   Largest = largest( array[0] , array [2 * 0 + 1]. array[2 * 0 + 2])

   if(Root != Largest)

       Swap(Root, Largest)
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Example
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Heapify: Pseudo code:

Max-Heapify(A, i, n)

{

l = Left(i)

r = Right(i)

largest=l;

if l ≤ n and A[l] > A[largest]

largest = l

if r ≤ n and A[r] > A[largest]

largest = r

if largest !=i

exchange (A[i] , A[largest])

Max-Heapify(A, largest, n)

}
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Heapify: 
● Time Complexity Analysis:

– In the worst case Max-Heapify is called recursively h 
times, where h is height of the heap and since each 
call to the heapify takes constant time.

– Time complexity = O(h) = O(logn)
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Building a Heap:
● To build a max-heap from any tree, we can thus start 

heapifying each sub-tree from the bottom up and end up 
with a max-heap after the function is applied to all the 
elements including the root element.

● Consider the following examples
– Given data sequence{4,1,3,2,16,9,10,14,8,7}
– Here we need to construct binary tree first and 
– We need to carry out heapify operations on every non 

leaf nodes to build the Max-heap.
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Building a Heap:
– Here we need to construct binary tree first for the 

given data {4,1,3,2,16,9,10,14,8,7}
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Building a Heap:

– Then We need to carry out heapify operations to build the Max-heap.
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Building a Heap: Pseudo Code

Build-Max-Heap(A)

n = length[A]

for i ← n/2 downto 1

{

 MAX-HEAPIFY(A, i, n)

}

– Time Complexity:

– Running time: Loop executes O(n) times and complexity of Heapify 
is O(logn), therefore complexity of Build-Max-Heap is O(nlogn).



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Heap Sort:

● Heap sort is a comparison-based sorting technique based on Binary 
Heap data structure. 

● It is similar to selection sort where we first find the minimum element and 
place the minimum element at the beginning. 

● We repeat the same process for the remaining elements.

● Steps involved to sort n elements:

– Build a max-heap from the array

– Swap the root (the maximum element) with the last element in the 
array

– “Discard” this last node by decreasing the heap size

– Call Max-Heapify on the new root

– Repeat this process until only one node remains
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Heap Sort:
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Heap Sort: Example



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Heap Sort: Example



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Heap Sort: Example



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Heap Sort: Example



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Heap Sort: Example
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Heap Sort: Examples (do at your own)

● Sort the following elements using heap sort

– [1,4,2,7,3]

● First construct the binary tree and construct the heap of recently constructed binary tree.

● Then apply heap sort.
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Heap Sort: Pseudo Code

● Analysis: 

– Building heap takes O(n)

– Loop executes  n times

– Heapify operations takes O(logn)

– So total T(n)=O(nlogn)
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Order statistics

● Order statistics are sample values placed in ascending order. The study of order 
statistics deals with the applications of these ordered values and their functions.

● Let’s say you had three weights:

– X1 = 22 kg, X2 = 44 kg, and X3 = 12 kg.

● To get the order statistics (Yn), put the items in numerical increasing order:

–  Y1 = 12 kg

– Y2 = 22 kg

– Y3 = 44 kg

● The kth smallest X value is normally called the kth order statistic.

● More formally,

– If X1, X2,…, Xn are random iid observations taken from a population with n 
continuous observations, then

– the random variables Y1 < Y2 < …, < Yn denote the sample’s order 
statistics.
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Order statistics

● The ith order statistic of a set of n elements is the ith smallest element. 
For example, the minimum of a set of elements is the first order statistic 
(i = 1), and the maximum is the nth order statistic (i = n).

● Median order

● A median, informally, is the "halfway point" of the set. 

● When n is odd, the median is unique, occurring at i = (n + 1)/2. When n 
is even, there are two medians, occurring at i = n/2 and i = n/2 + 1. 

● Thus, regardless of the parity of n, medians occur at i = lower bound(n + 
1)/2 and i = upper bound(n + 1)/2.
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Brute Force Algorithm: 

● This is the most basic and simplest type of algorithm. 

● A Brute Force Algorithm is the straightforward approach to a problem 
i.e., the first approach that comes to our mind on seeing the problem. 

● More technically it is just like iterating every possibility available to solve 
that problem.

● For Example: 

– If there is a lock of 4-digit PIN. 

– The digits to be chosen from 0-9 then the brute force will be trying all 
possible combinations one by one like 0001, 0002, 0003, 0004, and 
so on until we get the right PIN. 

– In the worst case, it will take 10,000 tries to find the right 
combination.
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Brute Force Algorithm: 

● Below given are some features of the brute force algorithm are:

– It is an intuitive, direct, and straightforward technique of problem-
solving in which all the possible ways or all the possible solutions to 
a given problem are enumerated.

– Many problems solved in day-to-day life using the brute force 
strategy, for example exploring all the paths to a nearby market to 
find the minimum shortest path.

–  Arranging the books in a rack using all the possibilities to optimize 
the rack spaces, etc.

– In fact, daily life activities use a brute force nature, even though 
optimal algorithms are also possible.
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Brute Force Algorithm: 

● A straightforward approach, usually based directly on the problem’s 
statement and definitions of the concepts involved.

●  Examples:

1. Computing an (a > 0, n a non negative integer)

2. Computing n!

3. Multiplying two matrices

4. Searching for a key of a given value in a list
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Brute Force Algorithm: 

● Brute force algorithm is a technique that guarantees solutions for 
problems of any domain helps in solving the simpler problems and also 
provides a solution that can serve as a benchmark for evaluating other 
design techniques, but takes a lot of run time and inefficient.
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Selection in Expected Linear Time

● The general selection problem appears more difficult than the simple 
problem of finding a minimum, yet, surprisingly, the asymptotic running 
time for both problems is the same: (n). 

● Here this approach is a divide-and-conquer algorithm for the selection 
problem. 

● The algorithm RANDOMIZED-SELECT is modeled after the quicksort 
algorithm. As in quicksort, the idea is to partition the input array 
recursively.

● But unlike quicksort, which recursively processes both sides of the 
partition, RANDOMIZED-SELECT only works on one side of the 
partition. 

● This difference shows up in the analysis: whereas quicksort has an 
expected running time of (nlogn), the expected time of RANDOMIZED-
SELECT is (n2).



  

Unit-3:Divide and Conquer Algorithms

Design and Analysis of Algorithms     (CSC-314)

Selection in Expected Linear Time

● This problem is solved by using the “divide and conquer” method. The main 
idea for this problem solving is to partition the element set as in Quick Sort 
where partition is randomized one.

● Pseudo Code:

RandSelect(A,l,r,i)

   {

if(l = =r )
return A[p];

p = RandPartition(A,l,r);

k = p – l + 1;

if(i <= k)
return RandSelect(A,l,p-1,i);

else
return RandSelect(A,p+1,r,i - k);

}
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Analysis:

● Since our algorithm is randomized algorithm no particular input is 
responsible for worst case however the worst case running time of this 
algorithm is O(n 2 ). 

● This happens if every time unfortunately the pivot chosen is always the 
largest one (if we are finding minimum element).
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Analysis:

● T(n)=O(n)
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Selection in Worst Case Linear Time algorithm

● We now examine a selection algorithm whose running time is O(n) in the 
worst case. Like RANDOMIZED-SELECT, the algorithm SELECT finds 
the desired element by recursively partitioning the input array. 

● The idea behind the algorithm, however, is to guarantee a good split 
when the array is partitioned. 

● SELECT uses the deterministic partitioning algorithm PARTITION from 
quicksort, modified to take the element to partition around as an input 
parameter.

●
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Selection in Worst Case Linear Time algorithm

● Here, The n elements are represented by small circles, and each group 
occupies a column. 

● The medians of the groups are whitened, and the median-of-medians x is 
labeled. Arrows are drawn from larger elements to smaller, from which it 
can be seen that 3 out of every group of 5 elements to the right of x are 
greater than x, and 3 out of every group of 5 elements to the left of x are 
less than x. 

● The elements greater than x are shown on a shaded background.
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Selection in Worst Case Linear Time algorithm

● Algorithms:
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Selection in Worst Case Linear Time algorithm

● Analysis:

– Here at least half of the medians are <=x, since there are at least n/5 medians

– So (n/5)/2 medians are <=x, i.e. n/10 medians are<=x

– Since each medians contributes 3 elements which are<=x  i.e. 3n/10 elements are 
<=x

– So out of n elements 7n/10 elements are>=x

– Now recurrence relation is:
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Assignment:
● Discuss some implementation issues that may arise in 

divide and conquer algorithms.
●  Trace the algorithms for the following array of elements 

elements by using recursive approach of Min-Max 
algorithms. 

  [6,5,3,8,11,2,99,35,7]
●  Trace  for key =7 in [-1,5,6,7,18,20,25,27,39,91,119,121] 

using binary search. 
● Introduce the concepts of partitioning and analyze the best, 

average and worst case time complexity of quick sort 
algorithm based on divide and conquer approach. Sort the 
following data using quick sort: [5,3,2,6,4,1,3,7]
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Assignment:
● Sort the following elements using heap sort:

{4,1,3,2,16,9,10,14,8,7}
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