
Design and Analysis of
Algorithms
(CSC-314)

B.Sc. CSIT

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Introduction:
● In the algorithms w e have studied so far correctness tended to b e

easier than efficiency. In optimization problems we are interested
in finding a thing which maximizes or minimizes some function.

● In computer science an optimization problem is the problem of
finding the best solution from all feasible solutions.

● Optimization problems can be divided into two categories,
depending on whether the variables are continuous or discrete:

● An optimization problem with discrete variables is known as a
discrete optimization, in which an object such as an integer,
permutation or graph must be found from a countable set.

● A problem with continuous variables is known as a continuous
optimization, in which an optimal value from a continuous function
must be found.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Introduction:
● In the algorithms w e have studied so far correctness

tended to b e easier than efficiency. In optimization
problems we are interested in finding a thing which
maximizes or minimizes some function.

● In designing algorithms for optimization problem we must
prove that the algorithm in fact gives the best possible
solution.

● Greedy algorithms which makes the b est lo cal decision
at each step occasionally produce a global optimum but
you need a proof !

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Introduction:
● A solution (set of values for the decision variables) for which

all of the constraints in the Solver model are satisfied is called
a feasible solution. In some problems, a feasible solution is
already known; in others, finding a feasible solution may be
the hardest part of the problem.

● An optimal solution is a feasible solution where the objective
function reaches its maximum (or minimum) value – for
example, the most profit or the least cost.

● A globally optimal solution is one where there are no other
feasible solutions with better objective function values.

● A locally optimal solution is one where there are no other
feasible solutions “in the vicinity” with better objective function
values

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Introduction:
● Greedy is an algorithmic paradigm that builds up a

solution piece by piece, always choosing the next piece
that offers the most obvious and immediate benefit.

● In other words A greedy algorithm is any algorithm that
follows the problem-solving heuristic of making the locally
optimal choice at each stage.

● In many problems, a greedy strategy does not produce
an optimal solution, but a greedy heuristic can yield
locally optimal solutions that approximate a globally
optimal solution in a reasonable amount of time.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Introduction:
● To prove that a greedy algorithm is optimal we must show the

following two characteristics are exhibited.
– Greedy Choice Property

● We can make whatever choice seems best at the moment and
then solve the subproblems that arise later.

● It iteratively makes one greedy choice after another, reducing
each given problem into a smaller one. In other words, a
greedy algorithm never reconsiders its choices.

● Thus, optimal solutions can be obtained by creating greedy
choices

– Optimal Substructure Property
● A problem exhibits optimal substructure if an optimal solution

to the problem contains optimal solutions to the sub-problems.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Introduction:
● Elements of greedy strategy:

– A candidate set
● A optimal solution is created from this set.

– A selection function
● Used to select the best candidate to be added to solution.

– A feasibility function
● Used to determined whether a candidate can be used to

contribute to the solution.
– An objective function

● Used to assign the value to solution or partial solution
– A solutions function

● Used to indicate whether the complete solution has been
reached.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Fractional Knapsack:

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Fractional Knapsack:
● Statement:

– A thief has a bag or knapsack that can contain
maximum weight W of his loot.

– There are n items and the weight of ith item is wi and it
worth vi .

– Any amount of item can be put into the bag i.e. x i
fraction of item can be collected, where 0<=x i<=1.

– Here, the objective is to collect the items that
maximize the total profit earned.

– Here we arrange the items by ratio vi/wi.

●

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Fractional Knapsack:
● Take as much of the item with the highest value per

weight (v i /w i) as you can.

● If the item is finished then move on to next item that has
highest (vi /w i), continue this until the knapsack is full.

● v[1 … n] and w[1 … n] contain the values and weights
respectively of the n objects sorted in non increasing
ordered of v[i]/w[i] .

● W is the capacity of the knapsack, x[1 … n] is the
solution vector that includes fractional amount of items
and n is the number of items.

Unit-4:Greedy Algorithms

● Here is a single loop involved
so running time is O(n).

● But the main requirements is
sorting the v[1...n] and w[1...n],
so we can use sorting
algorithms to sort it in O(nlogn).

● Thus its running time complexity
is O(nlogn)

Fractional Knapsack: Pseudo Code

GreedyFracKnapsack(W,n) {

for(i=1; i<=n; i++)

x[i] = 0.0;

tw = W;

for(i=1; i<=n; i++) {

if(w[i] > tw)

break;

else

x[i] = 1.0;

tw - = w[i];

}

if(i<=n)

x[i] = tw/w[i];

}

Unit-4:Greedy Algorithms
● Examples: consider 3 items along with their weights and values

respectively.

I1 w1 = 10 v1 = 60

I2 w2 = 20 v2 = 100

I3 w3 = 30 v3 = 120

The knapsack has capacity W= 50, then find optimal profit earned by
using fractional knapsack.

Unit-4:Greedy Algorithms
● Examples: consider 3 items along with their weights and values

respectively.

I1 w1 = 10 v1 = 60

I2 w2 = 20 v2 = 100

I3 w3 = 30 v3 = 120

The knapsack has capacity W= 50, then find optimal profit earned by
using fractional knapsack.

Solution: Step 1

Items Wi Vi

I1 10 60

I2 20 100

I3 30 120

Unit-4:Greedy Algorithms
Step 2: Calculate Pi= Vi/ Wi

Items Wi Vi Pi= Vi/ Wi

I1 10 60 6

I2 20 100 5

I3 30 120 4

– Step 3: Arranging the items in non increasing order of Pi

Items Wi Vi Pi= Vi/ Wi

I1 10 60 6

I2 20 100 5

I3 30 120 4

Unit-4:Greedy Algorithms

– Step 3: Arranging the items in non increasing order of Pi

Items Wi Vi Pi= Vi/ Wi

I1 10 60 6

I2 20 100 5

I3 30 120 4

Now Filling knapsack according to decreasing order of Pi

Since, 30 W = 120 v

i.e. 1 w =120/30 v = 4 v

20 w= 20 *4 v =80 v

Thus, maximum value = v1+v2+ new (v3) = 60+100+80 = 240 v

Unit-4:Greedy Algorithms
– Example (Practice): Consider five items along with their respective

weights and values.
● I ={I1, I2, I3, I4, I5}
● W= {5,10,20,30,40}
● V ={ 30, 20, 100, 90, 160}

The knapsack has capacity W=60, then find optimal profit earned
by using fractional knapsack.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Job Sequencing with Deadline

● We are given a set of n jobs. Associated with each job I,
di≥0 is an integer deadline and pi≥0 is profit.

● For any job i profit is earned iff job is completed by
deadline. To complete a job one has to process a job for
one unit of time.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Job Sequencing with Deadline
● Here, let there are n numbers of job J={j1,j2,…...jn}
● With corresponding deadline ={d1,d2,...dn}
● Profit if job is completed within their deadline

={p1,p2….pn}
● Only one machine is available for processing jobs.
● Only one job is processed at a time on the machine.
● So our aim is to find feasible subset of jobs such that

profit is maximum.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Job Sequencing with Deadline
● Example: From the set of given job we have to find the

sequence of job, which will be completed within their
deadlines and will give maximum profit. Each job is
associated with a deadline and profit.

Job {J1,j2,j3,j4,j5}

Deadline {2,1,3,2,1}

Profit {60,100,20,40,20}

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Job Sequencing with Deadline
● Solution:Step 1Sort the job according to their profit in non increasing order:

Job {J2,j1,j4,j3,j5}

Deadline {1,2,2,3,1}

Profit {100,60,40,20,20}

● Thus, the sequence of job {J2,J1,J3} are being executed within their
deadline and gives maximum profit i.e. 100+60+20=180.

Job Feasible/non-feasible Processing Sequence Total Profit

J2 Feasible {J2} 100

J1 Feasible {J2,J1} 100+60=160

J4 Not Feasible {J2,J1} 160

J3 Feasible {J2,J1,J3} 160+20=180

J5 Not Feasible {J2,J1,J3} 180

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Job Sequencing with Deadline
● Example: Find the optimal Schedule for the following seven task given

values and deadline.

Job {j1,j2,j3, j4,j5,j6,j7}

Deadline {4,2,3,4,1,4,6}

Values {70,60,50,40,30,20,10}

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Job Sequencing with Deadline :Pseudo Code
● Let us consider, a set of n given jobs which are

associated with deadlines and profit is earned, if a job is
completed by its deadline. These jobs need to be
ordered in such a way that there is maximum profit.

● It may happen that all of the given jobs may not be
completed within their deadlines.

● Assume, deadline of ith job Ji is di and the profit received
from this job is pi. Hence, the optimal solution of this
algorithm is a feasible solution with maximum profit.

Unit-4:Greedy Algorithms

Analysis:

● In this algorithm, we are
using two loops, one is within
another. Hence, the
complexity of this algorithm
is O(n*n)

Job Sequencing with Deadline :Pseudo Code

Job-Sequencing-With-Deadline (D, J, n, k)

D(0) = J(0) = 0

k = 1

J(1) = 1 // means first job is selected

for i = 2 … n do

 r = k

 while D(J(r)) > D(i) and D(J(r)) ≠ r do

 r := r – 1

 if D(J(r)) ≤ D(i) and D(i) > r then

 for l = k … r + 1 by -1 do

 J(l + 1) := J(l)

 J(r + 1) := i

 k := k + 1

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Huffman Coding:
● Huffman coding is a lossless data compression algorithm.
● The idea is to assign variable-length codes to input

characters, lengths of the assigned codes are based on the
frequencies of corresponding characters.

● The most frequent character gets the smallest code and the
least frequent character gets the largest code.

● The variable-length codes assigned to input characters are
Prefix Codes, means the codes (bit sequences) are assigned
in such a way that the code assigned to one character is not
the prefix of code assigned to any other character.

● This is how Huffman Coding makes sure that there is no
ambiguity when decoding the generated bit stream.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Huffman Coding:
● Let us understand prefix codes with a counter example.
● Let there be four characters a, b, c and d, and their

corresponding variable length codes be 00, 01, 0 and 1.
● This coding leads to ambiguity because code assigned to

c is the prefix of codes assigned to a and b.
● If the compressed bit stream is 0001, the de-compressed

output may be “cccd” or “ccb” or “acd” or “ab”.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Huffman Coding:
● Here are mainly two major parts in Huffman Coding

– Build a Huffman Tree from input characters.
– Traverse the Huffman Tree and assign codes to

characters.
●

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Huffman Coding: Compression Technique:
● The technique works by creating a binary tree of nodes.
● These can stored in a regular array, the size of which depends on the number

of symbols, n. A node can either be a leaf node or an internal node.
● Initially all nodes are leaf nodes, which contain the symbol itself, its frequency

and optionally, a link to its child nodes.
● As a convention, bit '0' represents left child and bit '1' represents right child.

Priority queue is used to store the nodes, which provides the node with lowest
frequency when popped. The process is described below:

– Create a leaf node for each symbol and add it to the priority queue.
– While there is more than one node in the queue:

● Remove the two nodes of highest priority from the queue.
● Create a new internal node with these two nodes as children and with

frequency equal to the sum of the two nodes' frequency.
● Add the new node to the queue.

– The remaining node is the root node and the Huffman tree is complete..

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Huffman Coding: Example

● Consider following character with frequencies:

– Character ={a,b,c,d,e,f}

– Frequencies ={45,13,12,16,9,5}

● Solution: Sorting according to frequencies in non decreasing order.

● Here before using Huffman algorithm at least we need 3 bit to represent 5
character. so total number bits are= 5*3+9*3+12*3+13*3+16*3+45*3 =300
bits.

Character Frequencies

f 5

e 9

c 12

b 13

d 16

a 45

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Huffman Coding: Now using Huffman algorithm
●

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Huffman Coding:
● Now from variable length code we get following code

sequence;

● Number of bits required : 5*4+9*4+12*3+13*3+16*3+45*1 = 185 bits

– (300-185)/300*100 % = 38.33%

– i.e. we can save 38.33% space by using huffman coding.

Character Frequencies Code

f 5 1100

e 9 1101

c 12 100

b 13 111

d 16 101

a 45 0

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Huffman Coding: Example
● Trace the huffman algorithms for the given data.

Unit-4:Greedy Algorithms
Huffman Code:

The pseudo-code looks like:

Procedure Huffman(C): // C is the set of n characters and
related information

n = C.size

Q = priority_queue()

for i = 1 to n

 n = node(C[i])

 Q.push(n)

end for

while Q.size() is not equal to 1

 Z = new node()

 Z.left = x = Q.pop

 Z.right = y = Q.pop

 Z.frequency = x.frequency + y.frequency

 Q.push(Z)

end while

Return Q

Analysis:
● Here is a two loops

involved running time
of each loop is O(n).

● we can use sorting
algorithms to sort input
symbols in ascending
order of their
frequencies in
O(nlogn).

● Thus its running time
complexity is O(nlogn)

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Graphs:

● A graph is essentially an interrelationship of nodes/vertices connected by
edges.

● Generally, graphs are suited to real-world applications, such as graphs
can be used to illustrate a transportation system/network, where nodes
represent facilities that transfer or obtain products and edges show
routes or subways that connect nodes.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Graphs can be divided into two parts:

– Undirected: if for every pair of connected nodes, you can go
from one node to the other in both directions.

– Directed: if for every pair of connected nodes, you can only go
from one node to another in a specific direction. We use arrows
instead of simple lines to represent directed edges.

–

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Graphs:

● Weighted Graphs

– The weight graphs are the graphs where edges of the graph have “a
weight” or “cost” and also where weight could reflect distance, time,
money or anything that displays the “association” of a couple of
nodes it links. These weights are an essential element under
Dijkstra's Algorithm.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Dijkastra Shortest Path Algorithms:
● This is an approach of getting single source shortest

paths.
● In this algorithm it is assumed that there is no negative

weight edge. Dijkstra’s algorithm works using greedy
approach, as below:

●

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Dijkastra Shortest Path Algorithms:
● Let's say, the distance of each node from the source is

kept in d[] array. As in, d[3] represents that d[3] time is
taken to reach node 3 from source.

● If we don't know the distance, we will store infinity in d[3].
● Also, let cost[u][v] represent the cost of u-v. That means

it takes cost[u][v] to go from u node to v node.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Dijkastra Shortest Path Algorithms:

● We need to understand Edge Relaxation. Let's say, from your house, that is
source, it takes 10 minutes to go to place A. And it takes 25 minutes to go to
place B. We have,

– d[A] = 10

– d[B] = 25

● Now let's say it takes 7 minutes to go from place A to place B, that means:
cost[A][B] = 7

● Then we can go to place B from source by going to place A from source and
then from place A, going to place B, which will take 10 + 7 = 17 minutes, instead
of 25 minutes. So,

● d[B] = d[A] + cost[A][B]

● This is called relaxation. We will go from node u to node v and if

d[u] + cost[u][v] < d[v] then we will update d[v] = d[u] + cost[u][v].

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Dijkastra Shortest Path Algorithms: Consider a following problem:

● Let's assume, Node 1 is the Source. Then,

– d[1] = 0

– d[2] = d[3] = d[4] = infinity

● We set, d[2], d[3] and d[4] to infinity because

we don't know the distance yet.

● And the distance of source is of course 0.

● Now, we go to other nodes from source and if we can update them, then we'll push them in the queue.

● Say for example, we'll traverse edge 1-2. As d[1] + 2 < d[2]

– Which will make d[2] = 2.

● Similarly, we'll traverse edge 1-3 which makes d[3] = 5.

● We can clearly see that 5 is not the shortest distance we can cross to go to node 3.

● Then we go from node 2 to node 3 using edge 2-3, we can update d[3] = d[2] + 1 = 3.

● Then we go from node 3 to node using edge 3-4, we can update d[4] = d[3] + 3 = 6.

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Dijkastra Shortest Path Algorithms: Consider a following problem:

● So we can see that one node can be updated many times.

● How many times you ask?

● The maximum number of times a node can be updated

is the number of in-degree of a node.

● Thus we get all the shortest path vertex as:

– Weight form 1- 2= 2

– Weight form 1- 3= 3

– Weight form 1- 4= 6

Unit-4:Greedy Algorithms

Analysis:

● In the above algorithm, the first for
loop block takes O(V) time.

● Initialization of priority queue Q
takes O(V) time.

● The while loop executes for O(V),
where for each execution the block
inside the loop takes O(V) times .

● Hence the total running time is

O(V2).

Dijkastra Shortest Path Algorithms: Pseudo code

Dijkstra(G,w,s){

for each vertex vÎ V

do d[v] = ∞

p[v] = Nil

d[s] = 0

S = Φ

Q = V

While(Q!= Φ){

u = Take minimum from Q and delete.

S = S {u}

for each vertex v adjacent to u
if d[v] > d[u] + w(u,v)
then d[v] = d[u] + w(u,v)

}

}

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Dijkastra Shortest Path Algorithms: Example
● Find the shortest path from the node S to other nodes in

the following graph. (Solution was done in class, see
your note books fro reference)

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

● Kruskal’s and Prim’s algorithms were covered in class
(see your note books if you have done seriously at that
time.)

Unit-4:Greedy Algorithms

Design and Analysis of Algorithms (CSC-314)

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

