
Design and Analysis of
Algorithms
(CSC-314)

B.Sc. CSIT

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction:

● Dynamic programming is an optimization method which was developed by Richard
Bellman in 1950.

● Dynamic programming is used to solve the multistage optimization problem in which
dynamic means reference to time and programming means planning or tabulation.

● Dynamic programming approach consists of three steps for solving a problem that is as
follows:

– The given problem is divided into subproblems as same as in divide and conquer
rule. However dynamic programming is used when the subproblems are not
independent of each other but they are interrelated. i.e. they are also called as
overlapping problems.

– To avoid this type of recomputation of overlapping subproblem a table is created in
which whenever a subproblem is solved, then its solution will be stored in the table
so that in future its solution can be reused.

– The solution of the subproblem is combined in a bottom of manner to obtain the
optimal solution of a given problem.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction:
● Dynamic Programming is mainly an optimization over

plain recursion.
● Wherever we see a recursive solution that has repeated

calls for same inputs, we can optimize it using Dynamic
Programming.

● The idea is to simply store the results of sub-problems,
so that we do not have to re-compute them when
needed later.

● This simple optimization reduces time complexities from
exponential to polynomial.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction:
● Dynamic Programming (DP) is an algorithmic technique

for solving an optimization problem by breaking it down
into simpler sub-problems and utilizing the fact that the
optimal solution to the overall problem depends upon
the optimal solution to its subproblems.

● Let’s take the example of the Fibonacci numbers. As we
all know, Fibonacci numbers are a series of numbers in
which each number is the sum of the two preceding
numbers. The first few Fibonacci numbers are 0, 1, 1, 2,
3, 5, and 8, and they continue on from there.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction:
● Dynamic Programming (DP) is an algorithmic technique

for solving an optimization problem by breaking it down
into simpler sub-problems and utilizing the fact that the
optimal solution to the overall problem depends upon
the optimal solution to its subproblems.

● Let’s take the example of the Fibonacci numbers. As we
all know, Fibonacci numbers are a series of numbers in
which each number is the sum of the two preceding
numbers. The first few Fibonacci numbers are 0, 1, 1, 2,
3, 5, and 8, and they continue on from there.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction:
● If we are asked to calculate the nth Fibonacci number, we can

do that with the following equation,

– Fib(n) = Fib(n-1) + Fib(n-2), for n > 1

● As we can clearly see here, to solve the overall problem (i.e.
Fib(n)), we broke it down into two smaller subproblems (which
are Fib(n-1) and Fib(n-2)). This shows that we can use DP to
solve this problem.

● If we write simple recursive solution for Fibonacci Numbers, we
get exponential time complexity and if we optimize it by storing
solutions of sub-problems, time complexity reduces to linear.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction:Characteristics of Dynamic Programming

● Overlapping Sub-problems
– Subproblems are smaller versions of the original

problem.
– Any problem has overlapping sub-problems if finding

its solution involves solving the same subproblem
multiple times.

– Take the example of the Fibonacci numbers; to find
the fib(4), we need to break it down into the following
sub-problems:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction:Characteristics of Dynamic Programming

● Overlapping Sub-problems

● We can clearly see the overlapping sub-problem pattern here, as
fib(2) has been evaluated twice and fib(1) has been evaluated three
times.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction:Characteristics of Dynamic Programming

● Optimal Substructure Property
– Any problem has optimal substructure property if its

overall optimal solution can be constructed from the
optimal solutions of its sub-problems.

– For Fibonacci numbers, as we know,
● Fib(n) = Fib(n-1) + Fib(n-2)

– This clearly shows that a problem of size ‘n’ has been
reduced to sub-problems of size ‘n-1’ and ‘n-2’.
Therefore, Fibonacci numbers have optimal
substructure property.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction: Greedy Algorithm vs Dynamic Programming

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Introduction: Greedy Algorithm vs Dynamic Programming

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:
● Matrix chain multiplication (or Matrix Chain Ordering Problem,

MCOP) is an optimization problem that to find the most efficient
way to multiply a given sequence of matrices.

● The problem is not actually to perform the multiplications but
merely to decide the sequence of the matrix multiplications
involved.

● The matrix multiplication is associative as no matter how the
product is parenthesized, the result obtained will remain the
same.

● For example, for four matrices A, B, C, and D, we would have:

– ((AB)C)D = ((A(BC))D) = (AB)(CD) = A((BC)D) = A(B(CD))

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:
● However, the order in which the product is parenthesized affects the

number of simple arithmetic operations needed to compute the product.

● For example, if A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5
× 60 matrix,

– then computing (AB)C needs (10×30×5) + (10×5×60) = 1500 + 3000
= 4500 operations

– while computing A(BC) needs (30×5×60) + (10×30×60) = 9000 +
18000 = 27000 operations.

● Clearly, the first method is more efficient.

● Let A i….j denote the result of multiplying matrices i through j. It is easy
to see that A i…j is a Pi−1 x p j matrix.

● So for some k total cost is sum of cost of computing A i…k , cost of
computing A k+1…j , and cost of multiplying A i…k and A k+1…j .

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:
● Example : We are given the sequence {4, 10, 3, 12, 20, and 7}.

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7. We
need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

● Solution:

● Let us proceed with working away from the diagonal. We
compute the optimal solution for the product of 2 matrices.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:
● Example-1 : We are given the sequence {4, 10, 3, 12, 20, and 7}.

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7. We
need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

● Solution:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:
● Example-1 : We are given the sequence {4, 10, 3, 12, 20, and 7}.

The matrices have size 4 x 10, 10 x 3, 3 x 12, 12 x 20, 20 x 7. We
need to compute M [i,j], 0 ≤ i, j≤ 5. We know M [i, i] = 0 for all i.

● Solution:
– Here P0 to P5 are Position and M1 to M5 are matrix of size (pi to pi-1)

– On the basis of sequence, we make a formula , for Mi ------> p[i] as column and p[i-1] as row .

– In Dynamic Programming, initialization of every method done by '0'.So we initialize it by '0'.It will
sort out diagonally.

– We have to sort out all the combination but the minimum output combination is taken into
consideration.

– M1: 4810

– M2: 10*3

– M3: 3*12

– M4: 12*20

– M5: 20*7

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

● Solution:

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

Solution:

● We initialize the diagonal element with equal i,j value with '0'.

● After that second diagonal is sorted out and we get all the values corresponded to it

● Now the third diagonal will be solved out in the same way.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

● Solution

Now product of 3 matrices:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

● Solution

Now product of 3 matrices:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

● Solution

Now product of 4 matrices:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

● Solution

Now product of 4 matrices:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

● Solution

Now product of 5 matrices:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

● Solution

Finally:

● The optimal cost is 1344. and the optimal substructure is

(M1M2M3M4M5)

(M1M2) (M3M4M5)

(M3M4) (M5)

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

● Example: We are given the sequence {3,4,5,2 and 3}. The matrices
M1,M2,M3,M4 have size of 3*4, 4*5, 5*2, 2*3. Compute the optimal
sequence for the computation of multiplication operation.

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:Pseudo Code

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concept of Matrix Chain Multiplication:Analysis

● The above algorithm can be easily analyzed for running time as O(n*n*n), due to three nested loops.

● The space complexity is O(n*n)

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem:

● The problem states-

– Which items should be placed into the knapsack such that-

– The value or profit obtained by putting the items into the knapsack is maximum.

– And the weight limit of the knapsack does not exceed.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem:

● In 0/1 Knapsack Problem,

– As the name suggests, items are indivisible here.

– We can not take the fraction of any item.

– We have to either take an item completely or leave it completely.

– It is solved using dynamic programming approach.

Statement: A thief has a bag or knapsack that can contain maximum weight W of his
loot. There are n items and the weight of ith item is Wi and it worth Vi . An amount of
item can be put into the bag is 0 or 1 i.e. xi is 0 or 1. Here the objective is to collect the
items that maximize the total profit earned.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-

● Consider-

– Knapsack weight capacity = w

– Number of items each having some weight and value = n

– 0/1 knapsack problem is solved using dynamic programming in the following steps-

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-Example

● Find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.
Consider-

n = 4

w = 5 kg

(w1, w2, w3, w4) = (2, 3, 4, 5)

(b1, b2, b3, b4) = (3, 4, 5, 6)

Solution-

Given-

 Knapsack capacity (w) = 5 kg

 Number of items (n) = 4

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms
(CSC-314)

Compute remaining :

● T(3,1), T(3,2), T(3,3), T(3,4), T(3,5)

● T(4,1), T(4,2), T(4,3), T(4,4), T(4,5)

And fill the table.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming-Pseudo Code

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming

● Analysis:

– For run time analysis examining the above algorithm the overall run time of the algorithm is O(nw).

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

0/1 Knapsack Problem Using Dynamic Programming

● Example

● Let the problem instance be with 7 items where v[] = {2,3,3,4,4,5,7} and w[] = {3,5,7,4,3,9,2} and W = 9.
Find the maximum profit earned by using 0/1 knapsack problem.

● Consider the problem having weights and profits are:

Weights: {3, 4, 6, 5}

Profits: {2, 3, 1, 4}

The weight of the knapsack is 8 kg and The number of items is 4. Find the maximum profit
earned by using 0/1 knapsack problem.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● The longest common subsequence (LCS) is defined as the longest subsequence
that is common to all the given sequences, provided that the elements of the
subsequence are not required to occupy consecutive positions within the original
sequences.

● If S1 and S2 are the two given sequences then,

– Z is the common subsequence of S1 and S2

– if Z is a subsequence of both S1 and S2.

– Furthermore, Z must be a strictly increasing sequence of the indices of both
S1 and S2.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● In a strictly increasing sequence, the indices of the elements chosen from the
original sequences must be in ascending order in Z.

● If

– S1 = {B, C, D, A, A, C, D}

● Then, {A, D, B} cannot be a subsequence of S1 as the order of the elements is
not the same (ie. not strictly increasing sequence).

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● Let us understand LCS with an example.

● If

– S1 = {B, C, D, A, A, C, D}

– S2 = {A, C, D, B, A, C}

● Then, common subsequences are {B, C}, {C, D, A, C}, {D, A, C}, {A, A, C}, {A, C},
{C, D}, ...

● Among these subsequences, {C, D, A, C} is the longest common subsequence.
We are going to find this longest common subsequence using dynamic
programming.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● Let us take two sequences:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● The following steps are followed for finding the longest common subsequence.

● Step 1: Create a table of dimension n+1*m+1 where n and m are the lengths of X
and Y respectively. The first row and the first column are filled with zeros.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● The following steps are followed for finding the longest common
subsequence.

– Step 2: Fill each cell of the table using the following logic.

– Step 2.1: If the character corresponding to the current row and
current column are matching, then fill the current cell by adding
one to the diagonal element. Point an arrow to the diagonal cell.

– Step 2.2: Else take the maximum value from the previous
column and previous row element for filling the current cell. Point
an arrow to the cell with maximum value. If they are equal, point
to vertical one.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● Step 2 is repeated until the table is filled.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● The value in the last row and the last column is the length of the
longest common subsequence.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● In order to find the longest common subsequence, start from the last
element and follow the direction of the arrow.

● Thus, the longest common subsequence is (C,A).

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Longest Common Sub-sequence problem (LCS):

● Examples: Find the longest common sub-sequences for the
following.

– LCS for input Sequences x= “ABCDGH” and Y= “AEDFHR” is
“ADH” of length 3.

– LCS for input Sequences X= “AGGTAB” and Y= “GXTXAYB” is
“GTAB” of length 4.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

The Floyd Warshall Algorithm is for solving the All Pairs Shortest
Path problem.

● The problem is to find shortest distances between every pair of
vertices in a given edge weighted directed Graph.

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● Floyd-Warshall Algorithm is an algorithm for finding the shortest path
between all the pairs of vertices in a weighted graph.

● This algorithm works for both the directed and undirected weighted
graphs. But, it does not work for the graphs with negative cycles
(where the sum of the edges in a cycle is negative).

● A weighted graph is a graph in which each edge has a numerical
value associated with it.

● Floyd-Warhshall algorithm is also called as Floyd's algorithm, Roy-
Floyd algorithm, Roy-Warshall algorithm, or WFI algorithm.

● This algorithm follows the dynamic programming approach to find
the shortest paths.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● How Floyd-Warshall Algorithm Works?

– Let the given graph be:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● Follow the steps below to find the shortest path between all the pairs
of vertices.

– Create a matrix A0 of dimension n*n where n is the number of
vertices. The row and the column are indexed as i and j
respectively. (i and j are the vertices of the graph).

– Each cell A[i][j] is filled with the distance from the ith vertex to the
jth vertex. If there is no path from ith vertex to jth vertex, the cell is
left as infinity.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● How Floyd-Warshall Algorithm Works?

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● How Floyd-Warshall Algorithm Works?

– Now, create a matrix A1 using matrix A0. The elements in the first
column and the first row are left as they are. The remaining cells
are filled in the following way.

– Let k be the intermediate vertex in the shortest path from source
to destination. In this step, k is the first vertex.

– A[i][j] is filled with (A[i][k] + A[k][j]) if (A[i][j] > A[i][k] + A[k][j]).

– That is, if the direct distance from the source to the destination is
greater than the path through the vertex k, then the cell is filled
with A[i][k] + A[k][j].

– In this step, k is vertex 1. We calculate the distance from source
vertex to destination vertex through this vertex k.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● How Floyd-Warshall Algorithm Works?

●

●

●

●

●

● For example: For A1[2, 4], the direct distance from vertex 2 to 4 is 4
and the sum of the distance from vertex 2 to 4 through vertex (ie. from
vertex 2 to 1 and from vertex 1 to 4) is 7. Since 4 < 7, A0[2, 4] is filled
with 4.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● How Floyd-Warshall Algorithm Works?

– Similarly, A2 is created using A1. The elements in the second
column and the second row are left as they are.

– In this step, k is the second vertex (i.e. vertex 2). The remaining
steps are the same as in step 2.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● How Floyd-Warshall Algorithm Works?

– Similarly, A3 and A4 is also created.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● How Floyd-Warshall Algorithm Works?

– A4 gives the shortest path between each pair of vertices.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● Apply Floyd-Warshall algorithm for constructing the shortest path for
the given graphs.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm: Pseudo code:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Floyd Warshall Algorithm:

● Floyd Warshall Algorithm Complexity

● Time Complexity

– There are three loops. Each loop has constant complexities. So,
the time complexity of the Floyd-Warshall algorithm is O(n3).

● Space Complexity

– The space complexity of the Floyd-Warshall algorithm is O(n2).

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem:

● Problem Statement

● A traveler needs to visit all the cities from a list, where
distances between all the cities are known and each city
should be visited just once.

● What is the shortest possible route that he visits each city
exactly once and returns to the origin city?

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem:

● Travelling salesman problem is the most well known computational
problem.

● We can use brute-force approach to evaluate every possible tour
and select the best one. For n number of vertices in a graph, there
are (n - 1)! num.ber of possibilities.

● Instead of brute-force using dynamic programming approach, the
solution can be obtained in lesser time, though there is no
polynomial time algorithm.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem:

● Let us consider a graph G = (V, E), where V is a set of cities and E is a set of weighted
edges.

● An edge e(u, v) represents that vertices u and v are connected. Distance between
vertex u and v is d(u, v), which should be non-negative.

● Suppose we have started at city 1 and after visiting some cities now we are in city j.

● Hence, this is a partial tour. We certainly need to know j, since this will determine which
cities are most convenient to visit next.

● We also need to know all the cities visited so far, so that we don't repeat any of them.

● Hence, this is an appropriate sub-problem.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem:

● For a subset of cities S Є {1, 2, 3, ... , n} that includes 1, and j Є S, let C(S, j) be the
length of the shortest path visiting each node in S exactly once, starting at 1 and
ending at j.

● When |S| > 1, we define C(S, 1) = since the path cannot start and end at 1.∝

● Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1
and end at j. We should select the next city in such a way that

– C(S,j)=minC{d(i,j)+(S−{j},i)} where i S and i≠jc(S,j)∈
=minC{d(i,j)+(s−{j},i)} where i S and i≠j∈

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem:

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem: Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem: Example

● Clearly, g(i,s) =min{Cik + g(jk, S-{k})} where kbelongs to S

● S = Φ= Ci1

– Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5

– Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6

– Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem: Example

● S = 1

● Cost(i,s)=min{Cost(j,s–(j))+d[i,j]}Cost(i,s)=min{Cost(j,s)−(j))+d[i,j]}

– Cost(2,{3},1)=d[2,3]+Cost(3,Φ,1)=9+6=15 cost(2,{3},1)=d[2,3]+cost(3,Φ,1)=9+6=15

– Cost(2,{4},1)=d[2,4]+Cost(4,Φ,1)=10+8=1cost(2{4},1)=d[2,4]+cost(4,Φ,1)=10+8=18

– Cost({2},1)=d[3,2]+Cost(2,Φ,1)=13+5=18cost(3{2},1)=d[3,2]+cost(2,Φ,1)=13+5=18

– Cost({4},1)=d[3,4]+Cost(4,Φ,1)=12+8=20cost(3{4},1)=d[3,4]+cost(4,Φ,1)=12+8=20

– Cost(4,{3},1)=d[4,3]+Cost(3,Φ,1)=9+6=15cost(4,{3},1)=d[4,3]+cost(3,Φ,1)=9+6=15

– Cost(4,{2},1)=d[4,2]+Cost(2,Φ,1)=8+5=13cost(4,{2},1)=d[4,2]+cost(2,Φ,1)=8+5=13

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem: Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem: Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Travelling Salesman Problem: Example

● For the following graph find the minimum cost of tour

Travelling Salesman Problem: Example

●

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concepts of Memoization:
● In computing, memoization or memoisation is an optimization

technique used primarily to speed up computer programs by
storing the results of expensive function calls and returning the
cached result when the same inputs occur again.

● Most of the Dynamic Programming problems are solved in two
ways:

● Tabulation: Bottom Up

● Memoization: Top Down

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concepts of Memoization:
● Memoization ensures that a method doesn't run for the same inputs more than

once by keeping a record of the results for the given inputs (usually in a hash
map).

● We can imagine the recursive calls of this method as a tree, where the two
children of a node are the two recursive calls it makes.

● We can see that the tree quickly branches out of control:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concepts of Memoization:
● To avoid the duplicate work caused by the branching, we can wrap the method

in a class that stores an instance variable, memo, that maps inputs to outputs.

● Then we simply check memo to see if we can avoid computing the answer for
any given input, and save the results of any calculations to memo.

● Now in our recurrence tree, no node appears more than twice:

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

Concepts of Memoization:
● Memoization is a common strategy for dynamic programming problems, which

are problems where the solution is composed of solutions to the same problem
with smaller inputs (as with the Fibonacci problem, above).

● The other common strategy for dynamic programming problems is going
bottom-up, which is usually cleaner and often more efficient.

Unit-5: Dynamic Programming

Design and Analysis of Algorithms (CSC-314)

● Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

