Data Warehousing and Data Mining Reference Note

Unit-4
Data Cube Technology

Efficient Method for Data Cube Computation

Data cube computation is an essential task in data warehouse implementation. The pre-
computation of all or part of a data cube can greatly reduce the response time and enhance the
performance of on-line analytical processing. At the core of multidimensional data analysis 1s
the efficient computation of aggregations across many sets of dimensions. In SQL terms, these
aggregations are referred to as group-by’s. Each group-by can be represented by a cuboid,
where the set of group-by’s forms a lattice of cuboids defining a data cube.

A major challenge related to pre-computation would be time and storage space if all the cuboids
in the data cube are computed, especially when the cube has many dimensions.

The Compute Cube Operator

The compute cube operator computes aggregates over all subsets of the dimensions specified
in the operation.

Following figure shows a 3-D data cube for the dimensions city, item, and year, and an

aggregate measure, M. A data cube is a lattice of cuboids.
0-D (apex) cuboid

1-D) cuboids

Total no. of
cuboids = 2°

2-D cuboids

3-D (base) cuboid

(eiry, ftem, vear)

Each cuboid represents a group-by. (city, item, year) is the base cuboid, containing all three of
the dimensions. The base cuboid is the least generalized of all of the cuboids in the data cube.
The most generalized cuboid 1s the apex cuboid, commonly represented as a//. It contains one
value. To drill down in the data cube, we move from the apex cuboid, downward in the lattice.
To roll up, we move from the base cuboid, upward.

Consider the following 2 cases for n-dimensional cube

- Case 1: Dimensions have no hierarchies
* Then the total number of cuboids computed for a n-dimensional cube = 2

- Case 2: Dimensions have hierarchies (E.g. Hierarchy “day<month<quarter<year” for time)
* Then the total number of cuboids computed for a n-dimensional cube = [[I;(L; + 1)
Where L; is the number of levels associated with dimension i. One is added to L;
to include the virtual top level, all.

Q. Ifthe cube has 10 dimensions and each dimension has 4 levels, what will be the number

of cuboids generated?
Solution
Heren=10 Li=4 fori=1, 2...... 10

Total number of cuboids =5 X 5X5X5X5x5X5x5x5x%x5=5=%98x10°

Collegenote Prepared By: Jayanta Poudel

Data Warehousing and Data Mining Reference Note

Choices for Data Cube Materialization (Pre-computation)

There are three choices for data cube materialization given a base cuboid:

1. No materialization: Do not pre-compute any of the “non-base” cuboids. This leads to
computing expensive multidimensional aggregates on-the-fly, which can be extremely
slow.

2. Full materialization: Pre-compute all of the cuboids. The resulting lattice of computed
cuboids 1s referred to as the full cube. This choice typically requires huge amounts of
memory space in order to store all of the precomputed cuboids.

3. Partial materialization: Selectively compute a proper subset of the whole set of possible
cuboids. Alternatively, we may compute a subset of the cube, which contains only those
cells that satisfy some user-specified criterion, such as where the tuple count of each cell is
above some threshold.

A cell in the base cuboid is a base cell. A cell from a non-base cuboid is an aggregate cell. An
aggregate cell aggregates over one or more dimensions.

Cube Materialization

In order to ensure fast on-line analytical processing, it is sometimes desirable to precompute
cubes. Different cube materialization include: Full cube, Iceberg cube, Closed cube and Shell
cube.

1. Full Cube

Full cube is the data cube in which all cells or cuboids for the data cube are precomputed.
This, however, 1s exponential to the number of dimensions. That is, a data cube of »
dimensions contains 2" cuboids. There are even more cuboids if we consider concept
hierarchies for each dimension. Thus, precomputation of the full cube can require huge
and often excessive amounts of memory.

2. Iceberg Cube

An Iceberg-Cube contains only those cells of the data cube that meet an aggregate
condition. It is called an Iceberg-Cube because it contains only some of the cells of the
full cube, like the tip of an iceberg. The aggregate condition could be, for example,
minimum support or a lower bound on average, min or max. The purpose of the Iceberg-
Cube i1s to identify and compute only those values that will most likely be required for
decision support queries. The aggregate condition specifies which cube values are more
meaningful and should therefore be stored.

3. Closed Cube

To systematically compress a data cube, we need closed cell. A closed cube is a data cube
consisting of only closed cells. A cell, c, 1s a closed cell if there exists no cell, d, such
that d 1s a specialization (descendant) of cell ¢ (i.e. where d 1s obtained by replacing a in
¢ with a non- value), and d has the same measure value as c.

4. Shell Cube

Another strategy for partial materialization is to precompute only the cuboids
mvolving a small number of dimensions, such as 3 to 5. These cuboids form a shell
cube. Queries on additional combinations of the dimensions will have to be computed
on the fly. For example, we could compute all cuboids with 3 dimensions or less mn
an n-dimensional data cube, resulting in a Shell cube of size 3.

Collegenote Prepared By: Jayanta Poudel

Data Warehousing and Data Mining Reference Note

General Strateg’es for Cube ComEutation

The following are general optimization techniques for the efficient computation of data cubes:

1.

Sorting, hashing and grouping

Sorting, hashing, and grouping operations should be applied to the dimension attributes in

order to reorder and cluster related tuples. These operation facilitate aggregation, 1.e.

computation of the cells that share the same set of dimension values. These technique can

also perform:

= Shared-sorts: Sharing sorting costs across multiple cuboids when sort-based methods
are used.

= Share-partitions: Sharing partitioning costs across multiple cuboids when hash based
algorithms are used.

Example: To compute total sales by branch, day, and item, it is more efficient to sort tuples
or cells by branch, and then by day, and then group them according to the item name.

Simultaneous aggregation and caching intermediate results

In cube computation, it is efficient to compute higher-level aggregates from previously
computed lower-level aggregates, rather than from the base fact table. Moreover,
simultaneous aggregation from cached intermediate computation results may lead to the
reduction of expensive disk I/O operations

Example: To compute sales by branch, we can use the intermediate results derived from
the computation of a lower-level cuboid, such as sales by branch and day.

Aggregation from smallest child when there exist multiple child cuboid

If a parent ‘cuboid’ has more than one child, it is efficient to compute it from the smallest
previously computed child ‘cuboid’.

Example: To compute a sales cuboid, Comnch, When there exist two previously computed
cuboids, Coranch: year ad Chranch; item, 1t 15 obviously more efficient to compute Comnen from
the former than from the latter if there are many more distinct items than distinct years.

The Apriori pruning method can be explored to compute iceberg cube efficiently

The Apriori property, in the context of data cubes, states as follows: If a given cell does not
satisfy minimum support, then no descendant (i.e., more specialized or detailed version) of
the cell will satisfy minimum support either. This property can be used to substantially
reduce the computation of iceberg cubes.

Attribute-Oriented Induction for Data Characterization

The attribute-oriented induction (AOI) approach to concept description is alternative of the
data cube approach. Generally, the data cube approach performs off-line aggregation before an
OLAP or data mining query is submitted for processing. On the other hand, the attribute-
oriented induction approach is basically a query-oriented and performs on-line data analysis.

The general idea of attribute-oriented induction is to first collect the task-relevant data using a
database query and then perform generalization based on the examination of the number of
distinct values of each attribute in the relevant set of data. The generalization 1s performed by
either attribute removal or attribute generalization.

Collegenote Prepared By: Jayanta Poudel

Data Warehousing and Data Mining

Reference Note

Basic Principles of Attribute Oriented Induction

Data focusing: Analyzing task-relevant data, including dimensions, and the result is the
initial relation.

Attribute-removal: To remove attribute A if there is a large set of distinct values for A
but

1. there is no generalization operator on A, or

2. A’s higher-level concepts are expressed in terms of other attributes.

Attribute-generalization: If there is a large set of distinct values for A, and there exists a
set of generalization operators on A, then select an operator and generalize A.

Attribute-threshold control: Typical 2-8, specified/default.
Generalized relation threshold control (10-30): To control the final relation/rule size.

Example

Suppose that a user would like to describe the general characteristics of graduate students in
the Big University database, given the attributes name, gender, major, birth place, birth date,
residence, phone#, and gpa. A data mining query for this characterization can be expressed
in the data mining query language, DMQL, as follows:

use Big University DB

mine characteristics as “Science Students”

in relevance to name, gender, major, birth place, birth date, residence, phone#, gpa
from Student

where status in “graduate”

Attribute Removal and Generalization:

Collegenote

Name Gender | Major | Birth-Place Birth_date| Residence Phone # | GPA
o Jim M Ccs Vancouver,BC,| 8-12-76 3511 Main St., | 687-4598 | 3.67
Initial "
Relati Woodman Canada Richmond
R el M CS | Montreal, Que,| 28-7-75 | 3451stAve, | 253-9106| 3.70
Lachance Canada Richmond
Lauralee | F Physics | Seattle, WA, USA| 25-8-70 125 Austin Ave., | 420-5232 | 3.83
. Burnaby .
Removed Retained | Sci,Eng, | Country Age range C '-it_\ Removed| Exel,
Bus VG...
Gender | Major | Birth region | Age range | Residence | GPA Count
Prime M Science| Canada 20-25 Richmond | Very-good 16
Generalized F Science| Foreign 25-30 Burnaby Excellent 22
Relation

Name: Since there are a large number of distinct values for name and there is no
generalization operation defined on it, this attribute is removed

Gender: Since there are only two distinct values for gender, this attribute is retained and
no generalization is performed on it

Major: Suppose that a concept hierarchy has been defined that allows the attribute major
to be generalized to the values {arts & science, engineering, business}

Birth place: This attribute has a large number of distinct values; therefore, we would like
to generalize it. Suppose that a concept hierarchy exists for birth place, defined as “city <
province or state < country”

Prepared By: Jayanta Poudel

Data Warehousing and Data Mining Reference Note

= Birth date: Suppose that a hierarchy exists that can generalize birth date to age, and age
to age range, and that the number of age ranges

= Residence : Suppose that residence is defined by the attributes number, street, residence
city, residence province or state, and residence country

= Phone#: As with the attribute name above, this attribute contains too many distinct values
and should therefore be removed in generalization

= Gpa: Suppose that a concept hierarchy exists for gpa that groups values for grade point
average into numerical intervals like 3.75-4.0, 3.5-3.75,. . ., which in turn are grouped
into descriptive values, such as excellent, very good,. . .. The attribute can therefore be
generalized

Mining Class ComEarisons: Discriminating Between Different Classes

In many applications, users may not be interested in having a single class (or concept) described
or characterized, but rather would prefer to mine a description that compares or distinguishes
one class (or concept) from other comparable classes (or concepts).Class discrimination or
comparison (hereafter referred to as class comparison) mines descriptions that distinguish a
target class from its contrasting classes. Notice that the target and contrasting classes must be
comparable in the sense that they share similar dimensions and attributes. For example, the
three classes, person, address, and item, are not comparable. However, the sales in the last three
years are comparable classes, and so are computer science students versus physics students.

The procedures for class comparison performed as follows:

1. Data Collection: set of relevant data in the database 1s collected by query processing and
1s partitioned respectively into a target class and one or a set of contrasting class(es).

2. Dimension Relevance Analysis: select only the highly relevant dimensions for further
analysis.

3. Synchronous Generalization: Generalization is performed on the target class to the level
controlled by a user- or expert-specified dimension threshold.

4. Presentation of the Derived Comparison: Results can be visualized in the form of tables,
graphs.

Example

Suppose that we would like to compare the general properties between the graduate students
and the undergraduate students at Big University, given the attributes name, gender, major,
birth place, birth date, residence, phone#, and gpa. For this, the DMQL query would be:

use Big University DB

mine comparison as “grad vs undergrad students”

in relevance to name, gender, major, birth place, birth date, residence, phone#, gpa
Jor “graduate students”

where status in “graduate”
versus “undergraduate students
where status in “undergraduate”
analyze count%o

from student

»”

Collegenote Prepared By: Jayanta Poudel

Data Warehousing and Data Mining Reference Note

1. First Phase (Task Relevant Data):

Initial working relations: the target class (graduate students)

name gender major birth_place birth_date residence phone# gpa
Jim Woodman M CS Vancouver, BC, Canada 8-12-76 3511 Main St., Richmond 687-4598 3.67
Scott Lachance M CS Montreal, Que, Canada 28-7-75 345 1st Ave., Vancouver 253-9106 3.70
Laura Lee F Physics Seattle, WA, USA 25-8-70 125 Austin Ave,, Burnaby 420-5232 3.83

Initial working relations: the contrasting class (undergraduate students)

name gender major birth_place birth_date residence phone# gpa

Bob Schumann M Chemistry Calgary, Alt, Canada 10-1-78 2642 Halifax St., Burnaby 294-4291 2.96
Amy Eau F Biology Golden, BC, Canada 30-3-76 463 Sunset Cres., Vancouver 681-5417 3.52

2. Second Phase (Dimension Relevance Analysis):

Only the highly relevant attributes are included in the subsequent analysis. Irrelevant or
weakly relevant dimensions, such as name, gender, birth place, residence, and phone#,
are removed from the resulting classes.

3. Third Phase (Synchronous Generalization):

Prime generalized relation for the target class: Graduate students

Major Age range | Gpa Connt%
Science 20-25 Good 5.53%
Science 26-30 Good 2.32%
Science Owver_30 Very_good | 5.86%
Business IOVCE'_SO Excellent 4.68%

Prime generalized relation for the contrasting class: Undergraduate students

Sciem: 1-0 Fir 15.53%

Science 15-20 Good 4.53%
Science 26-30 Good 5.02%
Business . Over 30 | Excellent | 0.68%

4. Fourth Phase (Result Presentation):

Resulting class comparison is presented in the form of tables, graphs, or contrasting
measure (such as count%) that compares between the target class and the contrasting class.
For example, 5.02% of the graduate students majoring in Science are between 26 and 30

years of age and have a “‘good” GPA, while only 2.32% of undergraduates have these
same characteristics

Collegenote Prepared By: Jayanta Poudel

m

Data Warehousing and Data Mining Reference Note

P
Please let me know if I missed anything or
anything is incorrect.
poudeljayanta99@gmail.com
J/
_/

Collegenote Prepared By: Jayanta Poudel

